Тяговая подстанция

Тяговые подстанции — энергия для разных видов транспорта

Тяговая подстанция представляет собой систему, призванную обеспечивать электроснабжение разным видам транспорта. Главная функция этого оборудования – преобразование энергии для подачи в контактную сеть с последующим питанием зависимой техники.

Тяговые комплексы работают по принципу понижения подведенного напряжения. С начальных 110-220 кВ подстанции спускают показатели до 25, 35, 10 или 50 кВ, необходимых для электроснабжения объекта. При этом ток иногда выпрямляется (у оборудования с постоянным током). Чтобы обеспечить полноценную мощность работы транспорта, может требоваться от одного до нескольких трансформаторов. Часто распределительные устройства совмещают снабжение дорожных линий и нетяговых районных потребителей.

Запитка такого рода оборудования имеет требования двух внешних сетей. Подключение к линиям может производиться раздельно или по одному каналу с использованием резервного выхода на другую подстанцию. Нередко два объекта соединяются на линии перемычками на кабеле.

Тяговая подстанция при конструировании подстраивается под технологические требования конкретного средства передвижения. Монтаж оборудования системы производится по всей протяженности следования транспорта с интервалами 10-50 км. Периодичность установки зависит от профиля, целей и размеров контролируемой техники.

Существует множество вариантов исполнения подстанций. Требования к той или иной разновидности определяют показатели: общая мощность, высшая и низшая точки напряжения, мощность короткого замыкания, величина сопротивления шин транспорта.

Разновидности

Все подстанции осуществляют преобразование и распределение энергии к электротранспорту.

Однако по некоторым признакам тяговые комплексы различаются.

По направлению использования оборудования тяговой подстанции проводится классификация на три вида:

  • железная дорога,
  • метрополитен,
  • электротранспорт наземного типа (троллейбусы, трамваи).

Исполнение оборудования, инструкции для каждого вида средства передвижения отличаются. В перечень различий входят не только цели, но и технологические требования, заземление, исходящая мощность, инструкции управления, конструкция и функции. Само строительство в процессе также не будет одинаковым. В каждом типе тяговых комплексов транспорта существует их внутренняя дифференциация.

Интересный видеоматериал на тему

Тяговые подстанции железной дороги

Предназначены для запитывания электроподвижных составов по номинальному напряжению 3300 В. Одновременно способны покрывать требования других потребляющих объектов на территории железной дороги.

Классификация

Электроснабжение на комплексах ржд от внешней сети определяет разделение на три категории:

  • Опорные

Или узловые. Требования питания — три и более ЛЭП напряжением 110 кВ или 220 кВ. Мощность позволяет им выступать материнской точкой электричества для других систем и оборудования.

  • Тупиковые

Или концевые. Снабжаются двумя радиальными линиями передачи от подстанции, находящейся в недалекой доступности.

  • Промежуточные

Берут энергию от пары соседних установок с помощью вводов. Подразделяются на транзитные (с включением через рассечку кабеля) и отпаечные (подключаемые к ответвлениям линии).

По тяговой системе электричества подстанции РЖД делят на:

  • тока постоянного (3,3 кВ)

Запитывание подводится напрямую через кабели или воздушные линии (110-220 кВ) либо посредством трансформатора (до 110 кВ).

  • тока переменного (25 или 2 по 25 кВ)

Не используют преобразующий узел, следовательно, не способны выпрямлять синусоидные характеристики.

  • стыковые (используют оба типа тока, соответствующее заземление).

По виду преобразователя тяговая подстанция ржд может быть:

  • выпрямительная

Обеспечивают требования стационарных подстанций, стоящих на определенных точках магистрали.

  • выпрямительно-инверторная

Чаще всего используется в передвижных составах для рекуперации в независимую энергию торможения у электровозов.

Способ трансформации может быть одноступенчатым (6, 10, 35 кВ) или двухступенчатым (110, 220 кВ).

По способу обслуживания тяговые устройства ржд могут нуждаться в контролирующем персонале постоянно, подразумевать слежение из удаленных пунктов с вынужденным вмешательством или исключить требования участия человека вовсе.

Тяговая подстанция ржд снабжается 2-6 вводами токами, устройствами распределения высокого и низкого напряжения, преобразовательным компонентом и фидерами.

Инструкция обуславливает, что РУ ВН необходимо для питания тягового агрегата железной дороги, трансформатора. РУ НН требуется для работы с нетяговыми потребителями.

Преобразовательные элементы выпрямляют ток, возвращают электричество рекуперации на самостоятельное торможение.

Фидеры помогают усилить заземление и присоединить в РУ не только тяговую подстанцию, но и прочие внешние потребители энергии, расположенные в районе железной дороги.

Посмотрите видео на данную тему

Схемы питания

Технологические требования определяют, что максимальный промежуток между пунктами подстанций не должен превышать 15 км при постоянном и 50 км при переменном токе (зависит от объема движения участка). При этом заземление может происходить по одноцепной или двухцепной инструкции.

Одноцепные — не более 3 транзитных пунктов между опорными точками.

Двухцепные — не больше 5 транзитных (MAX 2) и отпаечных (MAX 3) подстанций при 110-220 кВ общей и раздельной опоры постоянного тока; не более 3 транзитных (MAX 2) и 1 отпаечной подстанции при 110 кВ раздельной опоры тока переменного типа.

Пример одноцепной ЛЭП:

Пример двухцепной ЛЭП:

Где, 1- нейтральная вставка; 2-продольная ЛЭП; 3- состав электротяги; 4- цепь (рельсы) возвратного тока; 5 и 6-опорная тяговая и промежуточная подстанция соответственно.

Наземного транспорта

Тяговая подстанция наземного транспорта поддерживает электроснабжение пассажирского транспорта троллейбусного и трамвайного типа. Номинальным напряжением токоприемника таких средств передвижения принята величина в 550 В. Троллейбусы и трамваи используют постоянный ток, который преобразуется из трехфазной переменой энергии 6 или 10 кВ. Обеспечение происходит с помощью ЛЭП воздушного и кабельного видов через специальное или естественное заземление.

По образу обслуживания:

  • автоматизированные

Инструкции таких систем исключают человеческое вмешательство в основной процесс. Аварийные, установочные и ремонтные работы проводит электромонтер. В остальном требуется только наблюдение. Используются редко ввиду ненадежности, в основном на низкоинтенсивных и малозначимых линиях. Кроме того, реконструкция тяговой подстанции с автоматизированным управлением бывает осложнена поиском уязвимого места.

  • с обслуживающим персоналом

В данном случае требуется не только электромонтер тяговой подстанции для периодического участия, но и персонал для постоянного контроля. Автоматические программы встраиваются частично под определенные функции. Такой выбор конструкции обусловлен нерациональностью использования иных систем в условиях небольших городов. Также данный вариант иногда выбирается как более надежный для больших управляющих подстанций.

  • телеуправляемые

Очень крупные системы электротранспорта зачастую управляются дистанционно. Инструкции управления строятся таким образом, что сигналы на подстанции подаются из районных подразделений. Непосредственно на точках персонал не присутствует. Электромонтер тяговой подстанции проводит только установку и ремонты компонентов линии.

По структуре выделяется две группы оборудования:

  • одноагрегатные

Применимы в условиях, когда централизованное энергоснабжение невозможно или не требуется. Не способны гарантировать надежную мощность, обесточивают всю сеть при выходе из строя. Часто включаются в технологические карты в вылетных местах линий, но строительство не использует их для больших форматов ЛЭП. Электромонтер тяговой подстанции требуется постоянно для наблюдения и ремонта.

  • многоагрегатные

Встречаются варианты с разным количеством оборудования от 2 до 4 и более. Работа такой подстанции бесперебойна, поскольку при выключении одного компонента подключается другой. Тем же самым достигается гибкая мощность в перегруженные, скачковые моменты. Затраты на строительство с обслуживанием гораздо ниже однокомпонентных комплексов, хотя заземление сложнее.

По расположению:

  • наземные (открытые или закрытые),
  • подземные.

Тяговые объекты трамваев, троллейбусов имеют ввод через коммутатор. Карты включают разъединители линий и шин, выключатель высокого вольтажа. Большинство подстанций снабжено двумя точками такого типа (основной и резервной). Переход между ними осуществляется автоматикой. Количество вводов может быть увеличено до трех.

После коммутатора следует распределительные агрегаты ВН и постоянного тока. Технологические карты разрабатываются по разным вариантам с одной или двумя (отрицательной и положительной) секциями шин. Возможно их раздельное подключение или одновременное функционирование. Надежными считаются карты с 2 и более секциями. Они не требуют отключения всей подстанции для ремонта одной части.

Следующим подключается преобразовательный агрегат из трансформатора и определителя. Количество этих элементов решает мощность структуры. Вторичная обмотка дает шестифазное напряжение. Большие объекты часто снабжаются дополнительной шиной, чтобы электромонтер тяговой подстанции мог проводить ремонт быстрее и легче.

Заземление главной шины подстанции для троллейбусов проводится через балласт сопротивления. Аналогичное заземление для трамваев не требуется, поскольку там эта операция проходит естественным путем посредством рельсов.

Фидерами тяговых комплексов наземного транспорта выступают надземные и подземные кабели, а также воздушные линии. Количество колеблется от 1-2 при децентрализованном снабжении до 10 для централизованной карты. Фидеры способны занимать функционирующее и резервное положения, что удобно для обслуживания без длительной остановки линейной запитки.

Принципиальная схема снабжения наземного электротранспорта строится по следующему принципу. Электростанция (1) подает ток переменного вида. Подстанция трансформатором (2) повышает напряжение энергии до оптимального уровня, передает на удаленные расстояния по ЛЭП (3). Рядом с точкой потребления напряжение падает от действий следующей трансформаторной подстанции (4). Затем по воздушным линиям или кабелям (5) энергия переходит на следующую тяговую станцию (6). По дальнейшим ЛЭП (7) ток переходит в контакты (8) и рельсы(10), питает движущий состав (9). Рельсовая сеть при этом выходит на отсасывающую линии (11). У троллейбусов вместо рельсов через заземление применяется второй контактный провод.

Метрополитена

Подстанция метрополитена преобразует ток из переменного в постоянный аналогично комплексу поверхностного транспорта, но имеет характерные отличия.

По назначению:

  • тяговые

Ток на преобразование поставляет городское электроснабжение. Номинальный показатель напряжения равен 825 В. Энергия идет к тяговому составу метрополитена.

  • понизительные

Ток поступает от тяговой точки, трансформируется напряжением до 220, 133 и 400 В. Энергия применяется для подпитки осветительных, СЦБ, силовых устройств метрополитена. Располагаются у станций, возле эскалаторов с машинными залами, в перегонах или при депо.

  • совмещенные (тяговопонизительные)

Объединяет обе карты в одну по структуре и функциям. Наиболее выгодно в применении на практике.

По расположению:

  • подземные,
  • наземные.

Основными составными частями тяговых систем метрополитена являются РУ собственных нужд, переработки тока 6-10 кВ и 825 В, аккумуляторы, блоки, отвечающее за заземление, преобразование, понижение мощности электричества.

В технологические карты наземных подстанций метрополитена включаются системы шин одинарного строения. По инструкции, нормальное состояние секционного переключателя в режиме «включено». Запитывание проходит по двум ЛЭП от единственного источника электричества. Вводы есть у обеих секций, работают параллельно. Резервом выступает перемычка кабеля, связывающая шину с соседней тяговой точкой. Элементы оборудования размещается двухэтажно: внизу трансформаторы, теле- и автоуправление, вверху – щиты нужд, батареи, вентиляция, выпрямители, подстанции метрополитена. Сигнализации, шкафы управления в типовые технологические карты подключаются к фасадным частям устройств. Кабельные протяжки, согласно инструкции безопасности, относятся в подвальные помещения.

Подземные комплексы питают дороги метрополитена от 1 источника по 2 параллельным ЛЭП. Защита линий максимально выправлена, выключатели секций шин снабжены выпрямителями из кремния. Одна из секций, в строгом соответствии инструкции, подчиняется другой энергосистеме по смежной перемычке. В структуре карты присутствуют автоблокирующие устройства, трансформаторы освещения, силовых и централизованных приборов.

При мелком заложении инструкции обязывают проводить строительство по прямоугольному поперечному сечению. Глубокое заложение переводит строительство в формат круглого сечения с отделкой бетоном, металлическим тюбингом или чугуном. Вход в подстанцию – со станции через специальную дверь. Вентиляция замкнутая.

В заключении еще один материал про схемы питания

Типовая схема размещения тяговых подстанций на линии метрополитена

СТП — совмещённая тягово-понизительная подстанция,

КП — связующая перемычка кабеля

Инструкции эксплуатации тяговых подстанций в метро обязывают рассчитывать мощность так, чтобы всегда оставался резерв питания. Для этого используются двойные линии с кабельными перемычками. Одна ЛЭП питает подстанцию, вторая связана с другим источником и включается по необходимости. Требования дополнительных трат электричества на освещение, эскалаторы, работу водоотливов, вентиляции и прочих систем обуславливают установку 3 и более подстанций по протяженности дороги и вестибюлей. Перемычки позволяют распределять мощность рационально, выравнивать разницу напряжения, избегать перебоев.

.. 1 2 3 4 5 6 7 8 9 10 ..

Особенности работы тяговых сетей трамваев и троллейбусов
Работа Тяговых сетей отличается от работы других систем Электроснабжения рядом существенных особенностей. Для трамвая и троллейбуса в соответствии с ГОСТ 6962—75 установлено номинальное напряжение 600 В с допустимыми отклонениями на токоприемнике электроподвижного состава в наибольших значениях до 700 В и наименьших 400 В. Тяговые нагрузки постоянно изменяются в очень широких пределах по времени и месту приложения на контактной сети. Во время торможения тяговые двигатели подвижного состава могут быть переведены в генераторный режим и отдавать электрическую энергию в тяговую сеть, осуществляя рекуперацию.
Контактная сеть, являясь наиболее ответственным элементом системы электроснабжения, по своему устройству не имеет резерва в виде дублирующих устройств, а обслуживание ее затруднено потоками транспорта и пешеходов, особенно в условиях интенсивного движения. Поэтому к устройству контактной сети нужно подходить очень внимательно, а монтаж и ремонтные работы выполнять очень тщательно, имея в виду, что повреждение какого-нибудь ее элемента может вывести из работы большой участок сети и дезорганизовать движение не только трамвая или троллейбуса, но и другого транспорта.
Отличительной особенностью работы рельсовой сети является малая изоляция рельсов от земли. Земля — хороший проводник электрического тока, поэтому часть тока, возвращающаяся на под-станцию, ответвляется в землю и проходит как по земле, так и по подземным металлическим сооружениям (трубам? каркасам подземных сооружений, броне и оболочкам кабелей и др). Токи утечки из рельс в землю называются блуждающими токами (рис. 3).
В местах выхода блуждающих токов с поверхности металлических сооружений происходит электрохимический процесс, сопровождающийся коррозией (разрушением) металла подземных сооружений. Роль электролита в этом процессе играют растворы солей, кислот и щелочей, имеющиеся в почве. Интенсивность, электрокоррозии зависит от значения величины блуждающих токов и времени их действия.

Рис. 3. Схема протекания блуждающих токов:
1— подстанция; 2— контактный провод; 3— подвижной состав; 4- рельсы; 5— грунт; 6— подземное сооружение; 7— отрицательная питающая линия; 8— положительная питающая линия

Подсчитано, что ток, равный 1 А, в течение года может при определенных условиях разрушить до 34 кг свинца или более 9 кг стали. Чтобы снизить, вредное действие блуждающих токов до безопасных значений, принимают ряд мер по их ограничению и проникновению в подземные металлические сооружения. Главными мерами являются: уменьшение продольного сопротивления рельсов посредством сварки стыков и соединения медными проводами отдельных звеньев и всех ниток рельсов для параллельной работы, увеличение переходного сопротивления между рельсами и землей благодаря улучшению изоляции основания, применение хорошего водоотвода, уменьшение разности потенциалов между пунктами присоединения к рельсам кабелей питающих линий.
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Что такое система электроснабжения и из каких элементов она состоит?
2. Из каких элементов состоит тяговая сеть и контактная сеть?
3. Что такое внешнее электроснабжение?
4. Что определяют понятия надежность ремонтолригодность, нормальный, вынужденный и аварийный режимы?
5. В чем заключаются особенности работы тяговой и контактной сети?

Дежурный электромеханик должен хорошо знать схемы всех присоединений подстанции, условия работы, назначение и уставки защит всего оборудования, схемы авто­матики, расположение, назначение и действие сигнальной аппаратуры, блокировок, допус­тимые нагрузки и т. д. Он также должен хорошо знать внешние признаки, предшествующие возможным повреждениям и уметь устранять простейшие неполадки. При обслуживании подстанции оперативно-ремонтным персоналом электромеханики могут принимать непос­редственное участие в производстве ремонтных работ.

Электромонтеры тяговых подстанций, как правило, имеют 4-й или 5-й разряд и, соответственно, IV или V квалификационную группу по технике безопасности. Они дол­жны уметь выполнять все электромонтажные и требующиеся слесарные работы, а также знать оборудование, правила производства переключений и при необходимости выполнять обязанности дежурного персонала. Электромонтеры пятого и шестого разрядов могут ру­ководить ремонтной бригадой и при необходимости выполнять обязанности электромеха­ника по ремонту.

При «кустовом» методе обслуживания тяговых подстанций обслуживающий персо­нал базовой подстанции должен еще знать и схемы всех обслуживаемых бригадой под­станций, входящих в «куст».

Материально-техническая база тяговой подстанции состоит из оборудования распределительных устройств: ОРУ-220; 110; 35 кВ; ЗРУ-10 кВ, а также ЗРУ-3,3 кВ (на тяговых подстанциях постоянного тока) или РУ-27,5 кВ переменного тока.

В ЗРУ-10 кВ установлено оборудование для электроснабжения в основном нетяго­вых потребителей: маломасляные или вакуумные выключатели, разъединители, приборы контроля и учета, релейная защита фидеров.

ЗРУ-3,3 кВ представляет собой ряд ячеек с находящимися в них быстродействующи­ми выключателями, разъединителями и шинами постоянного тока, сглаживающими уст­ройствами.

В РУ-27,5 кВ используются масляные и вакуумные выключатели.

Сердцем подстанции называют аккумуляторную батарею. Здесь устанавливаются обычно 50—100 аккумуляторов в зависимости от величины напряжения оперативного тока. Отсюда питаются цепи управления релейной защиты и катушки управления выключате­лей. Помещение аккумуляторной имеет приточно-вытяжную вентиляцию. Большинство аккумуляторов работает в режиме постоянного подзаряда, поэтому главный щит под­станции должен быть укомплектован зарядно-подзарядным устройством.

От шин 10 кВ тяговой подстанции питаются высоковольтные линии СЦБ с резерв­ным питанием от дизель-генераторной установки, которая также располагается на тяго­вой подстанции. Панели управления тяговой подстанцией занимают достаточно большое помещение, где расположены ключи дистанционного управления коммутационными ап­паратами. Кроме того, на пульте имеется сигнализация положения основных коммутиру­ющих аппаратов, приборы контроля и учета электроэнергии, аппаратуры релейной защи­ты вводов, силовых трансформаторов, трансформаторов собственных нужд, стойки те­леуправления и телесигнализации. Оперативная связь с энергодиспетчером осуществля­ется по телефону, селектору.

Планирование и организацию работ персонала тяговой подстанции определяет годовой план проведения ППР с разбивкой по месяцам. В нем указываются все работы, проводимые оперативным персоналом, по которым начальник подстанции отчи­тывается ежемесячно.

Область применения

Тяговая подстанция имеет ряд особенностей. На ее устройство влияет область эксплуатации и назначение. Тяговые подстанции трамвая и троллейбуса, поездов метро и РЖД могут значительно отличаться.

Для электрифицированных железных дорог характерна установка ТП через каждые 25-50 км. Проектирование сети выполняется в соответствии с рядом требований. Технологические карты расстановки зависят от профиля железной дороги, ее размеров и особенностей транспорта.

По факторам назначения оборудование тяговых подстанций относят к одной из трех групп. К первой категории относятся тяговые подстанции метрополитена. Во вторую группу входит оборудование для железной дороги. К третьей категории относятся установки для наземного городского транспорта.

Существуют тяговые подстанции постоянного и переменного тока. Каждая группа имеет свои особые технические характеристики. Подстанции постоянного тока рассчитаны на нагрузку 6-220 кВ. Электрические коммуникации подводятся к ним по воздуху или при помощи кабеля.

Если транспорт работает от напряжения менее 110 кВ, в конструкции предусматривается понижающая аппаратура. Поступая в прибор, ток сначала уменьшается, а затем выпрямляется и поступает в коммуникационные сети. Проектирование тяговых подстанций переменного тока выполняется без участия преобразующего узла. В этом случае конструкция будет проще.

Чтобы иметь возможность выпрямлять напряжение в сети в параллельных подстанциях при подсоединении одной и той же фазы применяются специальные схемы. Они позволяют симметрировать присоединение трансформаторов. Самой известной из них является схема двойного винта. Ее применение позволяет равномернее загружать фазы, избегая потерь напряжения потребителей.

Встречаются передвижные и стационарные подстанции. Чаще применяется второй вариант. Передвижные устройства играют роль аккумуляторных батарей. Их проектирование обладает определенными сложностями. Поэтому их применяют достаточно редко.

Структура

Описание типовых схем представленных аппаратов достаточно сложное. Однако можно выделить общие черты. Подключение в системе производится в соответствии с особенностями транспорта, для которого применяется агрегат.

Распределитель состоит из трех блоков. В первом находится устройство, принимающее высокое напряжение, во втором отсеке – трансформатор, а в третьем – выход для электроэнергии с заданными характеристиками. Предусмотрен всего один выключатель. На вводе присутствует разъединитель.

Соединение первичных обмоток выполняется по схеме звезда. Нулевая фаза обязательно заземляется. Вторичные обмотки соединяются в виде треугольника. Одну из фаз заземляют и подводят к рельсу. В метрополитене для этого предусмотрено наличие особого контактора. Этот рельс предназначен исключительно для снятия напряжения электровозом.

Другие фазы подают ток в два воздушных кабеля. Их иногда применяют для снабжения электроэнергией других потребителей, но в основном по воздушным проводам тяговые подстанции обеспечивают питание троллейбусов. Для трамвая этот процесс предполагает задействовать один воздушный провод и один наземный рельс. В большинстве стран мира напряжение для такой сети составляет 550 В.

Питание подстанции

Тяговая подстанция должна обеспечивать бесперебойную подачу электричества для передвижения транспорта. Поэтому многие из подобных агрегатов запитываются сразу от двух автономных сетей. При этом может применяться однолинейная схема тяговой подстанции или при помощи двух резервных линий к другому источнику питания. Также возможен вариант запитки перемычками между отдельными подстанциями.

Если применяется вариант из двух отдельных линий, каждая из них должна быть рассчитана на максимальную нагрузку агрегата. Резервные коммуникации должны выдерживать общую нагрузку соединенных станций.

Раньше для запитки сетей метрополитена применяли радиальную схему. Она сложна и затратна. При ее применении требуется слишком много кабеля. От нее отказались. Сегодня применяются только приведенные выше схемы. Линии и перемычки позволяют объединять аппаратуру в отдельные группы. Если внутри нее вышел из строя один прибор, его функции берут на себя другие агрегаты.

Также при выполнении мероприятий по текущему обслуживанию агрегатов проведение всех операций будет проще, не вызывая остановки системы. В этом случае существует возможность обесточить только один агрегат. Другие устройства при этом будут обеспечивать работу линии. Такой подход к текущему ремонту значительно упрощает работу персонала, делая обслуживание менее затратным.

Количество агрегатов

На узлах подачи электроэнергии наземному и подземному транспорту применяются установки с различным количеством аппаратов. Встречаются как одноагрегатные, так и многоагрегатные сооружения. Первая разновидность применяется на ответвлениях, где не нужно обеспечивать централизованного снабжения. Обоснование их применения сомнительно, так как они не обеспечивают высокую надежность питания. Если агрегат выйдет из строя или потребуется произвести его техобслуживание, будет обесточена вся линия. Поэтому такие установки применяют достаточно редко.

Гораздо чаще можно встретить двухагрегатные питающие установки. Существуют подстанции с тремя, четырьмя трансформаторами. Это значительно повышает надежность линии. Они обеспечивают бесперебойную подачу тока даже при выходе из строя или обслуживании одного агрегата.

В моменты повышения нагрузки до максимума многоаппаратные схемы отличаются высокой гибкостью. Такой подход позволяет удешевить строительство и эксплуатацию оборудования.

Рассмотрев особенности и разновидности тяговых подстанций, можно оценить важность их правильного выбора и эксплуатации в сетях городского и государственного транспорта.

Структурная схема тяговой подстанции постоянного тока

Тяговая подстанция получает питание по двум вводам (рис. 1.2), если она транзитная, тупиковая или на отпайках, и через РУ пита­ющего напряжения оно подается на первичные обмотки главных понижающих трансформаторов ГПТ-1 и ГПТ-2, которые понижа­ют напряжение до 10 кВ и подают энергию в РУ-10 кВ, со сборных шин которого запитываются преобразовательные агрегаты ПА-1 и ПА-2 (блок из тягового трансформатора и выпрямителя), транс­форматоры собственных нужд ТСН-1 и ТСН-2 и нетяговые потре­бители 10 кВ (количество питающих линий определяется числом потребителей и их категорией).

От РУ-3,3 кВ осуществляется электроснабжение участка железной дороги по фидерам контактной сети, количество которых определяется схемой питания и секционирования контактной сети (в проектах задается).

Рис. 1.2. Структурная схема тяговой подстанции постоянного тока.

Питание нетяговых потребителей напряжением 35 кВ осуществляется от сборных тин РУ-35 кВ, получающих питание от третьей обмотки ГПТ-1 и ГПТ-2. Если нетяговые потребители 35 кВ отсутствуют, то главные понижающие трансформаторы выполняются двухобмоточными.

Если подстанция постоянного тока получает питание от ЛЭП-35 кВ, тог да тяговые трансформаторы преобразовательных агрегатов ПА-1 и ПА-2 подключаются непосредственно к РУ-35 кВ (рис.1.3). Для пи­тания негяговых потребителей 10 кВ предусматривается РУ-10 кВ, по­пучающее питание от двух трансформаторов Т1 и Т2, первичные обмотки которых подключены к двум секциям сборных шин РУ-35 кВ. В РУ-10 кВ предусмотрена установка двух трансформаторов собственных нужд (ТСН-1 и ТСН-2). Если на таких подстанциях отсутствует РУ-10 кВ, то трансформаторы собственных нужд подклю­чаются к сборным шинам РУ-35 кВ.

Рис. 1.3. Структурная схема тяговой подстанции

постоянного тока 35/10/3,3 кВ

1.1.3. Структурная схема трансформаторной подстанции

Трансформаторная подстанция предназначена для преобразо­вания электрической энергии высокого напряжения в энергию низ­кого напряжения и ее распределения по потребителям. Для про­мышленного и железнодорожного электроснабжения применяют понижающие подстанции с двумя трансформаторами и РУ соот­ветствующих уровней напряжения (рис. 1.4).

Трансформаторные подстанции такого типа получают питание или от ЛЭП и так же, как и тяговые, бывают опорные, транзитные, на от­пайках и тупиковые, или от шин вторичного напряжения других под­станций по двум вводам.

От шин низшего напряжения (одного или двух уровней) получают питание потребители. Количество питающих линий определяется ка­тегорией потребителей.

Трансформаторы собственных нужд обычно подключают к РУ-10 (6) кВ, если такое имеется на подстанции, В случае одного уровня вто­ричного напряжения на подстанции устанавливаются двухобмоточные трансформаторы.

Рис. 1.4. Структурная схема трансформаторной

подстанции высокого напряжения

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *