Защита электродвигателя от перегрузок

Для чего нужна защита двигателя?

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.

Защита двигателя имеет три уровня:

• Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.

• Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.

• Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.

Возможные условия отказа двигателя

Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:

• Низкое качество электроснабжения:

• Высокое напряжение

• Пониженное напряжение

• Несбалансированное напряжение/ ток (скачки)

• Изменение частоты

• Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя

• Постепенное повышение температуры и выход её за допустимый предел:

• недостаточное охлаждение

• высокая температура окружающей среды

• пониженное атмосферное давление (работа на большой высоте над уровнем моря)

• высокая температура рабочей жидкости

• слишком большая вязкость рабочей жидкости

• частые включения/отключения электродвигателя

• слишком большой момент инерции нагрузки (свой для каждого насоса)

• Резкое повышение температуры:

• блокировка ротора

• обрыв фазы

Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.

Плавкий предохранительный выключатель

Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.

Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.

Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем — пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.

Плавкие предохранители быстрого срабатывания

Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.

Плавкие предохранители с задержкой срабатывания

Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.

Время срабатывания плавкого предохранителя

Время срабатывания плавкого предохранителя — это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока — это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.

В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.

Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.

Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.

Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя — он просто устанавливается в исходное положение.

Различают два вида автоматических выключателей: тепловые и магнитные.

Тепловые автоматические выключатели

Тепловые автоматические выключатели — это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.

Магнитные автоматические выключатели

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.

Рабочий диапазон автоматического выключателя

Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.

Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.

Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.

Современные наружные реле защиты двигателя

Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.

Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:

• Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса

• Диагностирует возникшие неисправности

• Позволяет выполнять проверку работы реле во время техобслуживания

• Контролирует температуру и наличие вибрации в подшипниках

Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.

Например, электродвигатель может быть защищён от:

• Перегрузки

• Блокировки ротора

• Заклинивания

• Частых повторных пусков

• Разомкнутой фазы

• Замыкания на массу

• Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)

• Малого тока

• Предупреждающего сигнала о перегрузке

Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.

Пример вычисления

Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.

Данные отображаются в фирменной табличке, какпоказано в иллюстрации.

Вычисления для 60 Гц

Коэффициент усиления напряжения определяется следующими уравнениями:

Расчет фактического тока полной нагрузки (I):

(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)

(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)

Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:

I для «треугольника»:

I для «звезды»:

Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.

Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.

Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке.

Внутренняя защита, встраиваемая в обмотки или клеммную коробку

Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

• Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.

• При высокой температуре окружающей среды.

• Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.

• Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

Обозначение TP

TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

• Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)

• Число уровней и тип действия (2-я цифра)

• Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.

Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

Категория 1 (3-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

ТР 112

ТР 121

2 уровня при аварийном сигнале и отключении

ТР 122

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

ТР 212

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.

Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.

Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.

Устройства тепловой защиты, встраиваемые в клеммную коробку

В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.

Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.

Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).

Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111

Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Захист двигуна

Захист двигуна автомобіля (інші назви: захист картера, захист піддону, захист моторного відсіку) — захисний елемент призначений для захисту елементів автомобіля від механічних пошкоджень при русі та паркуванні, так само він запобігає потраплянню пилу, вологи, бруду, каменів і іншого сміття в моторний відсік автомобіля. Основні свої функції він виконує при подорожах по лісових і гірських дорогах, а також по дорогах з поганою якістю дорожнього покриття і взимку.

Захисти двигунів, в залежності від конструкції можуть закривати картер двигуна, радіатор кондиціонера, коробку перемикання передач, роздаточну коробку, радіатор охолодження, задній диференціал, бензобак.

Частина автовиробників комплектують свої автомобілі захистами, так званими «пильовиками». Вони виготовляються з пластику і в першу чергу захищають моторний відсік від пилу і вологи, за що і отримали свою назву. На превеликий жаль, цим їх функції обмежуються. При експлуатації автомобіля в реальних умовах такі захисти дуже швидко стають непридатними. Тому установка металевого захисту є додатковою гарантією безпроблемної подорожі по сучасним дорогам.

Характеристики

1. Матеріал виготовлення

  • Сталеві:

При виробництві таких захистів використовують листову сталь товщиною від 2 до 3 мм. Як правило їх виготовляють методом штампування або поелементного штампування, рідше за допомогою плазмового різання і ще рідше за допомогою комбінованої лазерно-штампувальної технології. Сталеві захисти, в цей час найпопулярніші, оскільки вони відносно не дорогі та надійні.

• Плюси: відносно не висока ціна, надійність; • Мінуси: моделі деяких захистів надто важкі;

  • Алюмінієві:

Алюмінієві захисти зазвичай мають більшу товщину, ніж сталеві, оскільки алюміній м’якше сталі, а отже для того, щоб не втрачати жорсткість захисту, доводиться збільшувати його товщину. Ідеально підходять для ексклюзивних і дорогих авто.
• Плюси: мають невелику вагу, а також високу стійкість до корозії; • Мінуси: висока ціна;

  • Захисти з нержавіючої сталі:

Такі захисти подібні алюмінієвим, проте вони мають найдорожчу вартість і найкращі експлуатаційні характеристики, але на жаль призначені для дуже дорогих авто.
• Плюси: стійкість до корозії, шикарний зовнішній вигляд; • Мінуси: висока ціна;

  • Склопластикові:

Захисти з цього матеріалу значно легше, ніж сталеві і товщі, близько 8 мм. Ці захисту взагалі не схильні до корозії і мають високу жорсткість. Але самим вагомим мінусом у них є не здатність протистояти тертю. Торкаючись перешкод, він постійно стирається. Слабкою ланкою також є його спосіб кріплення.

• Плюси: взагалі не схильні до корозії, мають не велику вагу; • Мінуси: не стійкі до стирання, слабкі елементи кріплення.
2. Вага. При проектуванні і виробництві автомобіля, виробники розрахували його гармонічну вагу, тому додаткова вага обов’язково створить додаткове навантаження на підвіску;
3. Жорсткість. Чим вище жорсткість захисту — тим більшу енергію удару конструкція захисту візьме на себе, тим меншими будуть наслідки удару.
4. Кліренс. Чим вірніше спроектований та виготовлений захист, чим точніше він повторює вигини силових елементів автомобіля, тим менше він зменшить кліренс автомобіля. Це важливо особливо для невеликих міських автівок.
5. Безшумність. Важливий параметр, особливо для металевих захистів, оскільки після встановлення деяких не досконало спроектованих виробів з’являється неприємний шум, рівень якого доходить аж до вібрації в салоні автомобіля. В першу чергу це викликано не продуманою системою компенсації вібрацій двигуна. У другу чергу, системою кріплення, яка не враховує просідання підвіски автомобіля залежно від його завантаження.
6. Наявність вентиляційних отворів. Обов’язковою умовою є наявність отворів для примусового охолодження під час руху. Особливо для автомобілів з автоматичною коробкою передач. Важливо це і для авто з великим об’ємом двигуна. Ідеальний захист повинен майже на 100 % повторювати заводський оригінальний «пильовик». У відоміших виробників у захистів існують навіть спеціальні вентиляційні канали.
7. Легкість установки. Правильно спроектований захист повинен встановлюватися лише на штатні місця, і не вимагати додаткового свердління в силових елементах кузова автомобіля.
8. Додаткові балки. Деякі виробники оснащують свої вироби балками (енергопоглинаючими балками) — це силова конструкція покликана відігравати роль своєрідного амортизатора, що виключає передачу енергії удару на силові елементи автомобіля. У разі тотальної аварії вона дозволяє двигуну автомобіля зміщуватися вниз, а не в салон.

Релейная защита двигателей

Релейная защита двигателей напряжением выше 1 кВ

Виды релейной защиты двигателей:

1. От многофазных замыканий на линейных выводах и в обмотке статора. Для двигателей мощностью до 4 МВт применяется максимальная токовая отсечка. Токовая отсечка электродвигателей мощностью до 2 МВт выполняется по наиболее простой однорелейной схеме. Для двигателей мощностью выше 4 МВт и в случаях, когда токовая отсечка не проходит по чувствительности, применяют продольную дифференциальную защиту без выдержки времени.

2. От перегрузки. Защита устанавливается в случаях, когда возможны технологические перегрузки электродвигателей или тяжелые условия пуска и самозапуска (время пуска более 20 с). Устанавливают максимальную токовую защиту с действием на сигнал. Действие защиты на отключение предусматривается в случаях, когда без остановки двигателя выявить причину перегрузки невозможно.

3. От однофазных замыканий на землю на линейных выводах и в обмотке статора. Защита применяется, если ток срабатывания защиты превышает 10 А для электродвигателей мощностью до 2 МВт и 5 А для электродвигателей мощностью выше 2 МВт. Устанавливается токовая защита нулевой последовательности или токовая направленная защита нулевой последовательности. На электродвигателях большой мощности, питаемых через два и больше кабелей, защиту от замыканий на землю выполняют с одним общим трансформатором тока нулевой последовательности. Для защиты от двойных замыканий на землю используют токовую отсечку нулевой последовательности.

4. От потери питания и понижения напряжения. Используют защиту минимального напряжения, отключающую неответственные электродвигатели для обеспечения самозапуска наиболее ответственных. В некоторых случаях, например для пуска схем АВР, может быть отключена и часть ответственных электродвигателей. Число ступеней уставок срабатывания по напряжению и по времени зависит от типа электродвигателей, условий их работы и отношения к самозапуску.

5. От асинхронного режима (для синхронных электродвигателей). Устанавливается защита на токовом реле, действующем на отключение выключателя и АГП с выдержкой времени.

Релейная защита двигателей напряжением до 1 кВ

Релейная защита двигателей напряжением до 1 кВ (рис. 8.19) выполняется в основном в соответствии с требованиями к релейной защите высоковольтных электродвигателей, но на элементной базе коммутационных аппаратов до 1 кВ.

Рис. 8.19. Схема защиты электродвигателя напряжением до 1 кВ

магнитным пускателем

Предусматривается защита от следующих режимов:

· от многофазных коротких замыканий устанавливаются плавкие предохранители или максимальные токовые реле, используются также аппараты, совмещающие устройства защиты и уп-равления – магнитные пускатели и автоматические выключатели;

· от перегрузки применяются тепловые реле;

· от однофазных замыканий на землю используются реле тока, подключенные к трансформатору тока нулевой последовательности;

· от потери питания и понижения напряжения устанавливается магнитный пускатель или контактор, автоматически отключающийся при снижении напряжения до (0,6…0,7) Uном.

1.6 Защита электродвигателей

Повреждения электродвигателей:

  1. замыкания на землю

Защита от замыкания на землю устанавливается на них при токе замыкания более 10 А (Р<2000 Вт), при мощности более 2000 Вт и при токе замыкания на землю более 5 А. Защита действует на отключение.

  1. междуфазные КЗ

В качестве защиты используют токовую отсечку или продольную дифференциальную защиту, действующую на отключение.

Защита от витковых замыканий на электродвигателях не устанавливается. Ликвидация повреждения этого вида осуществляется другими защитами электродвигателей, поскольку витковые замыкания в большинстве случаев сопровождаются замыканием на землю или переходят в междуфазные.

Электродвигатели напряжением до 500 В защищают от к. з. всех видов (в том числе и от однофазных) с помощью плавких предохранителей или быстродействующих автоматических выключателей .

Ненормальные режимы работы электродвигателей:

1) перегрузка током больше номинального;

2) неполнофазный режим;

3) самозапуск .

  1. Защита электродвигателей от многофазных коротких замыканий

Основной защитой электродвигателей является защита от к. з. между фазами, и её установка обязательна во всех случаях.

В качестве защиты электродвигателей от к. з. применяется максимальная токовая защита мгновенного действия (токовая отсечка), отстроенная от пус­ковых токов и токов самозапуска электродвигателей. При недоста­точной чувствительности токовой отсечки на мощных электродвига­телях 2000 кВт и больше, может применять­ся дифференциальная токовая защита. На электродвигателях мощностью более 5000 кВт установка диффе­ренциальной защиты считается обязательной.

Электродвигатели напряжени­ем 500 В и ниже, как правило, защищаются от к. з. плавкими предохранителями. Предохрани­тели могут применяться и на элек­тродвигателях более высокого напряжения, если только разрыв­ной мощности предохранителей достаточно для разрыва тока короткого замыкания .

Токовая отсечка наиболее просто выполняется с помощью реле прямого действия, встроенного в привод выключателя.

Токовую отсечку двигателей до 2000 кВт следует выполнять, как правило, по более простой и дешевой однорелейной схеме (рисунок 5). Недостатком этой схемы является более низкая чувствительность, по сравнению с отсечкой на двух реле (рисунок 6, а).

Поэтому для повышения чувствительности токовую отсечку на электродвигателях мощностью 2000…5000 кВт выполняют по двухрелейной схеме. Также двухрелейную схему токовой отсечки следует применять на электродвигателях мощностью до 2000 кВт, если коэффициент чувствительности однорелейной схемы при двухфазном КЗ на выводах электродвигателя менее 2.

Ток срабатывания токовой отсечки от междуфазных к. з. отстраивается от бросков тока, посылаемых электродвигателем в первый момент к. з. в сети, питающей двигатель, и от пускового тока электродвигателя при полном напряжении питающей сети .

Ток срабатывания отсечки выбирается из выражения:

,

где Iпуск – пусковой ток двигателя;

kсх–коэффициент схемы;

kн– коэффициент надежности;

kв– коэффициент возврата;

kтт– коэффициент трансформации трансформаторов тока.

Пусковой ток – это ток необходимый для запуска электродвигателя, обычно превышающий номинальное значение тока (тока потребляемого при нормально-устойчивом режиме работы) в 3-8 раз. Указывается заводом изготовителем в виде табличных данных.

Коэффициентом схемы называют отношение тока, протекающего через обмотку реле и тока, протекающего через трансформатор тока. Для однорелейной схемы (рисунок 5) коэффициент схемы принимают равным. Для двухрелейной (рисунок 6, а) и трехрелейной схем (рисунок 6, б) коэффициент схемы принимают равным 1 .

Рисунок 5 – Однорелейная схема токовой отсечки

Коэффициентом надежности называют отношение величины тока в обмотках исполнительного реле к величине тока срабатывания реле. Он зависит от конструктивного исполнения схемы и указывается заводом изготовителем в виде табличных данных. Для реле РТ-40 равен 1,8; для реле РТ-82, РТ-84 и реле прямого действия равен 2.

Коэффициент возврата – это отношение тока возврата к току срабатывания. У большинства современных реле он находится в пределах 0,8-0,9.

Коэффициент трансформации трансформаторов тока определяется отношением первичного тока трансформатора ко вторичному.

Рисунок 6 – Схема токовой отсечки

а) двухрелейная схема защиты электродвигателя;

б) трехрелейная схема защиты электродвигателя.

На электродвигателях мощностью 5000 кВт и более устанавливается продольная дифференциальная защита. Эта защита выполняется в двухфазном или трехфазном исполнении. Ток срабатывания реле принимается 2IНОМ.

  1. Защита электродвигателей от замыканий одной фазы на землю

Защита электродвигателей до 2000 кВт от замыканий на землю считается нецелесообразной в связи с небольшой стоимостью маломощных электродвигателей и устанавливается лишь в том случае, если ток замыкания на землю превышает 10А.

На мощных двигателях от 2000 кВт защита от замыканий на землю устанавливается, если ток замыкания на землю превышает 5А. Защита выполняется с действием на отключение без выдержки времени с использованием трансформатора нулевой последовательности (рисунок 7).

Рисунок 7 – Схема защиты электродвигателей от замыканий на землю одной фазы

Ток срабатывания защиты принимается равным:

,

где Ic– емкостной ток двигателя;

kн-коэффициент надежности (kн=1,2…1,3);

kб-коэффициент, учитывающий бросок емкостного тока электродвигателя при внешних перемежающихся замыканий на землю. Для защиты, действующей без выдержки времени (kб=3…4) .

  1. Защита электродвигателей от перегрузки

Перегрузка электродвигателя возни­кает в следующих случаях:

а)при затянувшемся пуске или самозапуске;

б)по техническим причинам и перегрузке механизмов;

в)в результате обрыва одной фазы;

г)при повреждении механической части электродвигателя или механизма, вызывающем увеличение момента Мc и торможение электродвигателя.

Перегрузки бывают устойчивыми и кратковременными. Для электродвигателя опасны только устойчивые перегрузки.

Сверхтоки, обусловленные пуском или самозапуском электро­двигателя, кратковременны и самоликвидируются при дости­жении нормальной частоты вращения. Эти токи могут пред­ставлять опасность, только если процесс развертывания электро­двигателя затянется.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается, например, у электро­двигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при об­рыве фазы будет составлять примерно (1,6 ÷2,5) Iном. Эта пере­грузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой механизма.

Основной опасностью сверхтоков для электродвигателя яв­ляется сопровождающее их повышение температуры отдельных частей и в первую очередь обмоток.Повышение температуры ускоряет износ изоляции обмоток и снижает срок службы электродвигателя .

  • Защита от перегрузки с тепловым реле

Защита с тепловым реле (рисунок 8) лучше других может обеспечивать характеристику, приближающуюся к перегрузоч­ной характеристике электродвигателя, тепловые реле, которые реагируют на количество тепла Qр, выделенного в сопротивлении его нагревательного элемента:

Тепло, выделяемое в тепловом реле, пропорционально теплу, выделяемому в электродвигателе, т. е. Qр ≡Qд

Рисунок 8 – Схема защиты от перегрузки с тепловым реле

Реле настраивается так, чтобы его уставка срабатывания соответствовала теплу, выделение которого в электродвигателе считается предельно допустимым.

Наиболее часто тепловые реле выполняются на принципе использования коэффициента линейного расширения различных металлов под влиянием на­гревания. Основой такого теплового реле, является биметаллическая пластинка, состоящая из спаянных по всей поверхности металлов с сильно отличающимися коэффи­циентами линейного расширения. При нагревании пластинка прогибается в сто­рону пластины с меньшим коэффициен­том расширения и освобождает защелку рычага, который, поворачиваясь, под действием пружины за­мыкает контакты реле. Нагревание пластинки осуществляется нагревательным эле­ментом при прохождении по нему тока I.

Тепловые реле сложны в обслуживании и наладке, имеют различные характеристики отдельных экземпляров реле, часто не соответствуют тепловым характеристикам двигателей и имеют зависимость от температуры окружающей среды, что приводит к нарушению соответствия тепловых характеристик реле и элек­тродвигателя. Поэтому тепловые реле следует применять лишь в тех случаях, когда более простые токовые реле не обеспечи­вают защиты двигателей .

  • Защита от перегрузки с токовыми реле

Для защиты электродвигателей от перегрузки обычно при­меняются максимальные токовые защиты с использованием токовых реле с ограниченно зависимыми характеристиками выдержки времени или максимальные токовые защиты, выполненные комбинацией мгновенных токовых реле и реле времени.

Преимуществами токовых защит, по сравнению с тепловыми, являются более простая эксплуатация, более легкий подбор и регулировка характеристик защиты. Однако токовые защиты не позволяют использовать перегрузочные возможности электро­двигателей из-за недостаточного времени действия их при малых кратностях тока. Для двигателей, не имеющих технологических перегрузок, этот недостаток не имеет значения.

Защита от перегрузки выполняется одним токовым реле, включенным на один из фазных токов (рисунок 9, а), или по двухфазной однорелейной схеме, когда по этой же схеме выпол­нена защита от междуфазных к. з. (рисунок 9, б).

а) однофазная однорелейная схема защиты от перегрузки

б) двухфазная однорелейная схема защиты от перегрузки

Рисунок 9 – Схемы защит от перегрузки

Ток срабатывания защиты:

,

где Iном – номинальный ток двигателя;

kн– коэффициент надежности;

kв–коэффициент возврата.

kв=1,1…1,2.

Время срабатывания составляет tСЗ =(10…15) с.

  1. Защита электродвигателей от понижения напряжения

Защита от потери питания устанавливается для предотвращения повреждений в электродвигателях, затормозившихся в результате кратковременного или длительного снижения напряжения, при восстановлении питания, а также для обеспечения требований техники безопасности и условий технологического процесса.

Отключение электродвигателей при исчезновении напряже­ния обеспечивается установкой одного реле минимального на­пряжения, включенного на линейное напряжение.

Защита с одним реле напряжения (рисунок 10) надежно реаги­рует на трехфазные к. з. Однако при двухфазных к. з. защита с одним реле действует только при к. з. между фазами, на кото­рые включено реле, что является существенным недостатком.

Для обеспечения работы защиты при всех случаях двух­фазного к. з. иногда применяется трехфазная схема, показанная на рисунке 11. Эту схему применяют в сетях, где воз­можно длительное отключе­ние, сопровождаемоеснижением напряжения ни­же 70%.

Существенным недостат­ком защиты минимальногонапряжения является возможность ее неправильной работы в случае обрыва цепей напряжения, чаще всего возникающего при перегорании предохранителей в этих цепях. Поэтому трехфазная защита минимального напряжения применима лишь для неответственных электродвигателей.

Рисунок 10 – Защита от понижения напряжения с одним реле

Во избежание ложного отключения электродвигателей при обрыве цепи напряжения в ответственных установках применяются схемы с двумя комплектами реле напряжения, включенными на разные трансформаторы напряжения.

Контакты реле обоих комплектов соединяются последовательно, поэтому при нарушении цепи, питающей один комплект реле, защита не может подать импульс на отключение двигателей .

Рисунок 11 – Трехфазная защита минимального напряжения

    1. Вывод

В данной главе дипломного проекта рассмотрена общая характеристика релейной защиты, в которую входят такие вопросы как: назначение релейной защиты, основные требования к релейной защите, структура релейной защиты и используемая информация, основные органы релейной защиты , реле и их классификация, защита электродвигателей.

Типы защиты от перегрузок

Их несколько:

  • тепловая;
  • токовая;
  • температурная;
  • фазочувствительная и пр.

К первой, т.е. тепловой защите электродвигателя относят установку теплового реле, которое разомкнет контакт, в случае перегрева.

Температурная защита от перегрузок, реагирующая на повышение температуры. Для ее установки нужны температурные датчики, которые разомкнут цепь в случае сильного нагрева частей мотора.

Токовая защита, которая бывает минимальной и максимальной. Осуществить защиту от перегрузки можно, применив токовое реле. В первом варианте реле срабатывает, размыкает цепь, если в статорной обмотке превышено допустимое значение тока.

Во втором, реле реагируют на исчезнувший ток, вызванный, к примеру, обрывом цепи.

Эффективную защиту электродвигателя от повышения тока в обмотке статора, следовательно, перегрева осуществляют при помощи автоматического выключателя.

Электродвигатель может выходить из строя из-за перегрева.

Отчего он случается? Вспоминая школьные уроки физики, все понимают, что, протекая по проводнику, ток его нагревает. Электродвигатель не перегреется при номинальном токе, значение которого указывается на корпусе.

Если же в обмотке ток по разным причинам начинает увеличиваться, двигателю грозит перегрев. Если мер не предпринять, он выйдет из строя из-за короткого замыкания между проводниками, у которых расплавилась изоляция.

Рекомендуем:

  • Классификация электродвигателей
  • Коллекторный электродвигатель переменного тока и его работа
  • Как называется электродоска без руля

Поэтому, нужно не допустить роста тока, т.е. установить тепловое реле — эффективную защиту двигателя от перегрева. Конструктивно оно является тепловым расцепителем, биметаллические пластины которого изгибаются под воздействием тепла, размыкая цепь. Для компенсации тепловой зависимости у реле есть компенсатор, благодаря которому происходит обратный прогиб.

У реле шкала прокалибрована в амперах и соответствует значению номинального тока, а не величине тока срабатывания. В зависимости от конструкции монтируют реле на щиты, на магнитные пускатели или в корпус.

Грамотно подобранные, они не просто не допустят перегрузки электродвигателя, но предотвратят перекос фаз и заклинивание ротора.

Защита автомобильного двигателя

Перегрев электродвигателя грозит и водителям автомобилей с наступлением жары, да еще с последствиями разной сложности – от поездки, которую придется отменить, до капитального ремонта мотора, у которого от перегрева прихватить может поршень в цилиндре или деформироваться головка.

Во время езды охлаждается электродвигатель воздушным потоком, а когда авто попадает в пробки этого не происходит, что и вызывает перегрев. Чтобы его распознать вовремя, периодически следует посматривать на датчик (при наличии такового) температуры. Как только стрелка окажется в красной зоне, необходимо немедленно остановиться для выявления причины.

Нельзя пренебрегать сигналом аварийной лампочки, потому что за ним почувствуется запах выкипевшей охлаждающей жидкости. Затем, из-под капота появится пар, свидетельствующий о критической ситуации.

Как быть в подобной ситуации? Остановиться, заглушив электродвигатель и подождать, пока прекратится кипение, открыть капот. На это уходит обычно до 15 минут. При отсутствии признаков протекания, доливают жидкость в радиатор, и пробуют завести мотор. Если же температура начнет резко расти, осторожно движутся для выяснения причины в сервис для диагностики.

Причины, вызывающие перегрев

На первом месте стоят неисправности радиатора. Это могут быть: простое загрязнение тополиным пухом, пылью, листвой. Устранив загрязнения, решат проблему. Более проблематично бороться с внутренним загрязнением радиатора — накипью, появляющейся при использовании герметиков.

Решением будет замена этого элемента.

Затем следуют:

  • Разгерметизация системы, вызванная треснувшим шлангом, недостаточно затянутыми хомутами, неисправностью краника отопителя, состарившимся уплотнителем насоса и пр.;
  • Неисправный термостат или краник. Определить это легко, если при горячем двигателе осторожно ощупать шланг или радиатор. Если шланг холодный – причина в термостате и потребуется его замена;
  • Помпа, работающая неэффективно или вовсе неработающая. Это приводит к слабой циркуляции по охлаждающей системе;
  • Сломанный вентилятор, т.е. не включающийся из-за вышедшего из строя мотора, муфты включения, датчика, отошедшего провода. Не крутящаяся крыльчатка тоже вызывает перегрев электродвигателя;
  • Наконец, недостаточное уплотнение камеры сгорания. Это последствия перегрева, приводящие к сгоранию прокладки головки, образованию трещин и деформированию головки цилиндра и гильзы. Если из бачка с охлаждающей жидкостью заметно вытекание, приводящее к резкому повышению давления при запуске охлаждения, или появилась в картере маслянистая эмульсия, значит, причина в этом.

Дабы не попасть в аналогичную ситуацию, необходимо проводить профилактику, способную спасти от перегрева и поломки. «Слабое звено» определяют методом исключения, т.е. проверяют последовательно подозрительные детали.

Может стать причиной перегрева неправильно выбранный режим эксплуатации, т.е. пониженная передача и высокие обороты.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *