Цепь с конденсатором

Конденсаторы в сети переменного тока

Что такое переменный ток

Если рассматривать постоянный ток, то он не всегда может быть идеально постоянным: напряжение на выходе источника может зависеть от нагрузки или от степени разряда аккумулятора или гальванической батареи. Даже при постоянном стабилизированном напряжении ток во внешней цепи зависит от нагрузки, что и подтверждает закон Ома. Получается, что это тоже не совсем постоянный ток, но переменным такой ток назвать тоже нельзя, поскольку направления он не меняет.

Переменным обычно называют напряжение или ток, направление и величина которого меняются не под действием внешних факторов, например нагрузки, а вполне «самостоятельно»: именно таким его вырабатывает генератор. К тому же, эти изменения должны быть периодическими, т.е. повторяющимися через определенный промежуток времени, называемый периодом.

Если же напряжение или ток меняется как попало, не заботясь о периодичности и иной закономерности, такой сигнал называется шумом. Классический пример — «снег» на экране телевизора при слабом эфирном сигнале. Примеры некоторых периодических электрических сигналов показаны на рисунке 1.

Для постоянного тока имеется всего две характеристики: это полярность и напряжение источника. В случае с переменным током этих двух величин явно недостаточно, поэтому появляются еще несколько параметров: амплитуда, частота, период, фаза, мгновенное и действующее значение.

Рисунок 1. Примеры некоторых периодических электрических сигналов

Наиболее часто в технике приходится сталкиваться с колебаниями синусоидальной формы, причем, не только в электротехнике. Представьте себе автомобильное колесо. При равномерном движении по хорошей ровной дороге центр колеса описывает прямую, параллельную дорожному покрытию. В то же время, любая точка на периферии колеса перемещается по синусоиде относительно только что упомянутой прямой.

Сказанное может подтвердить рисунок 2, на котором показан графический метод построения синусоиды: кто хорошо учил черчение, тот прекрасно представляет, как выполняются подобные построения.

Рисунок 2. Графический метод построения синусоиды

Из школьного курса физики известно, что синусоида является наиболее распространенной и пригодной для изучения периодической кривой. В точности также синусоидальные колебания получаются в генераторах переменного тока, что обусловлено их механическим устройством.

На рисунке 3 показан график синусоидального тока.

Рисунок 3. График синусоидального тока

Нетрудно заметить, что величина тока изменяется по времени, поэтому ось ординат обозначена на рисунке как i(t), — функция тока от времени. Полный период тока обозначен сплошной линией и имеет период T. Если начать рассмотрение от начала координат, то видно, что сначала ток увеличивается, доходит до Imax, переходит через нуль, уменьшается до –Imax, после чего увеличивается и доходит до нуля. Далее начинается следующий период, что показано пунктирной линией.

В виде математической формулы поведение тока записывается так: i(t)= Imax*sin(ω*t±φ).

Здесь i(t) — мгновенное значение тока, зависящее от времени, Imax -амплитудное значение (максимальное отклонение от состояния равновесия), ω — круговая частота (2*π*f), φ — фазовый угол.

Круговая частота ω измеряется в радианах в секунду, фазовый угол φ – в радианах или градусах. Последний имеет смысл лишь в том случае, когда имеется два синусоидальных тока. Например, в цепях с конденсатором ток опережает напряжение на 90˚ или ровно на четверть периода, что и показано на рисунке 4. Если синусоидальный ток один, то можно двигать его по оси ординат как угодно, и от этого ничего не изменится.

Рисунок 4. В цепях с конденсатором ток опережает напряжение на четверть периода

Физический смысл круговой частоты ω в том, какой угол в радианах «пробежит» синусоида за одну секунду.

Период – T время, за которое синусоида совершит одно полное колебание. То же относится и к колебаниям другой формы, например, прямоугольным или треугольным. Период измеряется в секундах или более мелких единицах: миллисекундах, микросекундах или наносекундах.

Еще один параметр любого периодического сигнала, в том числе и синусоиды это частота, сколько колебаний проделает сигнал за 1 секунду. Единицей измерения частоты является герц (Гц), названный по имени ученого XIX века Генриха Герца. Итак, частота 1Гц это есть ни что иное, как одно колебание/секунду. Например, частота осветительной сети 50Гц, то есть за секунду проходит ровно 50 периодов синусоиды.

Если известен период тока (можно измерить осциллографом), то частоту сигнала поможет узнать формула: f=1/T. При этом, если время выражено в секундах, то результат получится в Герцах. И наоборот, T=1/f, частота в Гц, время получается в секундах. Например, при частоте 50 герц период получится 1/50=0,02сек, или 20 миллисекунд. В электричестве чаще применяются более высокие частоты: КГц – килогерцы, МГц – мегагерцы (тысячи и миллионы колебаний в секунду) и т.д.

Все сказанное для тока справедливо и для переменного напряжения: достаточно на рис 6 просто поменять букву I на U. Формула будет выглядеть вот так: u(t)=Umax*sin(ω*t±φ).

Этих разъяснений вполне достаточно для того, чтобы вернуться к опытам с конденсаторами и объяснить их физический смысл.

Конденсатор проводит переменный ток, что было показано в схеме на рисунке 3 (см. статью — Конденсаторы для электроустановок переменного тока). Яркость свечения лампы увеличивается при подключении дополнительного конденсатора. При параллельном включении конденсаторов их емкости просто складываются, поэтому можно предположить, что емкостное сопротивление Xc зависит от емкости. Кроме того оно зависит еще от частоты тока, и поэтому формула выглядит так: Xc=1/2*π*f*C.

Из формулы следует, что с увеличением емкости конденсатора и частоты переменного напряжения реактивное сопротивление Xc уменьшается. Эти зависимости показаны на рисунке 5.

Рисунок 5. Зависимость реактивного сопротивления конденсатора от емкости

Если подставить в формулу частоту в Герцах, а емкость в Фарадах, то результат получится в Омах.

Будет ли греться конденсатор?

Теперь вспомним опыт с конденсатором и электросчетчиком, почему он не крутится? Дело в том, что счетчик считает активную энергию, когда потребителем является чисто активная нагрузка, например, лампы накаливания, электрочайник или электроплита. У таких потребителей напряжение и ток совпадают по фазе, имеют один знак: если перемножить два отрицательных числа (напряжение и ток во время отрицательного полупериода) результат по законам математики все равно положительный. Поэтому мощность таких потребителей всегда положительна, т.е. уходит в нагрузку и выделяется в виде тепла, как показано на рисунке 6 пунктирной линией.

Рисунок 6.

В случае, когда в цепь переменного тока включен конденсатор ток и напряжение по фазе не совпадают: ток опережает по фазе напряжение на 90˚, что приводит к тому, что получается сочетание, когда ток и напряжение имеют разные знаки.

Рисунок 7.

В эти моменты мощность получается отрицательной. Другими словами, когда мощность положительная, конденсатор заряжается, а когда отрицательная — запасенная энергия отдается обратно в источник. Поэтому в среднем получается по нулям и считать тут просто нечего.

Конденсатор, если конечно он исправный, не будет даже нисколько нагреваться. Поэтому, часто конденсатор называют безваттным сопротивлением, что позволяет применять его в бестрансформаторных маломощных блоках питания. Хотя такие блоки не рекомендуется использовать ввиду их опасности, все-таки иногда это делать приходится.

Перед тем, как устанавливать в такой блок гасящий конденсатор, его следует проверить простым включением в сеть: если за полчаса конденсатор не нагрелся, то его смело можно включать в схему. В противном случае его придется просто без сожаления выбросить.

Что показывает вольтметр?

При изготовлении и ремонте различных устройств, хоть и не очень часто, но приходится мерить переменные напряжения и даже токи. Если синусоида ведет себя так неспокойно, то вверх, то вниз, что будет показывать обычный вольтметр?

Среднее значение периодического сигнала, в данном случае синусоиды, подсчитывается как площадь, ограниченная осью абсцисс и графическим изображением сигнала, деленная на 2*π радиан или период синусоиды. Поскольку верхняя и нижняя часть абсолютно одинаковы, но имеют разные знаки, среднее значение синусоиды равно нулю, и мерить его совсем не нужно, и даже просто бессмысленно.

Поэтому измерительный прибор показывает нам среднеквадратичное значение напряжения или тока. Среднеквадратичным называется такое значение периодического тока, при котором на одной и той же нагрузке выделяется то же количество теплоты, что и на постоянном токе. Иными словами лампочка светит с той же яркостью.

Формулами это описывается вот так: Iсрк=0,707*Imax= Imax/√2 для напряжения формула та же, достаточно поменять одну букву Uсрк=0,707*Umax=Umax/√2. Именно эти значения показывает измерительный прибор. Их можно подставлять в формулы при расчете по закону Ома или при расчете мощности.

Но это далеко не всё, на что способен конденсатор в сети переменного тока. В следующей статье будет рассмотрено использование конденсаторов в импульсных схемах, фильтрах верхних и нижних частот, в генераторах синусоиды и прямоугольных импульсов.

Борис Аладышкин

Продолжение статьи: Конденсаторы в электронных схемах

Классификация устройств

Прежде, чем ответить на вопрос, для чего нужен конденсатор, следует разобраться, какие они бывают. Конденсаторы разделяются по следующим признакам:

  • Предназначение и выполняемые функции;
  • Рабочие условия;
  • Тип вещества, разделяющего обкладки.

Конденсаторы активно используются в цепях, где необходима их способность копить и хранить электрический заряд (требуется наличие емкостного устройства). Для этого внутри него установлены две обкладки с разными знаками заряда. Между ними расположено вещество, препятствующее их соприкосновению и разрядке. В большинстве случаев в качестве диэлектрика используется тантал или алюминий, но могут применяться и керамические материалы, слюда или полистирол.

Основным достоинством алюминиевых устройств является их более низкая, по сравнению с танталовыми, стоимость, а также более широкая сфера применения. Вместе с тем, танталовые аналоги более эффективны в использовании и обладают более высокими техническими характеристиками, поэтому при выборе следует учитывать не только фактор цены.

Виды конденсаторов

Дополнительная информация. Конденсаторы из тантала отличаются повышенной надежностью, у них широкий рабочий диапазон температур, что позволяет эксплуатировать их практически в любых условиях. Наиболее широкое применение они нашли в электронике и сопутствующих отраслях промышленности, поскольку обладают большой емкостью и компактными габаритами. К недостаткам устройств данного типа специалисты относят их более высокую цену и чувствительность к колебаниям тока и напряжения.

Силовые элементы применяются чаще всего в цепях с высоким напряжением. Специальная конструкция позволяет обеспечивать большую емкость, а значит, они могут использоваться для стабилизации обеспечения электричеством по линиям электропередач (компенсируют потери энергии). Кроме того, они активно используются для повышения мощности промышленных электроустановок. Диэлектрик в таком устройстве – это пропитанная изоляционным маслом металлизированная пропиленовая пленка.

Самыми широко используемыми являются керамические. Их емкость может варьироваться в значительных пределах – от 1 пикофарада до 0,1 микрофарада. Для предотвращения саморазряда применяется керамика, а в качестве преимущества специалисты отмечают доступную цену, широкие функциональные возможности, высокий уровень надежности и низкий –потерь.

Несмотря на свою дороговизну, на практике применяются серебряно-слюдяные конденсаторы. Они работают крайне стабильно, поддерживают высокую емкость, их корпус полностью герметичен. Но широкому распространению мешает высокая цена.

Применяются и бумажные или металлобумажные элементы. Их обкладка изготовлена из алюминиевой фольги, а в качестве диэлектрика используется бумага, пропитанная специальным составом.

Типы конденсаторов

Принцип функционирования

Основная причина, по которой описываемый элемент включается в электрическую схему, состоит в том, чтобы копить заряд в периоды повышенного напряжения и обеспечивать питание цепи в периоды низкого.

Принцип работы конденсатора заключается в следующем. Когда электрический прибор подключен к сети питания, конденсатор заряжается. На одной его пластине накапливаются электроны (частицы с отрицательным зарядом), а на другой – ионы, которые заряжены положительно. Соприкосновению их мешает диэлектрик. Такое устройство конденсатора позволяет накопить заряд. Ведь, как только прибор подключается к источнику тока, напряжение в цепи равно нулю. Затем, по мере наполнения зарядами, напряжение становится равным тому, которое подается от источника.

После того, как прибор отключается от розетки или батареи, происходит разряд конденсатора. Нагрузка в электрической цепи сохраняется, для этого прибору нужны напряжение и ток, который передает устройство. Необходимость питания прибора заставляет электроны в конденсаторе двигаться к ионам, образуется ток, который передается к другим элементам.

Устройство конденсатора

Возможное применение устройств

Конденсаторы служат решению самых разнообразных задач. В частности, они активно используются при хранении аналоговых и цифровых данных, часто устанавливаются в телемеханических устройствах для регулирования сигналов в соответствующем оборудовании, что сохраняет его от различных повреждений и проблем.

Широко распространено применение конденсаторов в источниках бесперебойного питания, что позволяет сглаживать напряжение при подключении к приборам различного оборудования (компьютеры, оргтехника и так далее).

Обратите внимание! По такому же принципу устроен источник бесперебойного питания. Во время подключения к электрической цепи он накапливает заряд, который потом можно использовать в течение короткого времени, что делает возможным выключение техники без каких-либо сбоев, а это особенно актуально в современных условиях, когда информация имеет крайне большое значение.

Описываемые элементы нашли свое применение в различных преобразователях напряжения. В частности, их можно использовать для увеличения напряжения в сети, величина которого будет превышать входное значение.

Важно! Эксплуатация конденсатора в качестве временного источника питания имеет некоторые ограничения. Это объясняется наличием у диэлектрика хоть небольшой, но проводимости. Поэтому устройство со временем постепенно разряжается, следовательно, при необходимости иметь стабильный источник тока лучше воспользоваться аккумуляторной батареей.

Применение конденсаторов

Наличие возможности накопить заряд, а потом быстро его направить в сеть позволяет сделать устройство незаменимым элементом при изготовлении лазеров, вспышек для фотоаппаратов и других подобных приборов.

Таким образом, без использования описываемого устройства практически невозможно представить современную электронную и электротехническую промышленность. Благодаря пониманию того, как работает конденсатор, его активно применяют при производстве различных устройств, как промышленного, так и бытового назначения. Он помогает обеспечить безопасность электрической цепи и увеличивает срок службы различных приборов.

Конденсатор в цепи постоянного и переменного тока

Конденсатор в цепи постоянного тока

Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор част оты вполне сойдет:

Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой резистор на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:

Спаиваем как-то вот так и подаем сигнал с генератора частоты:

Далее за дело берется Цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем зде сь. Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.

Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:

Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F – это частота, Ma – амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал – желтым, для удобства восприятия.

Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то “лохматый”. Это связано с так называемыми “шумами“. Шум – это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо “шумит” резистор. Значит “лохматость” сигнала – это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Давайте увеличим частоту на генераторе до 500 Герц

На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца

На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц

Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц

Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:

Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.

Если построить обрезок графика, то получится типа что-то этого:

По вертикали я отложил напряжение, по горизонтали – частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:

Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт( в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, ХС – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, измеряется в Герцах

С – емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили Фильтр Высокой Частоты (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *