Яркость света

Параметры светового излучения

Свет как физическое явление характеризуется многими параметрами. Основные используемые в физике таковы:

  • Сила света;
  • Светимость;
  • Яркость;
  • Освещенность;
  • Световая температура.

Сила света определяет количество световой энергии, излучаемой источником света за промежуток времени. Другими словами, это то, насколько мощный световой поток способен излучить источник света.

Светимость — это световой поток на единицу светящейся поверхности. Чем больше светимость, тем более светлой кажется излучающая поверхность. Единица светимости — люмен на квадратный метр.

Яркость — это световой поток в определённом, узком направлении. Обычно говорится об этой величине в контексте точечного источника излучения. При большой светящейся площади определяется ее средняя яркость.

Термин освещенность применяется по отношению к освещаемой поверхности. Это отношение светового потока к площади поверхности, то есть насколько хорошо она освещена.

Световая температура показывает воспринимаемый цвет источника излучения. Она измеряется в единицах температуры — Кельвинах — и соответствует температуре излучающего, нагретого до этих градусов тела. Субъективно она воспринимается теплой или холодной. Чем более высокой является цветовая температура, тем более холодным будет цвет. Теплый — это желтый и красноватый, холодный — голубой и фиолетовый.

Измерение яркости

Поскольку свет имеет измеримые параметры, то яркость как параметр света имеет свои единицы измерения. Сейчас, по интернациональной системе СИ, яркость измеряется в канделах на квадратный метр, значение этой единицы соответствует принятой в старину единице нит, величина которой выражалась отношением одной канделы к одному метру в квадрате. Кроме нитов, единицами яркости также были:

  • Стильб;
  • Апостильб;
  • Ламберт.

Апостильб в настоящее время является устаревшей величиной, которая вышла из употребления она в 1978 году. Она обозначала яркость поверхности площадью 1 квадратный метр и излучающей световой поток в 1 люмен.

Величина стильб используется системе измерений СГС. В этой системе основными мерами являются меры длины, веса и времени, что в расшифровке аббревиатуры СГС соответствует величинам сантиметр, грамм, секунда. В более поздних версиях системы появились электрические и магнитные расширения СГСЭ и СГСМ. Здесь и находится и стильб, как единица измерения электромагнитного излучения.

Ламберт — это внесистемная единица. Появилась и используется преимущественно в Америке. Ее название происходит от имени немецкого физика Иоганна Ламберта, проводившего исследования в теории систем, иррациональных чисел, фотометрии и тригонометрии. Один ламберт — это единица яркости светящейся поверхности площадью в один квадратный сантиметр и обладающей световым потоком в один люмен.

Применение в астрономии

В астрономии также используются единицы измерения яркости для небесных тел. Они характеризуют небесные тела по излучательной или отражательной способности. Отраженный свет небесных тел может быть весьма ярким, достаточно вспомнить свет Луны или затмевающую свет многих звезд утреннюю Венеру. Оба этих небесных тела светят отраженным светом Солнца.

Единица яркости небесных тел выражается звездной величиной участка неба размером одна квадратная секунда. Простыми словами звездную величину можно определить как светимость точечного объекта звездного неба. Квадратной секундой считается 1/648000 от объемного угла, именуемого стерадиан.

Астрономическую яркость можно сравнить с обычной. Одна звездная величина с квадратной секунды равна 8,96 микрокандел на квадратный метр.

Яркость неба в безлунную ночь выражается величиной 0,0002 кд/м2. Измерять светлоту темных объектов важно для фотометрии: таким образом можно понять, какой объект звездного неба и насколько перекрывает светимостью другие объекты. По уменьшению интенсивности света звезд судят о возможном закрытии их светящегося диска планетами, и даже о размере и составе атмосферы этих планет! Эта величина играет важную роль в астрономии, фотографии и видеографии, а также у художников и специалистов по освещенности рабочих мест.

Для экранов телевизоров

Современный плазменные и жидкокристаллические экраны телевизоров могут достигать яркости в 400−500 кд/м2. Однако это сомнительное преимущество, так как увеличение этой величины приводит к повышению усталости глаз и требует увеличения частоты и длительности отдыха. Особенно это влияет на глаз при просмотре телевизора или работе с компьютером в темноте или при слабом освещении. Для человеческого глаза комфортное значение устанавливается в пределах 150−200 кандел на квадратный метр. Санитарными правилами и нормами установлено ограничение яркости экрана при работе в 200 кд/м2.

Повышенное значение интенсивности излучения приветствуется только при просмотре фильмов с 3D эффектом, так как используемые при этом 3D очки сильно поглощают излучение экрана, делая его более темным. При выборе устройств с жидкокристаллическими и плазменными экранами стоит обращать внимание на равномерность подсветки. Некачественные экраны отображают центр более ярким, при этом оказывается сильно заметным спадание мощности подсветки к краям дисплея.

Световая отдача

Световая отдача

η {\displaystyle \eta }

Размерность

Единицы измерения

СИ

лм.Вт-1

Примечания

скалярная величина

Световая отдача источника света — отношение излучаемого источником светового потока к потребляемой им мощности. В Международной системе единиц (СИ) измеряется в люменах на ватт (лм/Вт). Является показателем эффективности и экономичности источников света.

Выражение для световой отдачи имеет вид:

η = Φ v P , {\displaystyle \eta ={\frac {\Phi _{v}}{P}},}

где Φ v {\displaystyle \Phi _{v}} — световой поток, излучаемый источником, а P {\displaystyle P} — потребляемая им мощность.

Введя в рассмотрение величину потока излучения Φ e {\displaystyle \Phi _{e}} , отношение Φ v P {\displaystyle {\frac {\Phi _{v}}{P}}} можно представить в виде Φ v Φ e ⋅ Φ e P {\displaystyle {\frac {\Phi _{v}}{\Phi _{e}}}\cdot {\frac {\Phi _{e}}{P}}} . В этом произведении первый из сомножителей представляет собой световую эффективность излучения K {\displaystyle K} , а второй — энергетический коэффициент полезного действия (КПД) источника η e {\displaystyle \eta _{e}} . В результате исходное выражение для световой отдачи приобретает вид:

η = K ⋅ η e . {\displaystyle \eta =K\cdot \eta _{e}.}

Таким образом, величина световой отдачи определяется совокупным действием двух факторов. Один из них — эффективность преобразования потребляемой источником электрической энергии в энергию излучения, характеризующаяся значением КПД, другой — способность данного излучения возбуждать у человека зрительные ощущения, определяемая величиной световой эффективности излучения.

Источники монохроматического излучения

Относительная спектральная световая эффективность монохроматического излучения для дневного зрения

В случае монохроматического излучения с длиной волны λ {\displaystyle \lambda } для K ( λ ) {\displaystyle K(\lambda )} в СИ выполняется:

K ( λ ) = K m ⋅ V ( λ ) , {\displaystyle K(\lambda )=K_{m}\cdot V(\lambda ),}

где V ( λ ) {\displaystyle V(\lambda )} — относительная спектральная световая эффективность монохроматического излучения для дневного зрения, физический смысл которой заключается в том, что она представляет собой относительную чувствительность среднего человеческого глаза к воздействию на него монохроматического света, а K m {\displaystyle K_{m}} — максимальное значение спектральной световой эффективности монохроматического излучения. Максимум V ( λ ) {\displaystyle V(\lambda )} располагается на длине волны 555 нм и равен единице.

В соответствии со сказанным для световой отдачи выполняется:

η = K m ⋅ V ( λ ) ⋅ η e . {\displaystyle \eta =K_{m}\cdot V(\lambda )\cdot \eta _{e}.}

В СИ значение K m {\displaystyle K_{m}} определяется выбором основной световой единицы СИ канделы и составляет 683,002 лм/Вт. Отсюда следует, что максимальное теоретически возможное значение световой отдачи достигается на длине волны 555 нм при значениях V ( λ ) {\displaystyle V(\lambda )} и η e {\displaystyle \eta _{e}} , равных единице, и равно 683,002 лм/Вт.

В большинстве случаев с точностью, достаточной для любых практических применений, используется округлённое значение K m {\displaystyle K_{m}} 683 лм/Вт. Далее в уравнениях мы будем использовать именно его.

Источники излучения в общем случае

Если излучение занимает участок спектра конечного размера, то выражение для K {\displaystyle K} имеет вид

K = 683 ⋅ ∫ 380 n m 780 n m Φ e , λ ( λ ) V ( λ ) d λ Φ e {\displaystyle K=683\cdot {\frac {\int \limits _{380~nm}^{780~nm}\Phi _{e,\lambda }(\lambda )V(\lambda )d\lambda }{\Phi _{e}}}}

или ему эквивалентный:

K = 683 ⋅ ∫ 380 n m 780 n m Φ e , λ ( λ ) V ( λ ) d λ ∫ 0 ∞ Φ e , λ ( λ ) d λ . {\displaystyle K=683\cdot {\frac {\int \limits _{380~nm}^{780~nm}\Phi _{e,\lambda }(\lambda )V(\lambda )d\lambda }{\int \limits _{0}^{\infty }\Phi _{e,\lambda }(\lambda )d\lambda }}.}

Здесь Φ e , λ ( λ ) {\displaystyle \Phi _{e,\lambda }(\lambda )} — спектральная плотность величины Φ e , {\displaystyle \Phi _{e},} , определяемая как отношение величины d Φ e ( λ ) , {\displaystyle d\Phi _{e}(\lambda ),} приходящейся на малый спектральный интервал, заключённый между λ {\displaystyle \lambda } и λ + d λ , {\displaystyle \lambda +d\lambda ,} к ширине этого интервала:

Φ e , λ ( λ ) = d Φ e ( λ ) d λ . {\displaystyle \Phi _{e,\lambda }(\lambda )={\frac {d\Phi _{e}(\lambda )}{d\lambda }}.}

Соответственно, для световой отдачи становится справедливо соотношение:

η = 683 ⋅ ∫ 380 n m 780 n m Φ e , λ ( λ ) V ( λ ) d λ ∫ 0 ∞ Φ e , λ ( λ ) d λ ⋅ η e . {\displaystyle \eta =683\cdot {\frac {\int \limits _{380~nm}^{780~nm}\Phi _{e,\lambda }(\lambda )V(\lambda )d\lambda }{\int \limits _{0}^{\infty }\Phi _{e,\lambda }(\lambda )d\lambda }}\cdot \eta _{e}.}

Примечания

  1. Световая отдача. — Статья в Физической энциклопедии
  2. Справочная книга по светотехнике / Под ред. Айзенберга Ю. Б. — М.: Энергоатомиздат, 1983. — 472 с.
  3. Подробности приведены в статье Кандела.
  4. Отношение величины световой отдачи к значению теоретического максимума, то есть к 683,002 лм/Вт.
  5. Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
  6. 1 2 3 4 5 Philips Product Catalog (German)
  7. Osram halogen (нем.) (PDF) (недоступная ссылка). www.osram.de. Дата обращения 28 января 2008. Архивировано 7 ноября 2007 года.
  8. БСЭ: кремлёвские звёзды // Большая советская энциклопедия : / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  9. Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Дата обращения 16 апреля 2006. Архивировано 1 июня 2012 года.
  10. Klipstein, Donald L. The Brightest and Most Efficient LEDs and where to get them. Don Klipstein’s Web Site. Дата обращения 15 января 2008. Архивировано 17 февраля 2012 года.
  11. Cree launches the new XLamp 7090 XR-E Series Power LED, the first 160-lumen LED!. Архивировано 17 февраля 2012 года.
  12. Luxeon K2 with TFFC; Technical Datasheet DS60 (PDF) (недоступная ссылка). PhilipsLumileds. Дата обращения 23 апреля 2008. Архивировано 17 января 2009 года.
  13. Cree Breaks 200 Lumen Per Watt Efficacy Barrier. . Дата обращения 8 февраля 2010. Архивировано 17 февраля 2012 года.
  14. Cree First to Break 300 Lumens-Per-Watt Barrier. Архивировано 26 января 2015 года.
  15. Technical Information on Lamps (pdf) (недоступная ссылка). Optical Building Blocks. Дата обращения 14 октября 2007. Архивировано 27 октября 2007 года. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
  16. OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
  17. БСЭ: световая отдача // Большая советская энциклопедия : / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  18. 1 2 LED or Neon? A scientific comparison.
  19. Why is lightning coloured? (gas excitations). Архивировано 17 февраля 2012 года.
  20. Narukawa Y. et al. White light emitting diodes with super-high luminous efficacy // J. Phys. D: Appl. Physics. — 2010. — Vol. 43, № 35. — DOI:10.1088/0022-3727/43/35/354002.
  21. Cree Sets New R&D Performance Record with 254 Lumen-Per-Watt Power LED — Cree, Inc. Press Release, April 12, 2012
  22. Cree News: Cree Sets New R&D Performance Record with 276 Lumen-Per-Watt Power LED
  23. По определению канделы в Международной системе единиц (СИ)
  24. Световая отдача Солнца — По материалам публикации проф. П. Маркса из журнала «Licht»

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *