Вл 0 4

Содержание

Воздушные и кабельные ЛЭП напряжением 6(10) и 0,4 кВ

Элементы электроснабжения и электрического освещения

Для непосредственного электроснабжения потребителей ис­пользуются воздушные или кабельные ЛЭП напряжением 6(10) кВ для питания ТП и высоковольтных злектроприемников и воздушные, либо кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электропоприемников.

Воздушные ЛЭП

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабель­ными линиями, меньшей плотностью застройки и т.д.

В воздушных ЛЭП применяют алюминиевые и сталеалюминиевые провода, в последних внутренний стальной провод или стальной трос обеспечивают необходимую механическую прочность проводов. В исключительных случаях на основе технико-экономических расчетов для воздушных ЛЭП исполь­зуются медные провода. Сведения об алюминиевых, сталеалюминиевых и медных проводах приведены в главе 4.

Провода подвешиваются на железобетонных или деревян­ных опорах при помощи подвесных или штыревых изоляторов. Для воздушных ЛЭП используются неизолированные провода. Исключением являются вводы в здания — изолированные провода, протягиваемые от опоры ЛЭП к изоляторам, укреп­ленным на крюках непосредственно на здании.

Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет: в ЛЭП напряже­нием до 1000 В для промежуточных опор от 7 до 7,4 м, для переходных опор — 8,5 м.. В ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор — 8,35 м.

Наименьшие допустимые сечения алюминиевых (А), сталеалюминиевых (АС) и стальных (С) проводов воздушных ЛЭП напряжением более 1000 В, выбираемые по условиям меха­нической прочности с учетом возможной толщины их обле­денения, приведены в табл. 11.2.1.

Для воздушных ЛЭП напряжением до 1000 В по условиям ме­ханической прочности применяются провода, имеющие сечения не менее, мм: алюминиевые — 16; сталеалюминиевые — 10; стальные однопроволочные — диаметром 4 мм.

Таблица 11.2.1

Минимальные допустимые сечения проводов воздушных ЛЭП напряжением более 1000 В

Характеристика ЛЭП

Сечение проводов, кв. мм

марки А

марки АС

марки С

Без пересечений с коммуникациями, при толщине обледенения, мм:

до 10

до 15 и более

35 50

25 35

25 25

Переходы через судоходные реки и каналы, при толщине обледенения, мм:

до 10

до 15 и более

70 70

25 35

25 25

Пересечение с инженерными сооружениями: с линиями связи

с надземными трубопроводами

с канатными дорогами

70 70 70

не допус­кается

Пересечение с железными дорогами, при толщине обледенения, мм: до 10 15 и более

35 50

не допус­кается

Пересечение с автомобильными дорогами, при толщине обледенения, мм: до 10 15 и более

35 50

25 35

25 25

Таблица 1 1.2.2

Допустимые расстояния от нижних проводов воздушных ЛЭП напряжением до 1000 В и до 10 кВ и их опор до объектов

Объекты

До 1000 В

До 10 кВ

До зданий и сооружений, м,

1,5

До выступающих частей зданий и сооружений, м,

1,5

До кроны деревьев, м,

До поверхности земли в населенной местности, м,

Расстояние от опор воздушных ЛЭП до объектов, не менее:

Водо-, газо-, теплопроводные и канализационные трубы

Колодцы подземной канализации, водоразборные ко­лонки

бензоколонки

Кабельные линии

На воздушных ЛЭП напряжением до 1000 В устанавливают заземляющие устройства. Расстояние между ними определя­ется числом грозовых часов в году: до 40 часов — не более 200 м, более 40 часов — не более 100 м. Сопротивление заземляющего устройства — не более 30 Ом.

Силовые кабельные ЛЭП

Силовые кабельные ЛЭП применяются для подземной и подводной передачи электроэнергии на высоком и низком напряжениях. Трассу выбирают, исходя из условий наимень­шего расхода кабеля и обеспечения его наибольшей защи­щенности от механических повреждений при расколках, от коррозии, вибрации, перегрева и т. д.

Кабельные ЛЭП прокладывают в траншеях по непроезжей части улиц, под тротуарами, по дворам и т. д. Кабель не должен проходить под существующими или предполагаемыми к постройке зданиями и сооружениями, под проездами, на­сыщенными подземными коммуникациями.

В местах пересечения с различными трубопроводами (теп­лопроводы, водопроводы и др.), кабелями связи и иными ком­муникациями силовые кабели прокладывают в асбоцементных трубах или железобетонных блоках с соблюдением расстояний между кабелями и другими коммуникациями, установленными Правилами устройства электроустановок (ПУЭ). При прохожде­нии кабелей через стены и перекрытия кабели прокладывают в отрезках неметаллических труб.

После прокладки концы кабелей должны быть временно загерметизированы. Соединение и оконцевание кабелей осу­ществляется при помощи кабельных муфт и воронок. Для оконцевания жил используются кабельные наконечники. Све­дения о кабельной продукции приведены в главе 4.

← Предыдущая | Следующая →

Охранные зоны линий электропередач и объектов электросетевого хозяйства. Размеры зон

Использование территорий, находящихся в зоне ЛЭП, регулируется новыми Правилами установления охранных зон объектов электросетевого хозяйства и особых условий использования земельных участков, расположенных в границах таких зон (Постановление Правительства РФ № 160 от 24.02.2009 в редакции от 17.05.2016 г.)

Введение таких правил обусловлено вредным воздействием электромагнитного поля на здоровье человека.

Так, по информации Центра электромагнитной безопасности, в соответствии с результатами проведённых исследований, установлено, что у людей, проживающих вблизи линий электропередачи и трансформаторных подстанций, могут возникать изменения функционального состояния нервной, сердечно-сосудистой, нейрогорморальной и эндокринной систем, нарушаться обменные процессы, иммунитет и воспроизводительная функции.

Поэтому, чем дальше от источников электромагнитного поля находится строение, тем лучше.

В то же время существуют такие зоны, где строительство категорически запрещено.

Земельные участки, расположенные в охранных зонах ЛЭП, у их собственников, владельцев или пользователей не изымаются.

Они могут быть использованы ими с учётом ограничений (обременений), предусмотренных вышеуказанными Правилами.

Установление охранных зон не влечёт запрета на совершение сделок с земельными участками, расположенными в этих охранных зонах.

Ограничения (обременения) в обязательном порядке указываются в документах, удостоверяющих права собственников, владельцев или пользователей земельных участков (свидетельства, кадастровые паспорта).

Ограничения прав касаются возможности (точнее, невозможности) ведения капитального строительства объектов с длительным или постоянным пребыванием человека (домов, коттеджей, производственных и непроизводственных зданий и сооружений) в охранной зоне ЛЭП.

Для проведения необходимых уточнений при застройке участков с обременениями ЛЭП необходимо обратиться в электросетевую организацию.

Дальность распространения электромагнитного поля (и опасного магнитного поля) от ЛЭП напрямую зависит от её мощности.

Даже при беглом взгляде на висящие провода можно примерно установить класс напряжения ЛЭП.

Определяется это по числу проводов в связке, то есть не на опоре, а в фазе:

  • 4 провода — для ЛЭП 750 кВ
  • 3 провода — для ЛЭП 500 кВ
  • 2 провода — для ЛЭП 330 кВ
  • 1 провод — для ЛЭП ниже 330 кВ

Можно ориентировочно определить класс напряжения ЛЭП и по числу изоляторов в гирлянде:

  • 10-15 шт. — для ЛЭП 220 кВ
  • 6-8 шт. — для ЛЭП 110 кВ
  • 3-5 шт. — для ЛЭП 35кВ
  • 1 шт. — для ЛЭП ниже 10 кВ

Исходя из мощности ЛЭП, для защиты населения от действия электромагнитного поля установлены санитарно-защитные зоны для линий электропередачи (санитарные правила СниП № 2971-84 — «Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты»).

Для воздушных высоковольтных линий электропередачи (ВЛ) устанавливаются санитарно-защитные зоны по обе стороны от проекции на землю крайних проводов.

Эти зоны определяют минимальные расстояния до ближайших жилых, производственных и непроизводственных зданий и сооружений:

  • 2 м — для ВЛ ниже 1кВ
  • 10 м — для ВЛ 1-20 кВ
  • 15 м — для ВЛ 35 кВ
  • 20 м — для ВЛ 110 кВ
  • 25 м — для ВЛ 150-220 кВ
  • 30 м — для ВЛ 330 кВ, 400 кВ, 500 кВ
  • 40 м — для ВЛ 750 кВ
  • 55 м — для ВЛ 1150 кВ
  • 100 м — для ВЛ через водоёмы (реки, каналы, озёра и др.).

Дословно из Постановления Правительства РФ от 24 февраля 2009 г. №160 о порядоке установления охранных зон объектов электросетевого хозяйства и особых условий использования земельных участков, расположенных в границах таких зон:

1.Требования к границам установления охранных зон объектов электросетевого хозяйства

  • проектный номинальный класс напряжения до 1 кВ — 2 м

для линий с самонесущими или изолированными проводами, проложенных по стенам зданий, конструкциям и т.д., охранная зона определяется в соответствии с установленными нормативными правовыми актами минимальными допустимыми расстояниями от таких линий.

  • проектный номинальный класс напряжения 1-20 кВ — 10 м

(5 м — для линий с самонесущими или изолированными проводами, размещенных в границах населенных пунктов).

  • проектный номинальный класс напряжения 35 кВ — 15 м.
  • проектный номинальный класс напряжения 110 кВ — 20 м.

Охранные зоны для ВЛ-6 (10) кВ и ВЛЗ-6 (10 кВ):

  • 10 м — воздушная линия, выполненная неизолированным проводником ВЛ-6 (10) кВ при любых условиях прохождения;
  • 5 м — воздушная линия, выполненная изолированным проводником ВЛЗ-6 (10) кВ (только в границах населённого пункта).

2. Установление охранных зон

Охранные зоны устанавливаются для всех объектов электросетевого хозяйства, исходя из требований к границам установления охранных зон согласно приложению.

Границы охранной зоны в отношении отдельного объекта электросетевого хозяйства определяются организацией, которая владеет им на праве собственности или ином законном основании (далее — сетевая организация).

Сетевая организация обращается в федеральный орган исполнительной власти, осуществляющий технический контроль и надзор в электроэнергетике, с заявлением о согласовании границ охранной зоны в отношении отдельных объектов электросетевого хозяйства, которое должно быть рассмотрено в течение 15 дней с даты его поступления в соответствующий орган.

После согласования границ охранной зоны сетевая организация обращается в федеральный орган исполнительной власти, осуществляющий кадастровый учёт и ведение государственного кадастра недвижимости (орган кадастрового учета), с заявлением о внесении сведений о границах охранной зоны в документы государственного кадастрового учета недвижимого имущества, на основании которого указанный федеральный орган исполнительной власти принимает решение о внесении в документы государственного кадастрового учета недвижимого имущества сведений о границах охранной зоны.

Охранная зона считается установленной с даты внесения в документы государственного кадастрового учета сведений о ее границах.

Примечание

  1. Не допускается прохождение ЛЭП по территориям стадионов, учебных и детских учреждений.
  2. Допускается для ЛЭП (ВЛ) до 20 кВ принимать расстояние от крайних проводов до границ приусадебных земельных участков, индивидуальных домов и коллективных садовых участков не менее 20 м.
  3. Прохождение ЛЭП (ВЛ) над зданиями и сооружениями, как правило, не допускается.
  4. Допускается прохождение ЛЭП (ВЛ) над производственными зданиями и сооружениями промышленных предприятий I-II степени огнестойкости в соответствии со строительными нормами и правилами по пожарной безопасности зданий и сооружений с кровлей из негорючих материалов (для ВЛ 330-750 кВ только над производственными зданиями электрических подстанций.

3. В охранной зоне ЛЭП (ВЛ) запрещается

  1. Производить строительство, капитальный ремонт, снос любых зданий и сооружений.
  2. Осуществлять всякого рода горные, взрывные, мелиоративные работы, производить посадку деревьев, полив сельскохозяйственных культур.
  3. Размещать автозаправочные станции.
  4. Загромождать подъезды и подходы к опорам ВЛ.
  5. Устраивать свалки снега, мусора и грунта.
  6. Складировать корма, удобрения, солому, разводить огонь.
  7. Устраивать спортивные площадки, стадионы, остановки транспорта, проводить любые мероприятия, связанные с большим скоплением людей.

Проведение необходимых мероприятий в охранной зоне ЛЭП может выполняться только при получении письменного разрешения на производство работ от предприятия (организации), в ведении которых находятся эти сети.

Нарушение требований «Правил охраны электрических сетей напряжение свыше 1000 В», если оно вызвало перерыв в обеспечении электроэнергией, может повлечь административную ответственность:

  • физические лица наказываются штрафом в размере от 5 до 10 минимальных размеров оплаты труда;
  • юридические лица наказываются штрафом от 100 до 200 МРОТ.

Воздушные линии электропередачи

Линия электропередачи на напряжение 500 кВСамая высоковольтная (проектное напряжение 1150 кВ) ЛЭП в мире: Итат — Экибастуз — Кокшетау — Челябинск

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам).

Состав ВЛ

  • Провода
  • Траверсы
  • Изоляторы
  • Арматура
  • Опоры
  • Грозозащитные тросы
  • Разрядники
  • Заземление
  • Секционирующие устройства
  • Волоконно-оптические линии связи (в виде отдельных самонесущих кабелей, либо встроенные в грозозащитный трос, силовой провод)
  • Вспомогательное оборудование для нужд эксплуатации (аппаратура высокочастотной связи, ёмкостного отбора мощности и др.)
  • Элементы маркировки высоковольтных проводов и опор ЛЭП для обеспечения безопасности полётов воздушных судов. Опоры маркируются сочетанием красок определённых цветов, провода — авиационными шарами для обозначения в дневное время. Для обозначения в дневное и ночное время суток применяются огни светового ограждения.

Документы, регулирующие ВЛ

Внешние видеофайлы

Как это сделано

Обслуживание ВЫСОКОВОЛЬТНОЙ линии под НАПРЯЖЕНИЕМ

Конструкция ВЛ, её проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНиП).

Классификация ВЛ

По роду тока

  • ВЛ переменного тока
  • ВЛ постоянного тока

Линия электропередачи постоянного тока Волгоград-Донбасс (Ростовская и Волгоградская область)

В основном, ВЛ служат для передачи переменного тока, и лишь в отдельных случаях (например, для связи энергосистем, питания контактной сети и другие) используются линии постоянного тока. Линии постоянного тока имеют меньшие потери на ёмкостную и индуктивную составляющие. В СССР было построено несколько линий электропередачи постоянного тока, среди которых:

  • Москва — Кашира (Проект «Эльба», 1951 год);
  • Волгоград — Донбасс (1965 год);
  • Экибастуз — Центр (незавершённая).

Широкого распространения такие линии не получили, главным образом, в связи с необходимостью возведения сложных концевых подстанций с большим количеством вспомогательной аппаратуры.

По назначению

  • Дальние межсистемные ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем).
  • Магистральные ВЛ напряжением 220,330,500 кВ (предназначены для передачи энергии от мощных электростанций, а также для связи энергосистем и объединения электростанций внутри энергосистем — к примеру, соединяют электростанции с крупными узловыми подстанциями).
  • Распределительные ВЛ напряжением 110,150 и 220 кВ (предназначены для электроснабжения предприятий и крупных населённых пунктов — соединяют узловые подстанции с подстанциями глубокого ввода городов).
  • ВЛ напряжением 35 кВ применяются преимущественно для электроснабжения сельскохозяйственных (загородных) потребителей.
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям. Современная городская распределительная сеть выполняется, как правило, на напряжение 10 кВ.

По напряжению

Железобетонная опора ЛЭП 220/380 В с фарфоровыми линейными изоляторамиЛЭП на 10 кВ, получившая широкое распространение в странах СНГ

  • ВЛ до 1000 В (ВЛ низкого класса напряжений)
  • ВЛ выше 1000 В
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110—330 кВ (ВЛ высокого класса напряжений)
    • ВЛ 500—750 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ выше 750 кВ (ВЛ ультравысокого класса напряжений)

Эти группы существенно различаются, в основном — требованиями в части расчётных условий и конструкций.

В сетях СНГ общего назначения переменного тока 50 Гц, согласно ГОСТ 721-77, должны использоваться следующие номинальные межфазные напряжения: 380 В; (6), 10, 20, 35, 110, 220, 330, 500, 750 и 1150 кВ. Могут также существовать сети, построенные по устаревшим стандартам с номинальными межфазными напряжениями: 220 вольт, 3 и 150 киловольт.

Самой высоковольтной ЛЭП в мире является линия Экибастуз — Кокшетау, номинальное напряжение — 1150 кВ. Однако, в настоящее время линия эксплуатируется под вдвое меньшим напряжением — 500 кВ. В 1970-х годах в Советском Союзе разрабатывался проект ВЛ напряжением 2200 кВ для транспорта энергии с электростанций КАТЭКа в европейскую часть страны, но по ряду причин (в основном, технико-технологических) реализован он не был.

Номинальное напряжение для линий постоянного тока не регламентировано, чаще всего используются напряжения: 150, 400 (Выборгская ПС — Финляндия) и 800 кВ.

В специальных сетях могут использоваться и другие классы напряжений, в основном это касается тяговых сетей железных дорог (27,5 кВ, 50 Гц переменного тока и 3,3 кВ постоянного тока), метрополитена (825 В постоянного тока), трамваев и троллейбусов (600 В постоянного тока).

По режиму работы нейтралей в электроустановках

  • Трёхфазные сети с незаземлёнными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с больши́м сопротивлением). В СНГ такой режим нейтрали используется в сетях напряжением 3—35 кВ с малыми токами однофазных замыканий на землю.
  • Трёхфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В СНГ используется в сетях напряжением 3-35 кВ с большими токами однофазных замыканий на землю.
  • Трёхфазные сети с эффективно-заземлёнными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220 кВ, в которых применяются трансформаторы (автотрансформаторы требуют обязательного глухого заземления нейтрали).
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1 кВ, а также сети напряжением 220 кВ и выше.

По режиму работы в зависимости от механического состояния

  • ВЛ нормального режима работы (провода и тросы не оборваны).
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов).
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов).

Основные элементы ВЛ

  • Трасса — положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) — отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак на трассе строящейся ВЛ обозначает центр расположения опоры.
  • Производственный пикетаж — установка пикетных и центровых знаков на трассе в соответствии с ведомостью расстановки опор.
  • Фундамент опоры — конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузку от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента — грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) — расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный пролёт (между двумя соседними промежуточными опорами) и анкерный пролёт (между анкерными опорами). Переходный пролёт — пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии — угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса — вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода — вертикальное расстояние от провода в пролёте до пересекаемых трассой инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля) — отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Монтаж воздушных линий электропередачи

Монтаж линий электропередачи осуществляется методом «под тяжением». Это особенно актуально в случае сложного рельефа местности. При подборе оборудования для монтажа ЛЭП необходимо учитывать количество проводов в фазе, их диаметр и максимальное расстояние между опорами ЛЭП.

Кабельные линии электропередачи

Основная статья: Кабельная линия

Кабельная линия электропередачи (КЛ) — линия для передачи электроэнергии или отдельных её импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепёжными деталями, а для маслонаполненных линий, кроме того — с подпитывающими аппаратами и системой сигнализации давления масла.

Классификация

Кабельные линии классифицируют аналогично воздушным линиям. Кроме того, кабельные линии делят:

  • по условиям прохождения:
    • подземные;
    • по сооружениям;
    • подводные.
  • по типу изоляции:
    • жидкостная (пропитанная кабельным нефтяным маслом);
    • твёрдая:
      • бумажно-масляная;
      • поливинилхлоридная (ПВХ);
      • резино-бумажная (RIP);
      • сшитый полиэтилен (XLPE);
      • этилен-пропиленовая резина (EPR).

Здесь не указаны изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Кабельные сооружения

К кабельным сооружениям относятся:

  • Кабельный тоннель — закрытое сооружение (коридор) с расположенными в нём опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонт и осмотр кабельных линий.
  • Кабельный канал — непроходное сооружение, закрытое и частично или полностью заглублённое в грунт, пол, перекрытие и т. п. и предназначенное для размещения в нём кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта — вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабжённое скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съёмной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж — часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол — полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съёмными плитами (на всей или части площади).
  • Кабельный блок — кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера — подземное кабельное сооружение, закрываемое глухой съёмной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в неё, называется кабельным колодцем.
  • Кабельная эстакада — надземное или наземное открытое горизонтальное или наклонное протяжённое кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея — надземное или наземное закрытое (полностью или частично, например, без боковых стен) горизонтальное или наклонное протяжённое проходное кабельное сооружение.

Пожарная безопасность

Температура внутри кабельных каналов (тоннелей) в летнее время должна быть не более чем на 10 °C выше температуры наружного воздуха.

При пожарах в кабельных помещениях в начальный период происходит медленное развитие горения и только спустя некоторое время скорость распространения горения существенно увеличивается. Практика свидетельствует, что при реальных пожарах в кабельных туннелях наблюдаются температуры до 600 °C и выше. Это объясняется тем, что в реальных условиях горят кабели, которые длительное время находятся под токовой нагрузкой и изоляция которых прогревается изнутри до температуры 80 °C и выше. Может возникнуть одновременное воспламенение кабелей в нескольких местах и на значительной длине. Связано это с тем, что кабель находится под нагрузкой и eгo изоляция нагревается до температуры, близкой к температуре самовоспламенения.

Кабель состоит из множества конструктивных элементов, для изготовления которых используют, например, материалы, имеющие низкую температуру воспламенения, материалы, склонные к тлению. В конструкцию кабеля и кабельных конструкций, как правило, входят металлические элементы. В случае пожара или токовой перегрузки происходит прогрев этих элементов до температуры порядка 500—600 ˚C, которая превышает температуру воспламенения (250—350 ˚C) многих полимерных материалов, входящих в конструкцию кабеля, в связи с чем возможно их повторное воспламенение от прогретых металлических элементов после прекращения подачи огнетушащего вещества. В связи с этим необходимо выбирать нормативные показатели подачи огнетушащих веществ, чтобы обеспечивать ликвидацию пламенного горения, а также исключить возможность повторного воспламенения.

Длительное время в кабельных помещениях применялись установки пенного тушения. Однако опыт эксплуатации выявил ряд недостатков:

  • ограниченный сpoк хранения пенообразователя и недопустимость хранения их водных растворов;
  • неустойчивость в работе;
  • сложность наладки;
  • необходимость специального ухода за устройством дозировки пенообразователя;
  • быстрое разрушение пены при высокой (около 800 °C) температуре среды при пожаре.

Исследования показали, что распылённая вода обладает большей огнетушащей способностью по сравнению с воздушно-механической пеной, так как она хорошо смачивает и охлаждает горящие кабели и строительные конструкции.

Линейная скорость распространения пламени для кабельных сооружений (горение кабелей) составляет 1,1 м/мин.

Высокотемпературные сверхпроводники

ВТСП-провод

В проводах на основе высокотемпературных сверхпроводников (ВТСП) использование сверхпроводимости позволяет передавать электрический ток без потерь, а также достичь высокой плотности токов. Большим недостатком ВТСП-проводов является необходимость в постоянном охлаждении, что ограничивает их применение на практике. Несмотря на сложности в производстве и эксплуатации ВТСП-проводов, делаются постоянные попытки применения их на практике. Например, в демонстрационной системе силовой сети, запущенной в эксплуатацию в июле 2006 года в США, при напряжении 138 кВ передаётся мощность в 574 МВА на длину 600 метров.

Первая коммерческая сверхпроводящая линия электропередачи была запущена в эксплуатацию фирмой American Superconductor на Лонг-Айленде в Нью-Йорке в конце июня 2008 года. Энергосистемы Южной Кореи собираются создать к 2015 году сверхпроводящие линии электропередачи общей длиной в 20 км.

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 декабря 2016 года.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче её на дальние расстояния напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону. Коронный разряд возникает, когда напряжённость электрического поля E {\displaystyle E} у поверхности провода превысит пороговую величину E k {\displaystyle E_{k}} , которую можно вычислить по эмпирической формуле Пика:
E k = 30 , 3 β ( 1 + 0,298 r β ) {\displaystyle E_{k}=30{,}3\beta \left({1+{\frac {0{,}298}{\sqrt {r\beta }}}}\right)} кВ/см,
где r {\displaystyle r} — радиус провода в метрах, β {\displaystyle \beta } — отношение плотности воздуха к нормальной.

Напряжённость электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) — применяя расщепление фаз, то есть используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению U ( U − U кр ) {\displaystyle U(U-U_{\text{кр}})} .

Потери на корону резко возрастают с ростом напряжения, среднегодовые потери на ЛЭП напряжением 500 кВ составляют около 12 кВт/км, при напряжении 750 кВ — 37 кВт/км, при 1150 кВ — 80 кВт/км. Потери также резко возрастают при осадках, особенно изморози, и могут достигать 1200 кВт/км.

Потери в ЛЭП переменного тока

Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии — cos φ. Активная мощность — часть полной мощности, прошедшей по проводам и переданной в нагрузку; Реактивная мощность — это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой (индуктивной нагрузкой). Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности, тем больше потери активной.

При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц ( λ = c / ν = {\displaystyle \lambda =c/\nu =} 6000 км, длина четвертьволнового вибратора λ / 4 = {\displaystyle \lambda /4=} 1500 км), провод работает как излучающая антенна.

Натуральная мощность и пропускная способность ЛЭП

Натуральная мощность

ЛЭП обладает индуктивностью и ёмкостью. Ёмкостная мощность пропорциональна квадрату напряжения и не зависит от мощности, передаваемой по линии. Индуктивная же мощность линии пропорциональна квадрату тока, а значит и мощности линии. При определённой нагрузке индуктивная и ёмкостная мощности линии становятся равными, и они компенсируют друг друга. Линия становится «идеальной», потребляющей столько реактивной мощности, сколько её вырабатывает. Такая мощность называется натуральной мощностью. Она определяется только погонными индуктивностью и ёмкостью и не зависит от длины линии. По величине натуральной мощности можно ориентировочно судить о пропускной способности линии электропередачи. При передаче такой мощности на линии имеет место минимальные потери мощности, режим её работы является оптимальным. При расщеплении фаз, за счёт уменьшения индуктивного сопротивления и увеличения емкостной проводимости линии, натуральная мощность увеличивается. При увеличении расстояния между проводами натуральная мощность уменьшается, и наоборот, для повышения натуральной мощности необходимо уменьшать расстояние между проводами. Наибольшей натуральной мощностью обладают кабельные линии, имеющие большую емкостную проводимость и малую индуктивность.

Пропускная способность

Под пропускной способностью электропередачи понимается наибольшая активная мощность трёх фаз электропередачи, которую можно передать в длительном установившемся режиме с учётом режимно-технических ограничений. Наибольшая передаваемая активная мощность электропередачи ограничена условиями статической устойчивости генераторов электрических станций, передающей и приёмной части электроэнергетической системы, и допустимой мощностью по нагреву проводов линии с допустимым током. Из практики эксплуатации электроэнергетических систем следует, что пропускная способность ЛЭП 500 кВ и выше обычно определяется фактором статической устойчивости, для ЛЭП 220—330 кВ ограничения могут наступать как по условию устойчивости, так и по допустимому нагреву, 110 кВ и ниже — только по нагреву.

Характеристика пропускной способности воздушных линий электропередачи

Uном,

кВ

Длина

линии, км

Предельная

длина при

кпд = 0.9

Число и площадь

сечения проводов,

мм2

Натуральная

мощность

Р нат МВт

Пропускная способность
По устойчивости По нагреву
МВт в долях

Рнат

МВт в долях

Рнат

10(6) 5 1 2,1
20 8 1 7,5
35 20 1 15
110 80 1 30 50 1,67
220 150-250 400 1х300 120-135 350 2,9 280 2,3
330 200-300 700 2х300 350-360 800 2,3 760 2,2
500 300-400 1200 3х300 900 1350 1,5 1740 1,9
750 400-500 2200 5х300 2100 2500 1,2 4600 2,1
1150 400-500 3000 8х300 5300 4500 0,85 11000 2,1

Примечания

  1. ПТЭзП (Правила технической эксплуатации электроустановок потребителей)
  2. Номинальные напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются. Для существующих и расширяющихся электрических сетей на номинальные напряжения 3 и 150 кВ электрооборудование должно изготовляться (см. ГОСТ 721-77).
  3. Кашолкин Б. И., Мешалкин Е. А. Тушение пожаров в электроустановках. — М.: Энергоатомиздат, 1985. — С. 20
  4. Технические условия по проектированию автоматических установок комбинированного пожаротушения в кабельных сооружениях «НТО Пламя» — М., 2006. — С. 2
  5. Кашолкин Б. И., Мешалкин Е. А. Тушение пожаров в электроустановках. — М.:Энергоатомиздат, 1985. — С. 58.
  6. Рекомендации по расчету параметров эвакуации людей на основании положений ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования», Таблица 3.5
  7. Monica Heger. Superconductors Enter Commercial Utility Service. IEEE Spectrum. Дата обращения 19 января 2012. Архивировано 14 февраля 2010 года.
  8. Энергетики переходят на сверхпроводники. Радио Свобода (2010). — «Говорится о трех миллионах метров не кабеля, а исходной ленты… Из этих лент делаются кабели, содержащие порядка 50 лент. Поэтому надо 3 миллиона метров разделить на 50 и получится около 50 километров.». Дата обращения 27 ноября 2014.
  9. Joseph Milton. Superconductors come of age. Nature — News. — «Jason Fredette, managing director of corporate communications at the company, says that LS Cable will use the wire to make about 20 circuit kilometres of cable as part of a programme to modernize the South Korean electricity network starting in the capital, Seoul.». Дата обращения 19 января 2012. Архивировано 9 октября 2010 года.
  10. Процессы и аппараты химических технологий
  11. Потери на корону — статья из Большой советской энциклопедии (3-е издание)
  12. 4.1. Реактивные мощности и натуральная мощность линии электропередачи (недоступная ссылка). Дата обращения 8 января 2016. Архивировано 5 декабря 2016 года.
  13. Характеристика системы передачи электрической энергии
  14. Министерство промышленности и энергетики Российской Федерации. Приказ № 216 Об утверждении Методических рекомендаций по определению предварительных параметров выдачи мощности строящихся (реконструируемых) генерирующих объектов в условиях нормальных режимов функционирования энергосистемы, учитываемых при определении платы за технологическое присоединение таких генерирующих объектов к объектам электросетевого хозяйства (от 30 апреля 2008 г.).

Ссылки

Линия электропередачи на Викискладе

  • ЛЭП — это проводная или кабельная линия передачи электроэнергии
  • Редкие опоры воздушных линий

Нормативный контроль

GND: 4160246-8

Спиральные вязки серии ПВС предназначены для крепления к штыревым и опорным изоляторам опор ВЛ 6–20 кВ неизолированных проводов марки А, АС и АЖ. Вязки изготовлены из оцинкованной пружинной проволоки и имеют стойкое полимерное покрытие, обеспечивающие необходимую заделку проводов. Не разрушаются во время всего срока службы, удобны в монтаже, имеют цветовую маркировку. Вязки спиральные ПВС разработаны взамен проволочной скрутки, осуществляемой при помощи алюминиевой проволоки. В отличие от традиционной схемы вязка ПВС дешевле и удобнее в монтаже.

Вязки ПВС _ _/_ _-10(20) предназначены для одинарного крепления провода к изоляторам (рис. 2, 3). Вязки типа ПВС _ _/_ _ — 10(20)-02 предназначены для двойного крепления провода к изоляторам (рис. 4, 6). В случае применения двойного крепления на основном изоляторе применяются две вязки типа ПВС _ _/_ _ — 10(20) (рис. 1) , а на дополнительном — одна вязка типа ПВС _ _/_ _ — 10(20)-02 (рис.5).

Марка вязки Марка провода Марка изолятора Сечение провода, кв. мм. Цветовая маркировка Кол-во шт. в упаковке
ПВС-35/50-10 АЖ50, АС35/6,2 ШС-10Д, ШФ-10Г 35-50 желтая 18
ПВС-35/50-20 ШФ-20Г
ПВС-70/95-10 А70, А95, АС95/16, АС70/11 ШС-10Д, ШФ-10Г 70-95 зеленая
ПВС-70/95-20 ШФ-20Г
ПВС-120/150-10 А120, АЖ120, А150, АЖ150, АС120/19, АС150/19 ШС-10Д, ШФ-10Г 120-150 черная
ПВС-120/150-20 ШФ-20Г
ПВС-35/50-10-02 АЖ50, АС35/6,2 ШС-10Д, ШФ-10Г 35-50 желтая
ПВС-35/50-20-02 ШФ-20Г
ПВС-70/95-10-02 А70, А95, АС95/16, АС70/11 ШС-10Д, ШФ-10Г 70-95 зеленая
ПВС-70/95-20-02 ШФ-20Г
ПВС-120/150-10-02 А120, АЖ120, А150, АЖ150, АС120/19, АС150/19 ШС-10Д, ШФ-10Г 120-150 черная
ПВС-120/150-20-02 ШФ-20Г

Варианты обозначения: ПВС35/50, ПВС70/95, ПВС120/150

Дополнительная информация:

Спиральные вязки типа ВС для изолированных проводов СИП-3

Примечание. В настоящее время крепление неизолированного провода к штыревым изоляторам ШФ-10Г, ШС-10Д, ШФ-20Г осуществляется преимущественно с помощью проволочной вязки ВШ-1 (наиболее распространенный способ крепления). Также, широкое распространение получил более прогрессивный способ крепления проводов — спиральные вязки ВС (для изолированных проводов СИП-3) и ПВС (для неизолированных проводов А, АС). Поставка зажимов ЗАК-10-1 и скоб СШ-1, СШ-2 затруднена.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *