Защита от статического электричества

Магнитное притяжение/отталкивание

С этим «побочным» эффектом статического электричества сталкивался каждый. Сухие волосы при расчесывании начинают «летать», тонкие бумажные и полиэтиленовые листики «прилипают» к рукам и друг другу… Но это все баловство, самая серьезная проблема, с которой ты сталкиваешься ежедневно, — из-за статического электричества вещи притягивают на себя пыль.

Запомни: не ленись проводить влажную уборку. Протрешь мебель сухой тряпкой — пыль тут же вернется, протрешь влажной — надолго сохранишь свое жилище в чистоте. Влажная уборка снимает заряд электричества с поверхности, а значит, предмет перестанет быть магнитом хоть на некоторое время.

Электроприборы

В условиях современной жизни ты постоянно имеешь дело с приборами, в которых есть микроэлектронные компоненты. А все эти приборы очень боятся принять на себя незапланированный заряд электричества. Во избежание этой проблемы корпус прибора защищает его от случайного воздействия тока или же снимает заряд (например, блок компьютера во многом из-за этого изготавливают из металла).

Но в любом случае, не удивляйся, если ты в резиновых сапогах и синтетическом костюме держал в руках радиоприемник или плейер, а он стал плохо работать или вовсе вышел из строя. К слову, на производстве этому вопросу уделяется большое внимание, так как заряды статики могут породить существенный процент брака.

Пожарная безопасность

Конечно, маловероятно, что от статического электричества воспламенятся предметы из твердых материалов. А вот с горючими жидкостями дела обстоят иначе. Мощности искры, которая образуется от разряда, возникающего на синтетической одежде или обуви, вполне хватит, чтобы воспламенить смесь паров воздеха и таких общедоступных бытовых легковоспламеняющихся жидкостей, как бензин, керосин, растворители.

Запомни: пользоваться этими жидкостями в плохо проветриваемом, сухом помещении, находясь при этом в синтетической одежде и обуви с резиновой подошвой, крайне небезопасно. Все эти факторы увеличивают возможность образования статического заряда. Любые вращающиеся детали машин, которые не заземлены, тоже являются генераторами статического заряда. Помимо этого генерировать заряд запросто могут сами жидкости, находящиеся в изолированной среде, — например, в пластиковой канистре. Как только ты попытаешься вылить из токонепроводящей канистры топливо в заземленную среду — возникнет воспламенение. Именно по этой причине все бензовозы ездят с металлическими цистернами и свисающей цепочкой, скользящей по асфальту.

И тебе я советую не играть с огнем и использовать только металлические канистры для топлива. Есть в продаже и канистры, которые производитель предназначает для хранения легковоспламеняющихся жидкостей, но учти, что такие аксессуары для твоего авто не проходят обязательную сертификацию в МЧС, а о добровольной сертификации заявок я пока не видел. Следовательно, на свой страх и риск каждый вправе верить, что канистра будет для этого пригодна. Все претензии потом к производителю. Что касается правил пожарной безопасности, то они ЗАПРЕЩАЮТ хранение легковоспламеняющихся жидкостей в пластмассовой таре. Только металлическая канистра гарант того, что внутри не скопится заряд.

Поражение электрическим током

Разряд статического электричества для человека в принципе не представляет особой опасности. Но не стоит забывать о возможных вторичных последствиях. Разряд неприятен и часто вызывает непроизвольную резкую реакцию и сокращение мышц. Иногда такое сокращение может вызвать травму — например, при работе с оборудованием.

Запомни: если ты находишься в электрическом поле и в руках держишь заряженный объект, то велика вероятность того, что тело тоже зарядится. Заряд электричества остается в теле, если на тебе надета непроводящая ток обувь (например, на резиновой подошве). И заряд будет в тебе, пока ты не дотронешься до заземленного предмета.

Если шагаешь по синтетическим коврам — рождается статический заряд от контакта обуви с ковром. Выходя из своей машины, получаешь удар, спровоцированный зарядом, возникшим между сиденьем и одеждой в момент подъема. Решение проблемы — держись за металличекую часть авто до момента отрыва от сиденья.

Можно пользоваться «антистатиками», можно заземлить все вокруг. Но до конца убрать статическое электричество из жизни не удастся. Поэтому всегда помни о том, что оно рядом и от том, что оно может быть опасным. Береги себя! Законы физики действуют для всех!

Природа статического электричества

В равновесном состоянии молекулы и атомы любого вещества имеют одинаковое количество положительно и отрицательно заряженных частиц. Отрицательно заряженные частицы, электроны, могут перемещаться от одного атома к другому, создавая тем самым разные заряды атомов.

Там, где появляется лишний электрон, — заряд отрицательный. Где недостаёт электрона — положительный. Эти неподвижные в пространстве заряды создают электростатическое поле. Оно возникает в таких случаях:

  • При трении одного предмета о другой.
  • При резком перепаде температур.
  • Вследствие воздействия различных излучений (ультрафиолетового, радиоактивного).
  • Статические заряды накапливаются на теле человека при ношении синтетической или шерстяной одежды. Они возникают в кузове автомобиля при движении.

Очень опасно перевозить бензин в пластиковых канистрах. При трении жидкости о стенки образуется статическое электричество, которое может вызвать искру и воспламенить пары бензина.

Искры, возникающие в процессе разряда электростатических полей, способны вызвать возгорание в запылённых и загазованных помещениях.

Защита на предприятиях

Статическое электричество и защита от него — вопросы, которые серьёзно прорабатываются при создании правил техники безопасности на предприятиях. Соблюдение их должно защитить персонал от поражения током и предотвратить нарушения технологического процесса.

Меры, применяемые на производстве, состоят в снижении интенсивности генерации полей и в отводе заряда. Для снижения интенсивности применяется:

  • Очистка горючих газов и жидкостей от загрязнений твёрдыми и жидкими примесями.
  • Отказ по возможности от дробления и распыления веществ в технологическом цикле.
  • Соблюдение проектной скорости перемещения материалов в магистралях и аппаратах.

Для отвода заряда требуется заземление всех металлических и электропроводных частей оборудования, металлических кожухов и трубопроводов. Заземлять следует и движущиеся приспособления и вращающиеся элементы, которые не имеют постоянного контакта с землёй. Увеличение проводимости диэлектрических материалов тоже способствует отводу заряда. Это достигается применением поверхностно-активных веществ, увеличивающих проводимость диэлектриков. Поддержание влажности воздуха не ниже 60−70% является успешным методом борьбы со статическим электричеством.

Нейтрализаторы применяются, если технологических мер оказывается недостаточно. Эти приборы используются для нейтрализации поверхностных электрических зарядов ионами разного знака. Для ионизации воздуха электрическим полем высокого напряжения применяются индукционные и высоковольтные нейтрализаторы.

В целях нейтрализации зарядов во взрывоопасных помещениях успешно применяются радиоизотопные нейтрализаторы. Ионизация происходит за счёт активного α или β излучения.

Индивидуальными методами защиты являются специальная обувь и одежда.

Защита от статического электричества

Согласно действующим правилам защиты от разрядов статического электричества должна осуществляться во взрывоопасных и пожароопасных производствах при наличие зон классов В-I, B-Ia, B-II, B-IIa, П-I и П-II, в которых применяются и вырабатываются вещества с удельным объёмным электрическим сопротивлением Ом∙м.

В остальных случаях защита осуществляется лишь тогда, когда статическое электричество предоставляет опасность для обслуживающего персонала, отрицательно влияет на технологический процесс или качество продукции.

Основными способами устранения опасности от статического электричества является (слайд):

1) заземление оборудования, коммуникаций, аппаратов и сосудов, а так же обеспечение постоянного электрического контакта с заземлением тела человека;

2) уменьшение удельного объемного и поверхностного электрического сопротивления путем повышения влажности воздуха или применения антистатических примесей;

3) ионизацией воздуха или среды, в частности, в нутрии аппарата, сосуда и т.д.

Кроме этих способов используют: предотвращение образования взрывоопасных концентрации, ограничение скорости движения жидкости, замену ЛВЖ на негорючие растворители и т.д. Практический способ устранения опасности от статического электричества выбирается с учётом эффективности и экономической целесообразности.

Остановимся более подробно на указанных выше способах устранения опасности от статического электричества.

Заземление (18 мин) – наиболее часто применяемая мера защиты от статического электричества. Его целью является устранение опасности возникновения электрических разрядов с проводящих частей оборудования. Поэтому все проводящие части оборудования, и электропроводные неметаллические предметы подлежат обязательному заземлению, независимо от того, применяются ли другие способы защиты от статического электричества. Заземлять следует не только те части оборудования, которые участвуют в генерировании статического электричества, но и все другие указанного выше свойства, так как они могут зарядиться по закону электростатической индукции.

В случаях, когда оборудование выполнено из электропроводящих материалов, заземление является основным и почти всегда достаточным способом защиты.

Если же на внешней поверхности или внутренних стенках металлических аппаратов, резервуаров и трубопроводов образуются отложения непроводящих веществ (смолы, пленки, осадки), заземление становится неэффективным. Заземление не устраняет опасности и при использовании аппаратов с эмалированными и другими неэлектропроводящими покрытиями.

Неметаллическое оборудование считается электростатически заземленным, если сопротивление растеканию тока на землю с любых точек его внешней и внутренней поверхности Ом при относительной влажности. Такое сопротивление обеспечивает необходимое значение постоянной времени релаксации в пределах десятой доли секунды в невзрывоопасной и тысячные доли секунды во взрывоопасной среде. Постоянная времени релаксациисвязана с сопротивлениемR заземления аппарата или оборудования и его емкостью C соотношением τ=R∙C.

Трубопроводы наружных установок (на эстакадах или в каналах), оборудование и трубопроводы, расположенные в цехах, должны представлять на всем протяжении электрическую цепь и присоединяться к заземляющим устройствам. Считается, что электрическая проводимость фланцевых соединений трубопроводов и аппаратов, соединений крышек с корпусами аппаратов и т.п. достаточно высока, поэтому не требуется устанавливать специальных параллельных перемычек.

Каждая система аппаратов и трубопроводов в пределах цеха должна быть заземлена не менее, чем в двух местах. Все резервуары и емкости вместимостью более 50 м3 и диаметром более 2,5 м заземляют не менее чем в двух противоположенных точках. На поверхности горючих жидкостей в резервуарах не должно быть плавающих предметов.

Наливные стояки эстакад для заполнения железнодорожных цистерн и рельсы железнодорожных путей в пределах сливоналивного фронта должны быть электрически соединены между собой и надежно заземлены. Автоцистерны, наливные суда, самолеты, находящиеся под наливом (сливом) горючих жидкостей и сжиженных газов, должны также заземляться. Контактные устройства (без средств взрывозащиты) для присоединения заземляющих проводников должны быть установлены за пределами взрывоопасной зоны (не менее 5м от места налива или слива, ПУЭ). При этом проводники вначале присоединяются к корпусу объекта заземления, а затем к заземляющему устройству.

Следует отметить, что применяемые до сих пор для заземления автоцистерн заземляющие проводники не обеспечивают требуемого уровня пожаровзрывобезопасности технологии налива или слива топлива и других ЛВЖ. Поэтому в настоящее время разработаны и серийно выпускаются специальные устройства заземления автоцистерн (УЗА) типов УЗА-2МИ, УЗА-2МК и УЗА-2МК-03, которые соответствуют требованиям ГОСТов и могут устанавливаться во взрывоопасных зонах класса В-Iг.

Если для защиты от статической электризации проводящего неметаллического оборудования с проводящей футеровкой применяется заземление, то к нему применяются те же требования, что и к заземлению металлического оборудования. Например, заземление трубопровода из диэлектрического материала, но с проводящим покрытием (краска, лак), может выполняться присоединением его к заземляющему контуру с помощью металлических хомутов и проводников через 20÷30 м.

Но заземление не решает задачу защиты от статического электричества резервуара, заполняемого наэлектризованной жидкостью, лишь исключает накопление заряда (натекающего из объема жидкости) на его стенках, но не ускоряет процесс рассеяния заряда в жидкости. Это объясняется тем, что скорость релаксации зарядов статического электричества в объеме диэлектрической жидкости нефтепродуктов определяется постоянной времени релаксации . Следовательно, в заполняемом наэлектризованными продуктами резервуаре в течении всего времени закачки жидкости и в течении времени, приблизительно равном, после ее окончания существует электрическое поле зарядов независимо от того, заполняется этот резервуар или нет. Именно в этот промежуток времени может существовать опасность воспламенения паровоздушной смеси нефтепродуктов в резервуаре разрядами статического электричества.

С учетом сказанного выше, значительную опасность представляет забор проб из резервуара сразу после его заполнения. Но через промежуток времени, примерно равный , после окончания заполнения заземленного резервуара заряды статического электричества в нем практически исчезают и проведение забора проб жидкости становится безопасным.

Для светлых нефтепродуктов, имеющих малую электропроводность (при Ом∙м), необходимое время выдержки после заполнения резервуара, обеспечивающее безопасность дальнейших операций, должно быть не менее 10 минут.

Заземление резервуара и выдержка необходимого времени после заполнения не дадут нужного эффекта безопасности, если в резервуаре имеются плавающие на поверхности жидкости изолированные предметы, которые могут приобрести заряд статического электричества при заполнении резервуара и сохранить его в течении времени, значительно превышающем . В этом случае при контакте плавающего предмета с заземленным проводящим телом может произойти опасное искрообразование.

Уменьшение объемного и поверхностного удельных электрических сопротивлений (8 мин).

При этом увеличивается электропроводность и обеспечивается способность диэлектрика отводить заряды статического электричества. Устранение опасности статической электризации диэлектриков этим способом является весьма эффективным и может быть достигнуто повышением влажности воздуха, химической обработкой поверхности, применением электропроводных покрытий и антистатических веществ (присадок).

А. Повышение относительной влажности воздуха.

Большинство пожаров от искр статического электричества происходит обычно зимой, когда относительная влажность воздуха велика. При относительной влажности 65÷70%, как показывают исследования и практика, число вспышек и загораний становится незначительным.

Ускорение стекания электростатических зарядов с диэлектриков при высокой влажности объясняют тем, что на поверхности гидрофильных диэлектриков адсорбируется тонкая пленка влаги, содержащая обычно большое количество ионов из загрязнений и растворенного вещества, за счет которых обеспечивается достаточная поверхностная электропроводность электролитического характера.

Однако, если материал находится при более высокой температуре, чем та, при которой пленка может удерживаться на поверхности, указанная поверхность не может стать проводящей даже при очень высокой влажности воздуха. Эффект также не будет достигнут, если заряженная поверхность диэлектрика гидрофобна (несмачиваемая: сера, парафин, масла и другие углеводороды) или скорость ее перемещения больше, чем скорость образования поверхностной пленки.

Увеличение влажности достигается распылением водяного пара или воды, циркуляцией влажного воздуха, а иногда свободным испарением с поверхности воды или охлаждением электризующей поверхности на 10о С ниже температуры окружающей среды.

Б.Химическая обработка поверхности, электропроводные покрытия.

Уменьшение удельного поверхностного сопротивления полимерных материалов может быть достигнуто химической обработкой их поверхности кислотами (например серной или хлорсульфоновой). В результате этого поверхности полимера (полистирол, полиэтилен и полиэфирные пленки) окисляются или сульфируются и удельное сопротивление уменьшается до 106 Ом при относительной влажности воздуха 75%.

Положительный эффект достигается и при обработке изделий из полистирола и полиолефинов погружением образцов в петролейный эфир при одновременном воздействии ультразвуком. Методы химической обработки эффективны, но требуют точного соблюдения технологических условий.

Иногда нужный эффект достигается нанесением на диэлектрик поверхостной проводящей пленки, например, тонкой металлической, получаемый распылением, разбрызгиванием, испарением в вакууме или наклеиванием металлической фольги. Пленки на углеродной основе получают распылением углерода в жидкой среде или порошка с частицами меньше 1 мкм.

В. Применение антистатических веществ.

Большинство горючих и легковоспламеняющихся жидкостей характеризуются высоким удельным электрическим сопротивлением. Поэтому при некоторых операциях, например с нефтепродуктами, происходит накопление зарядов статического электричества, которое препятствует интенсификации технологических операций, а также служит источником взрывов и пожаров на нефтеперерабатывающих и нефтехимических предприятиях.

Движение жидких углеводородов относительно твердой, жидкой или газообразной среды может привести к разделению электрических зарядов на поверхности соприкосновения. При движение жидкости по трубе слой зарядов находящихся на поверхности жидкости, уносится её потоком, а заряды противоположного знака остаются на контактирующей с жидкостью поверхностью трубы и если, металлическая труба заземлена, стекают в землю. Если же металлический трубопровод изолирован или изготовлен из диэлектрических материалов, то он приобретает положительный заряд, а жидкость — отрицательный.

Степень электризации нефтепродуктов зависит от состава и концентрации содержащихся в них активных примесей, физико-химического состава нефтепродуктов, состояние внутренней поверхности трубопровода или технологического аппарата (наличия коррозии, шероховатости и т.д.), диэлектрических свойств, вязкости и плотности жидкости, а также скорости движения жидкости, диаметра и длины трубопровода. Например, присутствие 0,001% механических примесей превращает инертное углеводородное топливо в электризуемое до опасных пределов.

Один из наиболее эффективных способов устранения электризации нефтепродуктов,- введение специальных антистатических веществ. Добавление их в тысячных или десятитысячных долях процента позволяет уменьшить удельное сопротивление нефтепродуктов на несколько порядков и обезопасить операции с ними. К таким антистатическим веществам относятся: олеаты и нафтенаты хрома и кобальта, соли хрома на основе синтетических жирных кислот, присадка «Сигбаль» и другие. Так, присадка на основе олеиновой кислоты олеат хрома уменьшает ρv бензина Б-70 в 1,2 ∙ 104 раза. Широкое применение в операциях по промывке деталей нашли присадки «Анкор -1» и АСП-1.

Для получения «безопасной» электропроводности нефтепродуктов в любых условиях надо вводить 0,001÷0,005% присадок. На физико-химические свойства нефтепродуктов они обычно не влияют.

Для получения проводящих растворов полимеров (клеев) также применяют антистатические присадки, растворимые в них, например соли металлов переменной валентности высших карбоновых и синтетических кислот.

Положительные результаты достигаются при использовании антистатических веществ на предприятиях по переработке синтетических волокон, поскольку они обладают способностью увеличивать их ионную проводимость и тем самым снижать электрическое сопротивление волокон и получаемых из них материалов.

Для приготовления антистатических веществ, которые влияют на электрические свойства волокон применяют: углеводороды парафинового ряда, жиры, масла, гигроскопические вещества, поверхностно-активные вещества

( ПАВ).

Антистатические вещества используются в промышленности полимеров, например, при обработке полистирола и полиметилметакрилата. Обработка полимеров антистатическими добавками производится как поверхностным нанесением, так и введением в расплавленную массу. В качестве таких добавок применяют например ПАВ. При поверхностном нанесении ПАВ ρs полимеров снижается на 5÷8 порядков, но срок эффективного действия мал

(до одного месяца). Введение ПАВ внутрь более перспективно т.к. антистатические свойства полимеров сохраняются несколько лет, полимеры становятся менее подверженными действию растворителей, истиранию и т.д. Для каждого диэлектрика оптимальные концентрации ПАВ различны и варьируются от 0,05 до 3,0%.

В настоящее время широко используются трубы, выполненные из полупроводящих полимерных композиций с наполнителями: ацетиленовой сажей, алюминиевой пудрой. графитом, цинковой пылью. Лучший наполнитель – ацетиленовая сажа, снижающая сопротивление на 10÷11 порядков даже при 20% от массы полимера. Её оптимальная массовая концентрация для создания электропроводящего полимера составляет 25%.

Для получения электропроводной или антистатической резины в неё вводят наполнители: порошковый графит, различные сажи, мелкодисперсные металлы. Удельное сопротивление ρv такой резины достигает 5 ∙102 Ом∙м, а обычной до 106 Ом∙м.

Антистатическими резинами марки КР-388, КР-245 пользуются во взрывоопасных производствах, покрывают полы, рабочие столы, детали оборудования и колеса внутрицехового транспорта. Такое покрытие быстрее отводит возникающие заряды, снижает электризацию людей до безопасного уровня.

В последнее время разработана маслобензостойкая электропроводящая резина с использованием бутадиеннитральных и полихлоропреновых каучуков, которая широко используется для изготовления напорных рукавов и шлангов для перекачки ЛВЖ. Такие рукава значительно снижают опасность воспламенения при сливе и наливе ЛВЖ в авто- и железнодорожные цистерны и другие емкости, исключают применение специальных устройств для заземления заправочных воронок и наконечников.

Эффективное снижение потенциала ременных передач и ленточных транспортеров, изготовленных из материалов с ρs =105 Ом∙м, достигается увеличением поверхностной проводимости ремня и обязательным заземлением установки. Для увеличения поверхностной проводимости ремня его внутренняя поверхность покрывается антистатической смазкой, возобновляемой не реже одного раза в неделю.

Ионизация воздуха (9 мин).

Сущность этого способа состоит в нейтрализации или компенсации поверхностных электрических зарядов ионами разного знака, которые создаются специальными приборами — нейтрализаторами. Ионы, имеющие полярность, противоположную полярности зарядов наэлектризованных материалов, под действием электрического поля, создаваемое зарядами таких материалов, оседают на их поверхностях и нейтрализуют заряды.

Ионизация воздуха электрическим полем высокой напряженности осуществляется с помощью нейтрализаторов двух типов: индукционных и высоковольтных.

Индукционные нейтрализаторы бывают с остриями (рис.2,а) и проволочными (рис. 2,б) У нейтрализатора с остриями в деревянном или металлическом стержне укреплены заземленные острия, тонкие проволочки или фольга. У проволочного нейтрализатора применена тонкая стальная проволочка, натянутая поперек движущегося заряженного материала. Работают они следующим образом. Под действием сильного электрического поля наэлектризованного тела вблизи острия или проволоки происходит ударная ионизация, в результате которой образуются ионы обоих знаков. Для повышения эффективности действия нейтрализаторов стремятся к сокращению расстояния между кончиками игл или проволокой и нейтрализуемой поверхностью до 5÷20 мм. Такие нейтрализаторы обладают высокой ионизационной способностью, особенно нейтрализаторы с остриями.

Рис. 2. Схема индукционного нейтрализатора (слайд):

а- с остриями; б- проволочного; 1- острия; 1′- проволока; 2- заряженная поверхность.

Недостатками их являются то, что они действуют, если потенциал наэлектризованного тела достигает несколько кВ.

Их достоинства: простота конструкции, низкая стоимость, малые эксплуатационные затраты, не требуют источника питания.

Высоковольтные нейтрализаторы (рис.3) работают на переменном, постоянном и токе высокой частоты. Они состоят из трансформатора с высоким выходным напряжением и игольчатого разрядника. В нейтрализатор на постоянном токе входит и высоковольтный выпрямитель. Принцип действия их основан на ионизации воздуха высоким напряжением. Максимальное расстояние между разрядным электродом и нейтрализуемым материалом, при нейтрализатор ещё эффективен, у таких нейтрализаторов может достигать 600 мм, но обычно рабочее расстояние принимается равным 200÷300 мм. Достоинство высоковольтных нейтрализаторов- достаточное ионизирующее действие и при низком потенциале наэлектризованного диэлектрического материала. Недостатком их является большая энергия возникающих искр, способных воспламенять любые взрывоопасные смеси, поэтому для взрывоопасных зон они могут применяться только во взрывозащищенном исполнении.

Рис.3 Схема высоковольтного нейтрализатора (слайд).

Для защиты обслуживающего персонала от высокого напряжения в высоковольтную цепь их включаются защитные сопротивления, которые ограничивают ток до величины в 50÷100 раз меньше тока, опасного для жизни.

Радиоизотопные нейтрализаторы очень просты по устройству, не требуют источника питания. достаточно эффективны и безопасны при использовании во взрывоопасных средах. Они широко применяются в различных отраслях промышленности. При использовании таких нейтрализаторов необходимо предусматривать надежную защиту людей, оборудования и выпускаемой продукции от вредного воздействия радиоактивного излучения.

Радиоизотопные нейтрализаторы чаще всего имеют вид длинных пластинок или маленьких дисков. Одна сторона содержит радиоактивное вещество, создающее радиоактивное излучение, ионизирующее воздух. Чтобы не загрязнять воздух, продукцию и оборудование, радиоактивное вещество покрывают тонким защитным слоем и специальной эмали и ли фольги. Для защиты от механических повреждений ионизатор помещают в металлический кожух, который одновременно создает нужное направление ионизированного воздуха. В таблице 3 приведены данные по применяемым в радиоизотопных нейтрализаторах радиоактивным веществам.

Данные по радиоактивным веществам радиоизотопных нейтрализаторов (слайд).

Таблица 3

Излучение

Число пар ионов, создаваемых в 1 мм2 воздуха

Проникающая способность частиц в воздухе, м

α — частицы или ядра гелия (радий – 226, полоний – 208, плутоной – 238, 239, 240

0,1

β — частицы или электроны (гелий – 204, стронций – 90, криптон – 85 и др.)

γ — лучи

0,1

Наиболее эффективны и безопасны радиоактивные вещества с α-частицами. Проникающая способность α-частиц в воздухе до 10см, а в более плотных средах значительно меньше. Например, лист обычной чистой бумаги ее полностью поглощает.

Нейтрализаторы с таким излучением пригодны для локальной ионизации воздуха и нейтрализации зарядов в месте их образования. Для нейтрализации электрических зарядов в аппаратах с большим объемом используют β-излучатели.

Радиоактивное вещество с γ-изучением из-за высокой проникающей способности и опасности для людей в нейтрализаторах не применяются.

Основным недостатком радиоизотопных нейтрализаторов является малый ионизационный ток по сравнению с другими нейтрализаторами.

Для нейтрализации электрических зарядов могут использоваться комбинированные нейтрализаторы, например, радиоактивно-индукционный. Подобные нейтрализаторы выпускаются промышленностью и имеют улучшенные рабочие характеристики. Рабочие характеристики выражают зависимость разряжающего ионизационного тока от величины потенциала заряженного тела.

Дополнительные способы уменьшения опасности от статической электризации (3 мин, слайд № 13).

Опасность статической электризации ЛВЖ и горючих жидкостей может быть значительно снижена или даже устранена уменьшением скорости потока v. Поэтому рекомендуется следующая скорость v диэлектрических жидкостей:

— при ρ ≤ 105 Ом∙м принимают v ≤ 10 м/с;

— при ρ > 105 Ом∙м принимают v ≤ 5 м/с.

Для жидкостей с ρ > 109 Ом∙м скорость транспортировки и истечения устанавливается отдельно для каждой жидкости. Безопасной для таких жидкостей обычно является скорость движения или истечения 1,2 м/с.

Для транспортировки жидкостей с ρ > 1011-1012 Ом∙м со скоростью v ≥ 1,5 м/с рекомендуется применять релаксаторы ( например, горизонтальные участки трубы увеличенного диаметра) непосредственно у входа в приёмный резервуар. Необходимый диаметр Др,м этого участка определяется по формуле

Др =1.4 Дт ∙ . (7)

Длина релаксатора L p определяется по формуле

Lp ≥ 2.2 ∙ 10-11 ξρ, (8)

где ξ – относительная диэлектрическая проницаемость жидкости;

ρ – удельное объемное сопротивление жидкости Ом∙м .

При заполнении резервуара жидкостью с ρ >105 Ом∙м до момента затопления загрузочной трубы рекомендуется подавать жидкости со скоростью v ≤ 1 м/с, а затем с указанной скоростью v ≤ 5 м/с.

Иногда требуется увеличивать скорость жидкостей в трубопроводе до 4÷5 м/с.

Диаметр релаксатора, рассчитанный по формуле (7), оказывается в этом случае непомерно большим. Поэтому для увеличения эффективности релаксатора рекомендуется применять их со струнами или иглами. В первом случае внутри релаксатора и вдоль его оси натягиваются заземленные струны что более чем на 50% уменьшает ток электризации а во втором в поток жидкости вводят заземлённые иглы, чтобы отводить заряды от потока жидкости.

Максимально допустимые и безопасные (в отношении возможности воспламенения паров жидкости в промышленном резервуаре) режимы транспортировки нефтепродуктов по длинным трубам диаметром 100÷250 мм могут быть оценены по соотношению

vт2Дт ≤ 0.64 , (9)

где vт – линейная скорость жидкости в трубе м/с, Дт – диаметр трубы, м.

При операциях с сыпучими и мелко дисперсными материалами снижение опасности от статической электризации можно достичь следующими мерами: при их пневмотранспортировке использовать трубы из полиэтилена или из того же материала (или близкому по составу к транспортируемому веществу); относительная влажность воздуха на выходе из пневмотранспорта должна быть не менее 65% (если это неприемлемо, то рекомендуется ионизировать воздух или применять инертный газ).

Следует избегать возникновения пылевоздушных горючих смесей, не допускать падение пыли, её всклубления или завихрения. Необходимо очищать оборудование и конструкции здания от осевшей пыли.

При операциях с горючими газами необходимо следить за их чистотой, отсутствием на путях их движения незаземлённых частей оборудования или приборов.

Хороший эффект по условиям пожаро — и взрывобезопасности от искр статического электричества и всех других источников зажигания достигается заменой органических растворителей и ЛВЖ на негорючие если такая замена не нарушает хода технологического процесса и экономически целесообразна.

Как открыли статическое электричество

Примерно восемь тысяч лет назад наши предки приручили диких коз и овец. Они заметили, что изделия из шерсти обладают необычной способностью накапливать заряд. Впервые понятие о статическом электричестве пытался сформулировать древнегреческий математик Фалес. Для своих опытов он использовал янтарь. Камень притягивает мелкие легкие частицы, если натереть его шерстяной тканью. Тогда из этого явления не смогли извлечь пользу. Электрон по-гречески янтарь. В честь него гораздо позже назвали элементарную частицу с отрицательным зарядом.

Спустя две тысячи лет придворный врач английской королевы Уильям Гилберт описывает, что такое статическое электричество. В своём научном труде по физике он подчеркивает родственную природу электричества и явления магнетизма. Исследования британца стали началом для подробного изучения темы среди коллег в Европе. Более четкое понятие о статическом электричестве дал опыт Отто фон Герике. Немец собрал первый электростатический механизм. Это был шар из серы на железном стержне. В результате ученый узнал, что предметы под воздействием электричества могут не только притягиваться, но и отталкиваться друг от друга.

Немного науки

Сегодня причины возникновения статического электричества хорошо изучены. Это явление наблюдается на поверхностях некоторых предметов в результате взаимодействия с другими материалами. Сила заряда и его способность сохраняться зависят от их свойств и состава. Самый простой пример взаимодействия тел – трение. Чем интенсивнее и быстрее девушка расчёсывает волосы, тем сильнее образуется заряд. Статическое электричество окружает людей повсюду, но они замечают его не всегда. Электростатические заряды образуются в солнечную погоду при передвижении на автомобиле. Они накапливаются от напряжения, которое возникает между асфальтом и кузовом. Если водитель не использует антистатик, это приведет к искре.

На языке физиков такой процесс называется электролизация. Она возникает при трении двух разных материалов – диэлектриков, которые слабо проводят электрический ток. Если у диэлектриков одинаковые характеристики, то заряд не образуется. Другой вариант как получить статическое электричество – взаимодействие диэлектрика и заизолированного проводника. То есть при условии, что проводник не может поделиться полученной электростатической энергией с другим предметом.

Опасность статического электричества

Большинство явлений статического электричества в повседневной жизни человек просто не замечает. Незначительные неприятности могут возникнуть при использовании одежды из шерсти или синтетики. Величины токов в этом случае очень небольшие и не оставляют травм. На бытовом уровне это вполне безопасно. Сложности появляются, когда речь заходит о промышленном производстве, предприятиях перерабатывающей отрасли или машиностроения. В больших количествах электростатические заряды присутствуют на производстве. Станки, сепараторы, ленты транспортера могут обладать значительным потенциалом.

Если таких факторов много, образуется электрическое поле с высокими показателями напряженности. В этой обстановке находится не только некомфортно, но и опасно для здоровья. Главная причина для беспокойства в условиях опасного производства — пожарная опасность статического напряжения. На поверхности оборудования или одежды может накопиться большой заряд. Речь идет о работе с легковоспламеняющимися жидкостями, горючими газами и взрывоопасными смесями. Искра может стать причиной серьезной аварии.

Чтобы избежать неблагоприятного воздействия этого явления, разработан государственный стандарт показателя напряженности электростатических полей. Его максимально допустимый уровень 60 кВ/м в час. Они могут изменяться от времени нахождения рабочего в опасном помещении. Измерить уровень заряда статического электричества – задача для профессионала. Ключевым показателем является зависимость сопротивления поля (его способность препятствовать прохождению тока) и его напряженности (отношение силы поля к величине заряда). На этом основывается работа измерительных приборов.

Влияние статического электричества на организм человека может быть губительным и вызывает различные заболевания, в том числе психические. Если говорить о производственной безопасности в целом, основных способов борьбы два:

  1. Снижение возможности образования электростатических зарядов.
  2. Устранение накопления электростатических зарядов.

Чтобы уменьшить трение – детали оборудования шлифуют и смазывают. Для изготовления механизмов применяются одинаковые материалы. Избавиться от зарядов можно с помощью заземления станков.

Статическое электричество может сыграть злую шутку при распылении или разбрызгивании жидкостей с низкими показателями проводимости тока. Это чревато их воспламенением.

Проблема решается использование специальной тары и условиями обработки. К индивидуальным средствам защиты от статического напряжения можно отнести несколько наименований:

  1. Специальная одежда (штаны и куртка).
  2. Обувь с подошвой, обеспечивающей изоляцию.
  3. Перчатки.
  4. Браслеты для снятия диэлектрического напряжения.

Вопрос 5. В чем опасность статического электричества? Укажите причины возникновения статического электричества и способы борьбы с ним. Приведите одну из схем защиты от статического электричества

Статическое электричество — совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках.

Наибольшую опасность статическое электричество представляет на производстве и на транспорте, особенно при наличии пожаро-взрывоопасных смесей, пылей и паров легковоспламеняющихся жидкостей.

В бытовых условиях (например, при хождении по ковру) накапливаются небольшие заряды, и энергии возникших искровых разрядов недостаточно для инициирования пожара в обычных условиях быта.

При прикосновении человека к предмету, несущему электрический заряд, происходит разряд последнего через тело человека. Величины возникающих при разрядке токов небольшие и они очень кратковременны. Поэтому электротравм не возникает. Однако разряд, как правило, вызывает рефлекторное движение человека, что в ряде случаев может привести к резкому движению, падению человека с высоты. Кроме того, при образовании заряда с большим электрическим потенциалом вокруг них создается электрическое поле повышенной напряженности, которое вредно для человека. При длительном пребывании человека в таком поле наблюдаются функциональные изменения в центральной нервной, сердечно-сосудистой и других системах. У людей, работающих в зоне воздействия электростатического поля, встречаются разнообразные жалобы: на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда. Склонность к «фобиям» обычно сочетается с повышенной эмоциональной возбудимостью.

Установлено также благотворное влияние на самочувствие снятия избыточного электростатического заряда с тела человека (заземление, хождение босиком).

Наибольшая опасность электростатических зарядов заключается в том, что искровой разряд может обладать энергией, достаточной для воспламенения горючей или взрывоопасной смеси. Искра, возникающая при разрядке электростатических зарядов, является частой причиной пожаров и взрывов.

Так, удаление из помещения пыли из диэлектрического материала с помощью вытяжной вентиляции может привести к накоплению в газоходах электростатических зарядов и отложений пыли. Появление искрового разряда в этом случае может привести к воспламенению или взрыву пыли. Известны случаи очень серьезных аварий на предприятиях в результате взрывов в системах вентиляции.

При перевозке легковоспламеняющихся жидкостей, при их перекачке по трубопроводам, сливе из цистерны или за счет плескания жидкости накапливаются электростатические заряды, и может возникнуть искра, которая воспламенит жидкость.

Основные причины появления статического электричества:

  • 1. Контакт между двумя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).
  • 2. Быстрый температурный перепад (например, в момент помещения материала в духовой шкаф).
  • 3. Радиация с высокими значениями энергии, ультрафиолетовое излучение, рентгеновские X-лучи, сильные электрические поля (нерядовые для промышленных производств).
  • 4. Резательные операции (например, на раскроечных станках или бумагорезальных машинах).
  • 5. Электромагнитная индукция (вызванное статическим зарядом возникновение электрического поля).

Поверхностный контакт и разделение материалов, возможно, являются наиболее распространенными причинами возникновения статического электричества на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов или перемещения друг относительно друга различных слоев материалов. Этот процесс не вполне понятен, но наиболее правдивое объяснение появления статического электричества в данном случае может быть получено проведением аналогии с плоским конденсатором, в котором механическая энергия при разделении пластин преобразуется в электрическую:

Результирующее напряжение = начальное напряжение Ч (конечное расстояние между пластинами/начальное расстояние между пластинами)

Защита от статического электричества осуществляется двумя путями:

  • — уменьшением интенсивности образования электрических зарядов;
  • — устранением образовавшихся зарядов статического электричества.

Уменьшение интенсивности образования электрических зарядов достигается за счет снижения скорости и силы трения, различия в диэлектрических свойствах материалов и повышения их электропроводимости. Уменьшение силы трения дос­тигается смазкой, снижением шероховатости и площади контакта взаимодействующих поверхностей. Скорости трения ограничивают за счет снижения скоростей обработки и транспортировки материалов.

Так как заряды статического электричества образуются при плескании, распылении и разбрызгивании диэлектрических жидкостей, желательно эти процессы устранять или, по крайней мере, их ограничивать. Например, «наполнение диэлектрическими жидкостями резервуаров свободно падающей струёй не допускается. Сливной шланг необходимо опустить под уровень жидкости или, в крайнем случае, струю направить вдоль стенки, чтобы не было брызг».

Поскольку интенсивность образования зарядов тем выше, чем меньше электропроводность материала, то желательно применять по возможности материалы с большей электропроводностью или повышать их электропроводность путем введения электропроводных (антистатических) присадок. Так, для покрытия полов нужно использовать антистатический линолеум, желательно периодически проводить антистатическую обработку ковров, ковровых материалов, синтетических тканей и материалов с использованием препаратов бытовой химии.

Соприкасающиеся предметы и вещества предпочтительнее изготовлять из одного и того же материала, так как в этом случае не будет происходить контактной электролизации. Например, полиэтиленовый порошок желательно хранить в полиэтиленовых бочках, а пересыпать и транспортировать по полиэтиленовым шлангам и трубопроводам. Если сделать это не представляется возможным, то применяют материалы, близкие по своим диэлектрическим свойствам. Например, электризация в паре фторопласт-полиэтилен меньше, нежели в паре фторопласт-эбонит.

Таким образом, для защиты от статического электричества необходимо применять слабоэлектризующиеся или неэлектризующиеся материалы, устранять или ограничивать трение, распыление, разбрызгивание, плескание диэлектрических жидкостей.

Классическая схема мер защиты:

  • 1. Исключить опасность — исключить образование статического электричества или снизить его до безопасного уровня:
    • — изготовление контактирующих частей из материалов с близкими величинами электросопротивления;
    • — уменьшение силового воздействия;
    • — уменьшение скоростей (например, тормозные устройства для падающих сыпучих);
    • — нефтепродукты, бензолы легко электризуются. Поэтому ограничивается скорость истечения: 10 м/сек при r
  • 2. Удаление от опасности: автоматизация и механизация производственных процессов, т.е. без участия человека
  • 3. Ограждение опасности — мероприятие, направленные на быструю безразрядную релаксацию зарядов:
    • — заземление металлического и электропроводного оборудования, присоединение к заземлителю не менее чем в двух точках. Сопротивление не более 10 Ом;
    • — создание единой электрической цепи, обеспечение электропроводности во фланцах, покрытие пластиковых вставок электропроводящими материалами;
    • — добавление токопроводящих примесей;
    • — лакокрасочные токопроводящие покрытия;
    • — добавление в электризующиеся жидкости антистатических добавок (слабых электролитов)
    • — корпуса автоцистерн при перекачке топлива присоединяют к стационарному заземлителю, при движении — цепь;
    • — увеличение относительной влажности до 65…70 %. Эффективно, если материалы гидрофильны, т.е. способны образовать на поверхности тончайшую водяную пленку. Она экранирует эмиссию электронов и способствует релаксации;
    • — ионизация воздуха в зоне образования зарядов: Индукционные нейтрализаторы — создание электростатического поля высокой напряженности. С острия электродов-ионизаторов стекают потоки электронов, Радиоизотопные нейтрализаторы: a-излучение (положительно заряженные ядра атомов гелия, толщина слоя ионизации 40 мм) и b-излучение (электроны, слой ионизации — 400 мм);
  • 4. Ограждение человека: антистатическая одежда и обувь; токопроводящие полы и площадки; заземленные токопроводящая обивка стульев и электропроводные браслеты; Организационные мероприятия: обучение, инструктаж.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *