Ветровая энергия

Содержание

 

Объяснить значение слова «ветер» большинство современных людей смогут только на бытовом уровне, совершенно не углубляясь в его физические характеристики, поскольку это сложно для непосвященных в секреты сложнейшей отрасли «физика». Однако многие в последние годы уже заметили, что слово «ветер» сопровождается еще и экономическим толкованием, поскольку это природное явление позволяет получать возобновляемую энергию, которая к тому же имеет и невысокую стоимость. Ветроэнергетика способна успешно конкурировать и с другими разновидностями возобновляемой энергии, к которым относятся энергия солнца и воды.

История ветряной энергии

Не только современные люди обнаружили удивительные свойства ветра, направив их на получение электроэнергии и развитии прочих благ. В третьем тысячелетии до нашей эры люди уже научились успешно использовать силу ветра. Чуть позже человеку удалось создать устройство, при помощи которого удавалось приводить в порядок земли, осушать заболоченные местности.

Немного позже появились первые ветряные мельницы на территории Египта, которые на протяжении многих лет позволяли человеку получать муку из зерновых культур.

Ветер позволял китайцам откачивать воду с рисовых полей. Для этого на полях были установлены специальные устройства с лопастями, которые приходили во вращательное движение благодаря потокам ветра.

Однако Европа продолжительное время не уделяла должного внимания ветряным технологиям, поэтому на европейском континенте они стали распространяться только спустя несколько веков.

Однако настоящий расцвет наступил уже в двадцатом столетии, когда человек научился получать электроэнергию, приручив потоки ветра. В настоящее время можно встретить ВЭС, которые характеризуются не только возможностью обеспечивать электричеством, но ориентированным на значительное улучшение экологической обстановки, а также на безопасность здоровья человека.

Преимущества ВЭС

К сожалению, даже имея огромное желание, установить ВЭС в любом пространстве никак не получится. Для этой цели потребуется местность, которая сопровождается постоянными ветровыми потоками.

Также специалисты уточняют скорость ветра, характерную конкретно для этой местности. Если ее величина достигает или превышает 4,5 м/с, можно ожидать достаточно высокую эффективность ВЭС. В такой ситуации рассматривается целесообразность возведения как единичных станций, так и нескольких, но находящихся на небольшом удалении друг от друга, объединенных впоследствии в единый комплекс. Такой единый комплекс получил название ветряных ферм.

Уровень развития ветроэнергетики в разных государствах серьезно отличается. В частности, в настоящее время несомненным лидером в развитии ветроэнергетики является США, среди европейских стран лидирующими странами можно считать Данию, Нидерланды, Великобританию и Германию.

Самая мощная ВЭС, способная вырабатывать невероятно большое количество электроэнергии, достигающей 7 миллионов кВт/ч, находится в Германии. Она обеспечивает электроснабжение в более двух тысяч домов.

Широкое распространение ветряная энергия получила благодаря наличию достаточного количества преимуществ:

  • невысокая эксплуатационная стоимость;
  • незначительное количество обслуживающего персонала;
  • легкость управления процессом, благодаря чему человек не нуждается в прохождении специального обучения;
  • нет необходимости в проведении частой модернизации или замене комплектующих.

Если правильно выбрать пространство для сооружения ветряной электростанции, то на протяжении многих лет достаточный объем энергии будет обеспечен. Кроме этого, такая электростанция не загрязняет окружающую среду, не провоцирует разрушительные действия, которые характерны гидроэлектростанциям и атомным станциям.

Для бесперебойной работы станции не требуется добывать дополнительное сырье, поэтому такие электростанции относят в разряд возобновляемых. К тому же станции могут быть построены на небольшом удалении от потребителя, поэтому исключается необходимость в строительстве дополнительных коммуникаций, обеспечивающих доставку «продукта» до потребителя.

Во второй части повествуется о недостатках, которые, к сожалению, сопровождают ветряную энергетику. Также специалистами даны рекомендации, как минимизировать риски, создать условия для успешного развития ветряной энергетики. Также во второй части можно почерпнуть информацию о достижениях в ветряной энергетической отрасли в мировых масштабах, где несомненным лидером является Шотландия, которая в настоящее время при помощи ветряной смогла покрыть энергии потребности жилого сектора, а в ближайшие четыре года готова покрыть потребности и производственного сектора.

Использование сил природы для извлечения собственной выгоды является показателем развитости человека. В частности это касается применения силы ветра для собственных нужд. Очень давно человек не имел ни малейшего представления о физике и о перемещении воздушных масс вдоль плоскости земной поверхности, но использовать силу ветра в виде тяговой силы для судоходства человек научился вместе с изобретением паруса. Далее закономерным продолжением развития ученой мысли стало появление ветряков или ветряных мельниц.

Следующий глобальный прорыв в процессе контроля воздуха и ветра наступил в конце 19 века, когда на свет появилась первая ветряная электростанция. Проблема, которая привела к поискам альтернативного источника энергии, заключается в желании сэкономить, поскольку каждый год наблюдалось повышение цен на прочие виды топливных ресурсов.


Использование ветрогенераторов сегодня является очень распространенным способом получения электрической энергии, а современный ветряк известен каждому школьнику. Лидерами в количестве применяемых ветряных электростанций являются Соединенные Штаты Америки и Китай, но другие страны также понимают, что преимущество ветровых электростанций заключается в возможности получения дешевой энергии и эта отрасль энергетики получает значительное развитие.

Установка ветряка стоит намного ниже, чем проведение ЛЭП или подключение к уже существующей. При этом невысокая стоимость энергии ветра и простота, позволяющая самостоятельно изготовить простейший ветряк, делает ветряные электростанции популярными среди простых обывателей.

Принцип действия и конструкция ветряных электростанций

Чтобы понять, какими преимуществами обладают ветровые электростанций, следует знать принцип их работы и конструктивные особенности. В основу работы подобного устройства положено использование силы ветра, посредством которой вращаются лопасти колеса, передающего движение на вал генератора при помощи сложной системы передаточных звеньев. В зависимости от конструктивных особенностей конкретной системы энергия ветра может передаваться на электрический генератор или питать водяной насос. Зная простейшие законы физики, можно сформулировать условие максимизации получаемой энергии.

Количество получаемой от генератора энергии находится в пропорциональной зависимости от диаметра колеса и лопастей ветряка. Иными словами, чем больший поток ветра, тем быстрее начинает крутиться вал генератора и большее количество энергии вырабатывается.

Но руководствоваться лишь одним размером при выборе ветряка было бы ошибочным, поскольку на разных высотах потоки воздуха ведут себя по-разному. Именно в силу этого, при проектировании ветряных электростанций особое внимание уделяется особенностям рельефа местности.

Проблемы эксплуатации ветряных электростанций заключаются в необходимости порой установки очень высоких мачт, поскольку на большей высоте наиболее потоки воздуха более стабильны, а ближе к поверхности земли их сила сокращается. Эксплуатация тепловой электростанции (ТЭС) лишена подобного ограничения, поскольку для ее нормальной работы требуется только наличие топлива.

Конструктивно все ветряные электростанции подразделяются на три типа: пропеллерные, барабанные и карусельные. Различие по типам заключается в расположении стабилизаторных лопастей и вращающегося вала относительно потока ветра. Наиболее экономичным типом является пропеллерный, где лопасти располагаются в горизонтальной плоскости по отношению к направлению ветра. В двух других случаях вал генератора располагается вертикально. Барабанные и карусельные ветряки обычно устанавливаются в местностях, где роза ветров не играет существенной роли.

Ветровые электростанции: преимущества и недостатки

При выборе альтернативного источника энергии в виде установки ветряной станции возникает вопрос: Какими преимуществами обладают ветровые электростанции по сравнению с тепловыми?

  • Простота конструкции, что позволяет обслуживать и эксплуатировать подобные объекты людям, не имеющим специального образования;
  • Неиссякаемость источника вырабатываемой энергии. Самое главное преимущество ветровых электростанции на тепловыми в том, что для их работы используется энергия ветра, который относится к возобновляемым источникам. Эксплуатация тепловых станции (ТЭЦ) требует постоянного использования топлива, а ветер есть всегда;
  • Экономичность. Использование ветряной станции это уникальный случай получения максимальной выгоды при минимальных затратах. Один генератор способен выдавать от 10 до 1000 Вт;
  • Экологичность. Для работы ветряка не требуется переработки топлива, а соответственно не загрязняется атмосфера.

Преимущества ветровых электростанций по сравнению с ТЭС также включают в себя компактность, автономность, доступность.

Но, несмотря на преимущества ветровых электростанций по сравнению с тепловыми, они обладают рядом недостатков.

Какими недостатками обладают современные ветровые электростанции?

  1. Ветряная зависимость. Этот недостаток вытекает из преимущества, поскольку при отсутствии ветра выработка энергии полностью прекратится;
  2. Создание помех для радиосвязи и телекоммуникации;
  3. Изменение естественного ландшафта;
  4. Большая площадь, требуемая для установки целого блока генераторов;


В любом случае, если провести тщательный анализ, то можно прийти к выводу, что применение ветряных электростанций обладает большим количество плюсов, нежели минусов и является на настоящий момент самым простым и эффективным способом получения электрической энергии.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Виды ветряной энергии

Рост потребления энергоресурсов ускоряется с каждым годом. Появление новых устройств, бытовой техники, компьютерного оборудования способствуют повышению потребностей населения и вынуждает к увеличению мощностей централизованных линий. Их состояние, и так достаточно ветхое, от таких нагрузок становится еще более плачевным. Изношенность электросетей в некоторых регионах достигает 70-80 %, что заставляет задуматься о завтрашнем дне.

С другой стороны, имеется немало регионов, куда линии электропередач д сих пор не проведены. Это отдаленные районы Крайнего Севера, труднодоступные горные населенные пункты и т.д. Надеяться на скорую электрификацию таких мест не приходится, так как важных промышленных или оборонных объектов там нет, а вести линию «в никуда» нерационально, она никогда не окупится.

Выходом из складывающейся ситуации может стать использование альтернативных методов производства электроэнергии. Рассмотрим один из наиболее перспективных вариантов.

Воздушный поток

По сути, энергия ветра одна — кинетическая. Воздушный поток обладает огромной мощью, действие которой можно наблюдать на видео или фотографиях последствий ураганов или просто шквальных порывов. Гораздо больше существует устройств, так или иначе использующих ветряную энергию для выполнения какой-нибудь работы, производства электрического тока и прочих нужд. Так, насосы, действующие от ветряка, известны с незапамятных времен, а современные ветроэлектростанции обеспечивают электрической энергией целые страны и регионы.

Особенностью энергии ветра является ее доступность. Для создания гидроэлектростанции необходимо найти подходящий по рельефу участок русла реки, построить запруду, которая затопит большую площадь полезной поверхности земли. Страдают и исчезают пахотные земли, нарушается естественный ареал обитания животных, изменяется климат в регионе.

Для атомной энергетики надо получить ядерное топливо, построить АЭС, все время ее работы существует ощутимый риск возникновения аварии, угрожающей крупной катастрофой. Использование ветра практически безопасно, не имеет отрицательного воздействия на природу или человека.

Противники ветроэнергетики декларируют различные проблемы, создаваемые использованием ВЭС, но фактов, подтверждающих эти проблемы, не привели ни разу. Практика же опровергает все домыслы относительно вреда от ветростанций, подтверждая лишь полезные свойства.

Ресурсы энергии солнца и ветра на Земле

Альтернативные источники, к которым относятся солнечная и ветровая энергия, обладают огромным потенциалом. Их количество практически неисчерпаемо, во всяком случае при нынешнем уровне технических возможностей. Особенностями этих видов является периодический характер пользования — для солнца характерен перерыв в ночное время, а ветровые потока не имеют определенной системы и движутся хаотично.

Исключением являются прибрежные регионы, где направление потока изменяет только знак — либо с моря на сушу, либо наоборот. В остальном оба источника бесконечны. Ветер не теряет своей энергии даже при использовании больших станций, состоящих из сотни и более установок, что выгодно отличает его от тех же углеводородов, которые сгорают, загрязняя атмосферу и убывают при этом.

Количество солнечной энергии, доступной на поверхности Земли, во многом зависит от климата и состояния атмосферы в регионе. Районы с обычно затянутым тучами небом в этом отношении бесперспективны. То же касается и регионов со слабыми ветрами в отношении ветроэлектростанций. При этом, энергия ветра доступна в любое время дня и ночи, что делает ее позиции несколько более предпочтительными.

Недостатки ветряных электростанций

К основным недостаткам относят нестабильность воздушных потоков. Даже в прибрежных регионах с преобладающими бризами, имеющими относительно ровные параметры, случаются отклонения от обычных значений, а в континентальных регионах, с их особенностями климата, перепадами среднесуточных температур и влажности, движение воздушных масс имеет сложную и зачастую неожиданную систему. Кроме того, к недостаткам ВЭС принято относить:

  • шум от работы установок
  • мерцание от вращающихся лопастей
  • вибрации, отрицательно воздействующие на мелких животных и, отчасти, на людей
  • высокие инвестиционные расходы
  • относительно короткий срок службы, не всегда обеспечивающий окупаемость проекта
  • дороговизна электроэнергии

Некоторые из этих недостатков можно смело отнести к домыслам, например, высокий уровень шума или вибраций. Но относительно дороговизны и неокупаемости проектов — факт, спорить с которым нет смысла. Расходы на создание ветростанций обычно берутся на себя государствами, особенно если рассматривается крупный проект, способный в корне изменить энергообеспеченность страны, либо, если станция невелика, покрываются из частных инвестиций.

Следует отметить, что стоимость относительно небольших проектов на несколько порядков ниже, чем у гигантов энергетики, что намного увеличивает рентабельность вложений и способствует достаточно быстрой окупаемости.

Современные способы производства электричества из энергии ветра

На сегодня самым распространенным способом преобразования энергии потоков ветра является использование ветрогенераторов. Это устройства, преобразующие энергию потока во вращательное движение, передающееся на генератор, который производит электрический ток. С генератора производится заряд аккумуляторной батареи, которая, разряжаясь, через инвертор питает потребителей.

Примечательно, что все разнообразие конструкций и типов ветряков практически никак не сказывается на состоянии электроники — ее состав, начиная с генератора, одинаков для всех видов установок и различается только по мощности.

Все разнообразие конструкций относится лишь к вращающейся крыльчатке. Здесь имеются разные варианты конструкции:

  • горизонтальные
  • вертикальные

Наименования этих групп означают расположение оси вращения ротора. Горизонтальные конструкции несколько эффективнее, что стало причиной использования их в крупных ветротурбинах. Вертикальные устройства, в свою очередь, более приспособлены к обслуживанию небольших частных хозяйств, домов, линий освещения или водоснабжения.

Возросший интерес к ветроэнергетическим установкам послужил толчком к росту разработок различных вариантов конструкции ветряка. Основным направлением поисков конструкторов является оптимальный вариант крыльчатки, способный вращаться при слабом ветре. Это актуально для условий России, так как преобладающие ветра в нашей стране относятся к слабым и, в меньшей степени, средним.

Помимо роторных установок рассматриваются и другие конструкции. Например, голландские конструкторы разработали ветряк, работающий на каплях воды. Они переносят заряд с одного электрода на другой, повышая его потенциал. Разработка совершенно новая, никаких характеристик в свободном доступе пока не имеется, но интерес к такой конструкции весьма высок.

Как сделать ветряную электростанцию?

Создание ветряной электростанции является сложным и затратным процессом. Необходимо установить большое количество ветряков и объединить их в единую энергосистему с общей производительностью. Это требует больших усилий по техническому, юридическому и финансовому сопровождению проекта, понадобятся тщательные предварительные разведочные работы, отвечающие на все вопросы эксплуатационного характера:

  • преобладающая скорость ветра
  • климатические условия, возможность ураганных ветров
  • состав почв, стабильность, несущая способность
  • особенности рельефа местности

Эти показатели дают почву для расчетов эффективности и возможности строительства станции в данном регионе. Использование ветроэлектростанций не создает проблем для сельского хозяйства, площади сокращаются только на размеры основания несущих мачт. Работа установок имеет достаточно плавный характер и не вредит окружающим людям или животным. Для местностей, не имеющих других вариантов, ветроэнергетические установки являются оптимальным выходом из положения.

>Рекомендуемые товары

Применение энергии ветра: виды, история использования и современные способы производстваРейтинг 4.1 ✔ 13

Энергия ветра

Энергия ветра — это кинетическая энергия движущегося воздуха. Ветер, обладающий энергией, появляется из-за неравномерного нагрева атмосферы солнцем, неровностей поверхности земли и вращения Земли. Скорость ветра определяет количество кинетической энергии, которая может быть преобразована в механическую энергию или электроэнергию. Механическая энергия может использоваться, например, для помола зерна и перекачивания воды. Механическая энергия может также использоваться для работы турбин, которые производят электричество. Данная работа сосредоточена именно на ветровой электроэнергии, а не на других неэлектрических формах энергии ветра.

Существует два основных способа, с помощью которых энергия ветра может быть преобразована (как для механических, так и для электротехнических целей): использование либо силы «аэродинамического сопротивления», либо «подъема». Способ аэродинамического сопротивления означает простое размещение одной стороны поверхности против ветра, в то время, как другая сторона находится с подветренной стороны. Движение за счет аэродинамического сопротивления происходит в том же направлении, что и дует ветер. Способ подъема несколько изменяет направление ветра и создает силу, перпендикулярную направлению ветра. Способ аэродинамического сопротивления менее эффективен, чем способ подъема.

Концентрация энергии ветра колеблется в широких пределах от 10 Вт/м-2 (при легком ветерке 2,5 м/сек) и до 41000 Вт/м-2, во время урагана со скоростью ветра 40 метров в секунду (м/с) или 144 км/час. В общем, энергия ветра пропорциональна кубу скорости ветра. Это означает, что электрическая мощность чрезвычайно чувствительна к скорости ветра (при удвоении скорости ветра мощность увеличивается в восемь раз).

Глобальное распределение ветра

Карта на этой странице показывает глобальные ресурсы ветра. Видно, что регионы с высоким потенциалом (около 9 м/с) находятся в средних и высоких широтах (Антарктида, южная Латинская Америка, Гренландия, Северная и Западная Европа), а также в районе огромных равнин и пустынь центральной части Северной Америки, России, Центральной Азии и Северной Африки (примерно 6 м/с).

Скорость ветра необходимая для выработки электроэнергии должна быть, по крайней мере, 2,5–3 м/с и не более 10–15м/с. Многие районы Земли не пригодны для размещения ветровых установок, и почти такое же количество районов характеризуется средней скоростью ветра в диапазоне (3–4,5м/с), что может быть привлекательным вариантом для производства электроэнергии. Однако значительная часть поверхности Земли характеризуется среднегодовой скоростью ветра, превышающей 4,5 м/с, когда энергия ветра наверняка может быть экономически конкурентоспособной.

Оценка ветровых ресурсов конкретной территории является сложной задачей, которая требует многообъемлющих данных. В целом, доступность и надежность данных о скорости ветра крайне низка во многих регионах мира. В общих чертах, потенциал производства ветровой электроэнергии зависит от следующих четырех факторов:

  • широта и преобладающие режимы ветра
  • рельеф и высота
  • водоемы
  • растительность и застройка территории

Скорость ветра, преобладающую в регионе, можно определить исходя из глобальной модели (низко- и высокоширотные восточные, среднеширотные западные, и маловетреные тропические зоны конвергенции). Кроме того, в прибрежных районах часто наблюдаются морские и наземные бризы, а высотные районы могут усиливать воздушные возмущения, вызванные тепловыми циклонами.

Источник: Международное энергетическое агентство (МЭА, 2009)

На рисунке приведена карта ветровых ресурсов мира (высота — 80 м, разрешение — 15 км) с указанием установленной мощностью и данными о производстве ветровой электроэнергии ведущими странами мира

Глобальные тенденции

Энергия ветра, с ее зарождением в конце 1970-х гг., стала глобальной отраслью, в которой участвуют энергетические гиганты. В 2008 году новые инвестиции в ветроэнергетику достигли 51,8 млрд. долларов США (35,2 млрд. евро) (ЮНЕП, 2009).

Согласно статистическим данным, опубликованным Европейской Ассоциацией Ветровой Энергетики (EWEA, 2011), преуспевающие рынки существуют в местах с надлежащими условиями размещения. В 2008 году ветроэнергетические установки обеспечили производство около 20% всей электроэнергии Дании, более 11% в Португалии и Испании, 9% в Ирландии и почти 7% в Германии, более 4% всей электроэнергии Европейского союза (ЕС) и почти 2% в США (МЭА Энергия ветра, 2009).

SНачиная с 2000 года, совокупная установленная мощность выросла в среднем на 30% в год (см. рисунок). В 2008 году более 27 ГВт электрической мощности были установлены в более чем 50 странах, в результате чего глобальный наземный и морской потенциал достиг 121 ГВт. В 2008 году Мировой Совет Энергии Ветра подсчитал, что было выработано около 260 миллионов мегаватт часов (260 тераватт часов) электроэнергии.

Беларусь: ветровые ресурсы

«Генеральный план развития ветроэнергетики СССР до 2010 года» 1989 года включал карту ветров каждой республики. Ресурсный потенциал оценивался по скорости ветра на высоте 30 м. Согласно этой ветровой карте скорость ветра на высоте 30 м не достигала 5 м/с. Исходя из этих данных, потенциал ресурсов энергии ветра Беларуси невысок.

Однако, на высоте 80 м показатели ветровых ресурсов улучшаются. Так средняя скорость ветра в Дзержинском районе составляет 8,6 м/с. Большинство стран согласно нижеприведенной карте располагают скоростью ветра около 5 м/с на высоте 80 метров. По данным официальной статистики, потенциал производства электроэнергии Беларуси за счет энергии ветра составляет 6,5 млрд. кВт/ч (при потенциале установленной мощности около 1600 МВт). Наиболее перспективные участки для ветроустановок находятся в Минской области, в западной части страны, а также в городах Витебске и Полоцке, в южной части страны.

При планировании размещения ветроэнергетических установок, желательно иметь больше информации о скорости ветра, а не только национальную карту, так как особенности местности, такие как рельеф, высота, водоемы и растительность оказывают существенное влияние на ветровые ресурсы.

Состояние на данный момент

В настоящее время технически возможное использование ветрового потенциала не превышает 5% от теоретического потенциала. Пока в Беларуси существует четыре важные ветроэнергетические установки.

Ветряная электростанция Дружная, расположенная в западной части страны, имеет полную установленную мощность 0,85 МВт. Она состоит из установки NORDEX (250 кВт), построенной в 2000 году, и систем Repower и турбины Jacobs (600 кВт), построенных в 2002 году. Эти установки производят электроэнергию примерно 1,3–1,4 ГВтч/год, которая поставляется примерно 700 жителям.

В Кореличском регионе работает установка 3×77 кВт, а в Дзержинском районе построена ветротурбина мощностью 250 кВт. Ветряная электростанция, расположенная около Минска имеет мощность 1,08 МВт, и, по оценкам специалистов, ее годовое производство составляет 2 ГВтч электроэнергии. Расположенная в центральной части страны, эта электростанция в состоянии обеспечить электричеством 900 жителей.

Программой развития ВИЭ Беларуси предполагается строительство нескольких ветряных парков, но пока строительные работы практически не начинались. В программе говорится о 1840 объектах, с установленной мощностью 1600 МВт и годовым производством энергии 3,3 млрд. кВт/ч, в том числе в Гродненской области (1,5 МВт), в регионах Новогрудка (15,5 МВт), Лиозно (60 МВт), Ошмян (25 МВт), Дзержинска (60 МВт) и Сморгони (15 МВт).

На рисунке приведена карта ветрового потенциала Беларуси на высоте 80м.

Источник: Европейский банк реконструкции и развития (ЕБРР)

Технология ветротурбин

Возможность производства электроэнергии определяется конструкцией ветровых турбин. Все ветровые турбины состоят из лопастей, которые вращают ось, соединенную с генератором, который и производит электрический ток.

Ветровые турбины могут быть расположены практически везде, где есть ветер, например, на море, на суше и в застроенном месте.

Ветровые турбины имеют различные размеры и номинальную мощность. Самая большая турбина имеет лопасти с размахом большим, чем длина футбольного поля, высоту 20-этажного здания и производит электроэнергию достаточную для электроснабжения 1400 зданий. И, наоборот, ветровая турбина размером с небольшой дом имеет лопасти диаметром от 8 до 25 футов, высоту — свыше 30 футов, и может обеспечивать электроэнергией полностью электрифицированное здание или малое предприятие.

Размер и мощность ветровых турбин колеблется в широких пределах. Выделяются три основных типа ветровых турбин: с горизонтальной осью, с вертикальной осью и канальные.

Турбины с горизонтальной осью (Пропеллерные ветровые турбины)

Пропеллерные ветровые турбины (сокращенно ПВТ) в настоящее время доминируют. Этот вид похож на ветряную мельницу с лопастями в виде пропеллера, которые вращаются вокруг горизонтальной оси.

Пропеллерные ветровые турбины имеют основную ось ротора и электрический генератор в верхней части мачты. Ось ротора должна быть направлена в сторону ветра. Малые турбины ориентируются по ветру с помощью простых направляющих, установленных перпендикулярно лопастям ротора, в то время как в больших турбинах обычно используется датчик ветра, управляющий поворотным двигателем. Большинство крупных ветровых турбин имеют редуктор, который преобразует медленное вращение ротора в быстрое вращение генератора, что важно для выработки электроэнергии.

Лопасти ветряных турбин изготавливаются жесткими, для того чтобы предотвратить удар лопастей о мачту при сильном ветре. Кроме того, лопасти расположены на значительном расстоянии от мачты и иногда немного наклонены.

Так как за мачтой создается турбулентность, турбины, как правило, располагаются с той стороны, откуда дует ветер. В противном случае, турбулентность может привести к авариям из усталостных напряжений, что снижает надежность установки. Тем не менее, несмотря на проблемы турбулентности, построены установки с расположением турбины по направлению ветра, так как они не нуждаются в дополнительном механизме для их ориентации по ветру, и, во время сильного ветра, их лопасти могут сгибаться, что уменьшает зону скольжения и таким образом сопротивление ветру.

Ветровые турбины с вертикальной осью (Виндроторные ветровые турбины)

Виндроторные ветровые турбины (ВВТ) бывают разных типов, но все они имеют общую черту: основной вал ротора расположен вертикально (а не горизонтально).

Различные модели (см. ниже) разрабатываются специально для мест, где направление ветра очень изменчиво или беспокойно. ВВТ, как правило, считаются более легкими в установке и обслуживании, так как генератор и другие основные компоненты могут быть размещены близко к земле (нет необходимости в том, чтобы мачта держала компоненты турбины, а компоненты становятся более доступны).

ВВТ, как правило, менее эффективны, чем ПВТ, по следующим причинам:

  • Они часто создают сопротивление при вращении.
  • Часто установлены на более низкой высоте (земля или крыша здания), где скорость ветра меньше.
  • Наличие проблем, связанных с вибрацией, например, шум и более быстрый износ и разрыв опорной конструкции (так как воздушный поток имеет большую турбулентность на низкой высоте).

Таблица. ПВТ и ВВТ: преимущества и недостатки

ВВТ Дарье

Запатентованная французским авиационным инженером Жоржем Жан-Мари Дарье в 1931 году, ветряная турбина Дарье часто называется «венчиком для взбивания яиц» из-за ее внешнего вида. Она состоит из нескольких вертикально направленных лопастей, которые вращаются вокруг центральной оси.

Разница между ПВТ и ВВТ Дарье состоит в том, что ось пропеллерной турбины всегда сталкивается с ветром, а турбина Дарье представляет собой цилиндр перпендикулярный воздушному потоку. Таким образом, часть турбины работает, а другая часть просто крутиться по кругу.

Разница между ПВТ и ВВТ Дарье состоит в том, что ось пропеллерной турбины всегда сталкивается с ветром, а турбина Дарье представляет собой цилиндр перпендикулярный воздушному потоку. Таким образом, часть турбины работает, а другая часть просто крутиться по кругу.

Лопасти позволяют турбине достигать скоростей, которые выше, чем фактическая скорость ветра, что делает их подходящими для выработки электроэнергии, а не для откачки воды, например. Турбина Дарье может работать при скорости ветра до 220 км/ч и при любом его направлении.

Основной недостаток турбины Дарье — невозможность самостоятельного включения. Для пуска турбины требуется внешний привод (например, небольшой двигатель или набор маленьких турбин Савониуса). При достаточной скорости вращения, ветер создает достаточный крутящий момент, и ротор начинает вращаться вокруг оси с помощью ветра.

Тип турбины Дарье теоретически так же эффективен, как и пропеллерный тип, если скорость ветра постоянная, но на практике эта эффективность редко реализуется из-за возникающих физических напряжений, конструкционных особенностей и изменяемости скорости ветра.

Особым типом турбины Дарье является «Тип Н» (или «Gyromill»). Для получения энергии ветра он работает по тому же принципу, что и ветряная турбина Дарье, но вместо изогнутых лопастей применяются 2 или 3 прямые лопасти, индивидуально прикрепленные к вертикальной оси.

Три основных вида ВВТ Дарье (включая «Gyromill»)

ВВТ Савониуса

Турбина Савониуса является простым видом турбины, который был придуман в его современном виде финским инженером Сигурдом Джоханесом Савониусом в 1922 году. Она обычно применяется в случаях, требующих высокой надежности, а не высокой эффективности (например, в вентиляции, в анемометрах, во внутреннем микропроизводстве).

Турбины Савониуса гораздо менее эффективны, чем ПВТ и ВВТ Дарье (около 15%, см. ниже «Расчет энергии ветра»), но в отличие от первых, они хорошо работают при турбулентном ветре и, в отличие от последних, они самостоятельно включаются. В структурном плане они являются устойчивыми, могут хорошо противостоять сильным ветрам и остаются без повреждений и работают тише по сравнению с другими типами.

В отличие от турбины Дарье, которая работает под действием силы «подъема», турбина Савониуса работает за по принципу «аэродинамического сопротивления». Она состоит из 2–3 «ковшей»: изогнутые элементы испытывают меньшее сопротивление при движении против ветра, чем при движении по ветру из-за изогнутой формы ковшей. С точки зрения аэродинамики именно это дифференциальное сопротивление заставляет турбину Савониуса вращаться.

Таблица: Дарье или Савониус

Расчет энергии ветра

Мощность энергии ветра (P в ваттах) при известной скорости ветра рассчитывается по следующей формуле:

P = ½ x «плотность воздуха» x «площадь охвата» x («скорость ветра»)3

Над уровнем моря «плотность воздуха» составляет примерно 1,2 кг/м3, «скорость ветра» является скоростью ветра (м/сек) и «площадь охвата» относится к площади пространства, покрываемая ротором ветровой турбины. Она может быть рассчитана исходя из длины лопасти турбины:

A = π x («длина лопасти»)2

Однако, как только важные технические требования к ветровым турбинам принимаются во внимание (например, прочность и износостойкость, передаточное число редуктора, требования к подшипникам, генератору), предел количества энергии, которая может быть получено за счет энергии ветра уменьшается до 10–30% от фактической энергии ветра. Этот предел называется «коэффициент мощности», который является уникальным для каждого вида ветровой турбины. Для расчета количества извлекаемой энергии этот коэффициент мощности («Cp») должен быть введен в приведенную выше формулу:

P доступная = ½ x «плотность воздуха» x «площадь охвата» x («скорость ветра»)3x Cp

Коэффициент мощности Cp зависит от типа ветровой турбины, и изменяется от 0,05 до 0,45.

>
LiveInternetLiveInternet

Хит летнего сезона — ажурное разноцветное пончо, быстро вяжется толстым крючком. Горловина вывязывается спицами лицевыми петлями. Переход к горловине украшает декоративная обвязка.

ВАМ ПОТРЕБУЕТСЯ

Ажурный рисунок пончо

  • Пряжа: 1 — 150 г розового (а), 100 г бледно-розового (Ь), по 50 г цвета желтого (с) и оранжевого(d) цветов (88 % хлопок, 12 % elitе, 85 м/50 г);
  • 2 — 100 г светло-розового (е), по 50 г розового (f) и желто- оранжевого (g) цветов (100 % по­лиамид, 58 м/50 г)
  • Крючок № 8
  • Круговые спицы № 5

Виды петель и узоры: пряжа 1 — вя­зание спицами по кругу;

пряжа 2 -вязание крючком ажурным узором.

Размеры 42/50; длина 60 см без бахромы
ВЫПОЛНЕНИЕ РАБОТЫ

Набрать 110 в. п. нитью (Ь) (пряжа 1), сделать кольцо при помощи соед. ст.

Далее вязать так: 1-й круг: ст. б/н; 2-й круг: п/ст. с/н; 3-й круг (а): * 1 ст. б/н, 2 п. пропустить, 5 ст. с 2/н, из 1 п., 2 п. про­пустить * повт.; 4-й круг (Ь): * 1 ст. с/н, 4 в. п., 1 ст. б/н из середины 5-ти ст. с 2/н., 4 в. п. * повт.; 5-й круг (d): 1 ст. б/н в каждую арку из в. п., 3 в. п.; 6-й кр. (а): 1 ст. с/н в каждый ст. б/н пред. кр., 3 в. п.; 7-й кр. (с): * 5 ст. с/н в ст. пред. кр., 1 ст. б/н * повт.; 8-й кр.(а): ст. б/н; 9-й кр. (Ь): ст. б/н; 10-й кр. (d): ст. б/н; 11-й кр. (а): * 15 в. п., 1 соед. ст. в 4-ю в. п. из 15 в. п., 4 в. п. (= большая п.), 2 п. проп., 1 ст. б/н * повт.; 12-й кр. (с): * 1 ст. б/н в боль­шую п. пред. кр., 5 в. п. * повт.; 13-й кр. (Ь): * 1 ст. б/н в арку из в. п. пред. кр., 1 ст. б/н в ту же арку, 5 в. п. * повт.; 14-й кр. (Ь): 5 ст. с/н в каждую вторую арку из в. п.; 15-й кр. (а): * 5 ст. б/н (1 ст. б/н в 1 ст. пред. кр.), 1 длинный ст. б/н в пустую арку из в. п. предпоследнего кр. * повт.; 16-й кр.(d): ст. б/н; 17-й кр. (с): так же как 11 кр., но пропуская по 5 п.; 18-й кр. (а): * 1 ст. б/н в большую петлю пред. кр., 15 в. п., 1 соед. ст. в 4-ю п. из 15 в. п., 4 в. п.* повт.; 19-й кр.: * 3 ст. б/н в 4 в. п. пред. кр., 13 ст. б/н в большую п. и 3 ст. б/н. в 4 в. п. пред. кр. * повт.

В большие петли ввязать бахрому из пря­жи 2. Набрать петли по вырезу горловины на круговые спицы и прод. вязать так: 1 кр. пряжей 1 (d), 4 кр. пряжей 2 (f), 2 кр. пряжей 2 (е), 10 кр. пряжей 2 (f), равномерно снимая в 5-м и далее в каждом 2-м кр. по 7 п. (= 68 п).

Закрыть все петли и обвязать вырез горловины крючком «рачьим шагом» (это ст. б/н, выполненные слева направо). Переход рабо­ты от крючка к спицам декоративно обвязать пряжей 2 (g).

Теперь у Вас есть необыкновенное пончо, которое прикроет и от палящих лучей, если Вы уже начали перегреваться и защитит от внезапного порыва ветра и просто украсит Вас, сделает королевой пляжа!

Легко.

1. ТЭС. Тепловые Энерго(электро) Станции. Базируются на переработке(сжигании) твердых топливных носителей, таких, как например уголь.

Плюсы:

1. Большой объем выработки электроэнергии.

2. Наиболее просты в эксплуатации.

3. Сам принцип работы и постройка их очень просты.

4. Дешевы, легкодоступны.

5. Дают рабочие места.

Минусы:

1. Дают меньше электроэнергии, чем ГЭС и АЭС

2. Экологически опасны — загрязнение окружающей среды, парниковый эффект, требуют потребления невозобновляемых ресурсов(как уголь).

3. В силу своего примитивизма являются просто морально устаревшими.

ГЭС — Гидро Электро Станция. Базируются на использовании водных ресурсов, реки, приливно-отливные циклы.

Плюсы:

1. Относительно экологически безопасны.

2. Дают в разы больше электроэнергии, чем ТЭС.

3. Могут давать дополнительные подпроизведственные структуры.

4. Рабочие места.

5. Более просты в эксплуатации, чем АЭС. .

Минусы:

1. Опять же, экологическая безопасность относительна(взрыв плотины, загрязнение воды при отсутствии очистительного цикла, нарушение баланса).

2. Большие затраты на строительство.

3. Дают меньше энергии, чем АЭС.

АЭС — Атомные Электростанции. Самые совершенные на данный момент ЭС по уровню мощности. Используют урановые стержни изотопа урана -278 и энергию атомной реакции.

Плюсы:

1. Относительно малое потребление ресурсов. Самый главный — уран.

2. Мощнейшие по выработке электроэнергии ЭС. Одна ЭС может обеспечивать целые города и мегаполисы, ближлежащие районы, вообщем, охватывают огромные территории.

3. Более современны, чем ТЭС.

4. Дают большое количство рабочих место.

5. Открывают пути к созданию более совершенных ЭС.

Минусы:

1. Постоянное загрязнение окружающей среды. Смог, радиация.

2. Потребление редких ресурсов — уран.

3. Использование воды,загрязнение ее.

4. Вероятная угроза экологической суперкатастрофы. При потере контроля за ядерными реакциями, нарушениями цикла охлаждения(ярчайший пример обоих ошибок — Чернобыль; АЭС до сих пор закрыта саркофагом, самая страшная экологическая катастрофа в истории человечества) ,внешнем в воздействии(землетрясение, прмер — Фукусима), военной атаке или подрыве террористами — весьма вероятна(или — почти стопроцентна) экологическая катастрофа, а также весьма вероятна угроза взрыва АЭС, — это взрыв, ударная волна, и самое главное, радиоактивное заражение обширной территории, отзвуки такой катастрофы могут поразить весь мир. Потому АЭС является наравне с ОМП(Оружием Массового Поражения) одним из самых опасных достижений человечества, хотя АЭС — это Мирный атом. Впервые АЭС была создана в СССР.

Энергетику необходимо развивать отнюдь не только в направлении использования возонбновляемых ресурсов, а еще также развивать более совершенные типы ЭС, которые будут принципиально новыми по своей основе и типу работы. Гипотетически, в скором времени начнется освоения космоса, также проникновение в другие тайны микромира и вообще, физики могут дать поразительные результаты. Доведение до максимального совершенства АЭС — также перспективный путь развития энергетики.

На данном этапе конечно же, наиболее вероятным и реализуемым является вариант развития ветрогонных комплексов, солнечных батарей и ДОВЕДЕНИЕ до максимального совершенства ГЭС и АЭС.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *