Термоэлектрический преобразователь

Принцип действия термоэлектрических преобразователей

Термоэлектрические преобразователи

Термоэлектрический преобразователь — это преобразователь температуры, основанный на существовании определенной зависимости между э.д.с., устанавливающейся в цепи, составленной из разнородных проводников, и температурами их спаев.

Термоэлектрические термометры нашли широкое применение как образцовые и технические средства измерения температур вплоть до 25000С. Для измерения температур выше 16000С термоэлектрические термометры используются в кратковременных режимах измерений. Они могут быть использованы и для измерения низких температур (от –2000С), но в этой области температур получили гораздо меньшее распространение.

Достоинствами термоэлектрических термометров являются: достаточно высокая точность; возможность организации дистанционной передачи показаний; возможность выпуска изделий со стандартной градуировкой на любой температурный интервал в пределах допустимых температур применения.

Рассмотрим цепь, состоящую из двух разнородных металлов А и В, так как показано на рис.4.13. На границе раздела двух различных металлов имеется контактная разность потенциалов , наличие которой объясняется диффузией свободных электронов из проводника с их большей концентрацией в проводник с их меньшей концентрацией. Концентрация свободных электронов зависит от рода металлов и от температуры, следовательно контактная разность потенциалов также будет зависеть от двух факторов

§ рода металлов;

§ температуры контакта.

В цепи, показанной на рис.4.13, контактные разности потенциалов образуются в точках спаев 1 и 2. Если они равны между собой, то будучи противоположно направленными взаимно уравновешиваются, не создавая э.д.с. в цепи. Если же контактная разность потенциалов в точке 1 не равна контактной разности потенциалов в точке 2, то в цепи разнородных проводников А и В создается результирующая э.д.с.. Неравенство по величине контактных разностей потенциалов в спаях одинаковых проводников возможно только в одном случае, если не равны температуры этих спаев. Результирующая э.д.с. в этом случае равна

(4.21)

Результирующую э.д.с., возникшую благодаря неравенству температур спаев, называют термоэлектродвижущей силой (термо-э.д.с.); цепь двух разнородных электродов – термоэлектрическим преобразователем (ранее употреблявшееся название – термопара); места контактов – горячим и холодным спаями термоэлектрического преобразователя (ранее употреблявшееся название – спаи термопары).

Положительным называют тот термоэлектрод, от которого ток идет в спае, имеющем меньшую температуру, отрицательным – к которому ток идет в том же спае. Если в рассматриваемой цепи в спае 2 ток идет от электрода А к электроду В, то электрод А – термоположительный, а электрод В – термоотрицательный. Порядок написания термоэлектродов в индексе символа контактной э.д.с. АВ следующее: термоэлектрод, написанный в индексе первым – термоположительный; термоэлектрод, написанный в индексе вторым – термоотрицательный.

Рассмотрим основные свойства термоэлектрических преобразователей.

1-е свойство: если термоэлектрический преобразователь имеет температуры спаев и , то термо-э.д.с. равна алгебраической сумме двух термо-э.д.с., одна из которых генерируется при температуре спаев и , другая при температуре спаев и (см.рис.4.14):

(4.22)

2-е свойство: в замкнутой цепи, состоящей из любого числа различных однородных проводников A, B, C,…M, N при одинаковых температурах всех спаев термо-э.д.с. отсутствует. Действительно, если бы в цепи имелась термо-э.д.с., значит в цепи бы имел место термоток, а значит одна часть цепи охлаждалась, а другая нагревалась. Это означало бы, что подвод и отвод тепла к разным участкам системы совершается при одинаковых температурах во всех точках системы. Следовательно, сумма контактных термо-э.д.с. такой цепи равна нулю.

Правило Вольта для трех разнородных проводников будет использовано нами далее при анализе схем включения вторичных приборов в цепь термоэлектрического преобразователя, состоящего из двух электродов. На рис.4.15 показана термоэлектрическая цепь, состоящая из трех разнородных проводников А, В и С. Все спаи цепи: 1, 2 и 3 – находятся при одинаковой температуре t. Сумма контактных термо-э.д.с. цепи равна нулю:

Термопара — термоэлектрический преобразователь. Теория, устройство, характеристики, принцип работы термопар.

Термоэлектрические преобразователи — термопары, как и термопреобразователи сопротивления, являются наиболее распространенными средствами измерения температуры.

Термоэлектрический метод измерения температуры основан на зависимости термоэлектродвижущей силы (термоЭДС), развиваемой термопарой от температуры ее рабочего конца. ТермоЭДС возникает в цепи, составленной из двух разнородных проводников (электродов) А и В (рис. 1, а), если значения температуры мест соединения t и t0 не равны (при равенстве температур термоЭДС равна нулю). Возникающая в цепи термопары ЭДС является результатом действия эффектов Зеебека и Томпсона. Первый связан с появлением ЭДС в месте спая двух разнородных проводников, причем величина ЭДС зависит от температуры спая. Эффект Томпсона связан с возникновением ЭДС в однородном проводнике при наличии разности температур на его концах.

Развиваемая термоЭДС зависит от значения обеих температур t и t0, причем она увеличивается с ростом разности (t — t0). В силу этого термоЭДС термопары условно обозначается символом E(t, t0).

Рис. 1. Цепи термопар:

а — соединение двух проводников; б, в — варианты включения третьего проводника; г, д варианты включения измерительного прибора ИП

Очевидно, что температуру с помощью термопары можно измерить, если выполнить следующие условия:

• рабочий конец термопары поместить в контролируемую среду, а температуру другого спая (свободных концов) стабилизировать;

• измерить термоЭДС, развиваемую термопарой;

• иметь градуировочную характеристику E(t, t0) термопары — зависимость термоЭДС от температуры рабочего конца (т.е. измеряемой температуры) при определенном значении t0.

Для понимания дальнейшего материала обратимся к «теореме о третьем проводнике». Суть ее (без доказательства) следующая: включение в цепь термопары третьего проводника из любого материала «С» (на всех схемах он изображен волнистой линией) не вызывает искажения термоЭДС, если температуры мест присоединения этого проводника одинаковы. Поэтому термоЭДС, развиваемые в схемах (рис. 1, б, в), будут одинаковыми, если только будут равны между собой температуры t’ и t», т.е. при соблюдении условия t’ = t». На основании изложенного можно представить два способа включения измерительного прибора (ИП) в цепь термопары: в разрыв свободных концов (рис. 1, г) или в разрыв электрода (рис. 1, д).

Два любых разнородных проводника могут образовать термопару, но не любая термопара может использоваться для практических температурных измерений. К материалам для термопар (термоэлектродным материалам) предъявляется ряд требований: жаропрочность, химическая стабильность, воспроизводимость материалов (для обеспечения взаимозаменяемости термопар), заключающаяся в одинаковой зависимости термоЭДС термопары от температуры.

Теперь обратимся к терминологии. Термопара — это соединение двух разнородных проводников — электродов. Для практического использования термопары ее электроды должны быть изолированы и помещены в защитную арматуру. Такая конструкция называется термоэлектрическим преобразователем. По определению «термоэлектрический преобразователь» (ТЭП) — это термопреобразователь, действие которого основано на зависимости термоэлектродвижущей силы термопары от температуры.

Термопара является основным элементом средств измерения температуры — термоэлектрических преобразователей (ТЭП).

В соответствии с ГОСТ Р50431-92 в табл. 1 приведены пределы длительного (кратковременного) применения для различных термопар ТЭП, имеющих следующие обозначения:

ТВР (А) — вольфрамрений-вольфрамрениевые;

ТПР (В) — платинородий-платинородиевые;

ТПП (S, R) — платинородий платиновые;

ТХА (К) — хромель-алюмелевые;

TXK (L) — хромель-копелевые;

ТХК (Е) — хромель-константановые;

THH (N) — никросил-нисиловые;

ТМК (T) — медь-константановые;

ТЖК (J) — железо-константановые.

Таблица 1

Стандартные термоэлектрические преобразователи — термопары

Подгруппа ТЭП (термопары)

Условное обозначение НСХ

Диапазон длительного (кратковременного) применения, °С

Коэффициент преобразования мВ/°С * 103

ТВР

ВР(А)-1 (А-1)

ВР(А)-2 (А-2)

ВР(А)-3 (А-3)

0…2200 (2500)

0…1800 (2500)

0…1800 (2500)

12,1…9,2

11,8…11,4

11,9…11,3

ТПР

ПР(В)

300…1600 (1800)

3,1…5,9

ТПП

ПП(S)

ПП(R)

0…1300 (1600)

0…1300 (1600)

5,5…12,1

5,4…14,1

ТХА

ХА(К)

-200…1000 (1300)

16,1…39,0

ТХК

ХК (L)

ХК (E)

-200…600 (800)

-200…700 (900)

28,5…87,8

26,3…79,8

ТНН

HH(N)

-270…1300(1300)

0,9…36,2

ТМК

МК(T)

-200…700 (900)

16,4…61,7

ТЖК

ЖК (J)

-200…700 (900)

23,1…62,0

Зависимость развиваемой термопреобразователем термоЭДС от температуры рабочего спая t при нулевой температуре свободных концов t0 = 0 °С (т.е. E(t,0) = f(t)) называется номинальной статической характеристикой преобразования (НСХ). Она задается в виде таблиц (градуировочных) или формул и обозначается условным символом в русском и международном обозначении.

В соответствии с ГОСТ Р50431-92 в настоящее время для обозначения НСХ должны использоваться только латинские буквы (приведены в скобках).

В обозначениях преобразователей первым указывается положительный электрод (например, у преобразователя термопары ТХК положительный электрод — хромелевый, отрицательный — копелевый). На условных графических изображениях положительный электрод обозначается тонкой линией, отрицательный — толстой. При небольших диаметрах электродов верхний предел измерения может быть уменьшен. Термопреобразователь (термопара) ТПР (В) не развивает термоЭДС, если температура рабочего спая не превышает 300 °С (при температуре свободных концов 0 °С). Зависимости термоЭДС от температуры для термопар нелинейны, поэтому в пределах диапазона применения изменяется их коэффициент преобразования (чувствительность). В табл. 1 приведены округленные значения чувствительности в начале и конце диапазона применения.

Существуют другие разновидности термопреобразователей, статические характеристики которых могут быть не стандартизованы: например, сплав молибдена с рением MP 5/20, термопары на основе неметаллических материалов — графита и тугоплавких соединений (карбидов, нитридов и т.п.)

В табл. 2 и на рис. 2, а приведены статические характеристики термопар ХА, ХК, ПП. Из графиков видно, что наибольшую термоЭДС развивает термопара ХК, наименьшую (из этих трех) термопара ПП. Поэтому при невысоких температурах целесообразнее использовать термопреобразователи типа ТХК.

Таблица 2

Номинальные статические характеристики термоэлектрических преобразователей (термопар)

t °с

ТЭП, Е, мВ

t °С

ТЭП, Е, мВ

ПП(S)

ХА (К)

ХК(L)

ПП(S)

ХА (К)

ХК(L)

-6,344

5,751

27,022

53,484

-5,892

-9,488

6,274

29,128

57,856

-5,141

-8,207

6,805

31,214

62,200

-4,138

-6,575

7,345

31,277

66,469

-2,92

—4,431

7,892

35,314

-1,527

-2,500

8,448

37,325

0,000

0,000

0,000

9,012

39,310

0,299

2,022

3,306

9,585

41,269

0,645

4,095

6,860

10,165

43,202

1,029

6,137

10,621

10,754

45,108

1,440

8,137

14,557

11,348

46,985

1,873

10,151

18,639

11,947

48,828

2,323

12,207

22,839

12,550

50,633

2,786

14,292

27,132

13,155

52,398

3,260

16,395

31,488

14,368

3,743

18,513

35,882

15,576

4,234

20,640

40,292

16,771

4,732

22,772

44,700

17,942

5,237

24,902

49,098

Рис. 2. Номинальные статические характеристики преобразователей (я), схема изготовления рабочего спая (б) и способы измерения температуры пластины (в)

Наиболее линейная характеристика у термопар ХА. Наиболее точной из этих трех является термопара ПП. Отклонение реальной градуировочной характеристики от номинальной определяются классом термоэлектрических преобразователей (термопар). Классы обозначаются цифрами 1, 2, 3 (в порядке увеличения погрешности), причем внутри класса погрешность может зависеть от измеряемой температуры (табл. 3).

Коэффициентом преобразования (чувствительностью) термопары называется отношение изменения термоЭДС, вызванной изменением температуры рабочего конца к значению этого изменения S = ΔE/Δt (мВ/град) при небольших значениях Δt.

Для получения численных значений измеряемой температуры к термопреобразователю необходимо подключить показывающий прибор, измеряющий термоЭДС термопары (вторичный прибор), шкала которого должна быть в градусах. Такое соединение называется термоэлектрическим термометром. В дальнейшем будут использоваться все эти термины. Чтобы температурная шкала вторичного прибора была равномерной, желательно, чтобы коэффициент преобразования термопары (преобразователя) S не зависел бы от измеряемой температуры t в пределах диапазона измерения, в противном случае возникает необходимость в применении линеаризации. При оценке зависимости S = f(t) температурный интервал Δt в выражении S = ΔE/Δt следует брать возможно малым — теоретически нужно использовать производную S = dE/dt.

Вернемся к «теореме о третьем проводнике» — включение в цепь термопары «АВ» третьего проводника «С» из любого материала не вызовет искажений термоЭДС, если температуры мест присоединения этого проводника одинаковы. Из этой теоремы вытекает ряд важных практических положений. Рабочий спай термопары может быть образован сваркой любым материалом, если только температура во всех точках сварного слоя будет одинаковой (рис. 2, б).

Таблица 3

Пределы допускаемых отклонений для температуры t

Подгруппа ТП термопар

Класс точности

Диапазон измеряемых температур, °С

Предел допускаемых отклонений ± Δt, °С

ТМК(Т)

-40… 135

-40. ..125

0,015*|t|

1,0

1,0

0,0075*|t|

0,5

0,004*|t|

ВР(А)

0,007*|t|

0,005*|t|

ТПР(В)

600… 800

600… 1800

4,0

0,005*|t|

0,0025*|t|

ТПП(S,R)

600… 1600

1,5

0,0025*|t|

1,0

1,0 + 0,003(t — 1100)

ТХА(К)

ТНН(Н)

-250…-166,7

-166,7…40

-40…333,4

333,4…1350

0,015*|t|

2,5

2,5

0,0075*|t|

0,5

0,004*|t|

TXK(L)

-100… 100

-40… 300

0,015*|t|

2,5

2,5

0,7 + 0,005*|t|

ТХК(E)

-200…-166,7

-166,7…-40

-40…333,4

333,4…900

0,015*|t|

2,5

2,5

0,0075*|t|

1,5

0,004*|t|

ТЖК(J)

-40…333,4

333,4…900

2,5

0,0075*|t|

1,5

0,004*|t|

ТХАУ 4…20 мА

0,5; 1 % (приведенная)

Метран 281 выход 4…20 мА, HART протокол

0,75 % по аналоговому сигналу 0,5 % по цифро­вому (приведенные)

Теорема о третьем проводнике имеет ряд практических выводов (рис. 2, в). Температуру массивного металлического бруска можно измерить по схеме 1 — прикрепив к металлу каждый электрод в отдельности, если температура во всех точках поверхности бруска одинакова, или по схеме 2 — прикрепив к металлу рабочий спай термопары.

ТермоЭДС термопары E(t, t0) зависит от температуры рабочего t и свободных t0 концов термопреобразователя. Поэтому, чтобы отградуировать шкалу вторичного прибора в единицах температуры, не-обходимо задаться каким-то определенным значением t0. Например, для автоматических потенциометров задаются расчетным значением t0 = 20 °С, для милливольтметров t0 = 0 °С. Номинальные статические характеристики задаются при t0 = 0 °С, поэтому в дальнейшем примем в качестве исходной t0 = 0 °С. Что делать, если реальное значение t0 отличается от нуля? Предположим t0 > 0 °С. Существует общая формула учета зависимости термоЭДС от значения t0:

E(t, t0) = E(t, 0) – E(t0, 0), т.е. при t0 > 0 °C термоЭДС термопары уменьшается на значение, равное значению термоЭДС, которое развивает термопара при температуре рабочих концов t0 и температуре свободных концов 0 °С.

Таким образом, если при известном значении t0, известна (например, измеряется прибором) развиваемая термопарой термоЭДС E(t, t0), то порядок использования номинальной статической характеристики для определения значения t следующий (рис. 3, а):

• находится значение E(t0, 0) (по нижней штриховой линии);

• прибавить к E(t0, 0) измеренное значение E(t, t0);

• суммарная ордината соответствует E(t, 0), по которой можно определить t (верхняя штриховая линия).

Каким образом практически вводится поправка на отличие температуры свободных концов от нуля? Если значение t0 постоянно, то такую поправку можно ввести простым смещением указателя вторичного прибора. Но в реальных условиях (0 — это температура концов термопары, находящихся вне контролируемого объекта, при температуре окружающей среды, которая изменяется. В таком случае поправка вводится автоматическим устройством, выполненным либо в виде отдельного блока, либо встроенным в измерительную схему прибора. Чтобы измерять температуры свободных концов автоматические компенсаторы содержат термочувствительный элемент, температура которого равна t0. Для обеспечения этого компенсатор располагается рядом со свободными концами термопреобразователя.

Теперь представим ситуацию: температура в трубе измеряется термопреобразователем длиной 1 м (т.е. длина электродов термопары 1 м), причем головка термопреобразователя (и концы электродов термопары) имеет температуру 60 °С. Компенсатор встроен во вторичный прибор, где температура 20 °С. В данном случае компенсатор вырабатывает напряжение U = E(20) (поскольку его термочувствительный элемент имеет температуру 20 °С), а поправку нужно вводить на 60 °С, т.е. иметь U = E(60). Что делать? В этом случае термопреобразователь необходимо подключать к компенсатору специальными проводами, называемыми термоэлектродными удлиняющими проводами (ТЭ-проводами). По своим свойствам ТЭ-провода должны быть термоидентичными удлиняемым электродам, т.е. каждый электрод должен удлиняться своим проводом.

Таким образом, подключение к термоэлектрическому преобразователю (термопаре) удлиняющих проводов аналогично удлинению электродов, т.е. концы ТЭ-проводов становятся свободными, и их температура — той температурой t0 свободных концов, которая определяет действующую в цепи ЭДС E(t, t0).

Если к электродам подключены два одинаковых монтажных провода, то температурой свободных концов будет температура концов электродов термопары. Например, если на участке I (рис. 3, б) проложить удлиняющие провода, то температура свободных концов будет равной 40 °С, если на участке I будут проложены два одинаковых монтажных провода, то температура свободных концов будет равной 30 °С.

Рис. 3. График введения поправки на изменение температуры свободных концов (а) и схемы цепи термопары (б)

Но что означает идентичность? Все ясно, если, например, у преобразователя ТХК хромелевый электрод удлинить проводом из хромеля, а копелевый — проводом из копеля. В этом случае по сути тем же материалом наращиваются электроды, т.е. удлиняется термопара. Но возможен и другой подход, в соответствии с которым: пара проводов может быть использована для удлинения термопары, если в паре между собой они имеют такую же градуировочную характеристику, что и удлиняемая термопара (в диапазоне возможного изменения температуры мест соединения). На рис. 4 изображена номинальная статическая (градуировочная) характеристика термопары ХА и аналогичные характеристики двух других термопар. Одна из них медь — константан (М) и другая — (МТ-НМ) составлена из электродов «медь + титан» — «никель + медь». У первой из них градуировочная характеристика совпадает с характеристикой термопары ХА в диапазоне (0…100) °С, а затем они расходятся. В соответствии с правилом пара проводов «медь + константан» (условное обозначение М) может быть использована в качестве удлиняющих для термопары ХА, если температура мест соединения не будет превышать 100 °С. При этом медным проводом удлиняется хромелевый электрод, а константановым — алюмелевый. Пара проводов МТ-НМ также используется в качестве удлиняющих, но температурный диапазон (температура мест присоединения) применения расширяется до 300 °С.

При использовании удлиняющих проводов очень важно соблюдать правило подключения (полярность подключения). Например, нельзя хромелевый электрод удлинять константановым, а алюмелевый медным.

Рис. 4. Характеристики термоэлектродных удлиняющих проводов

Из-за неполного совпадения градуировочных характеристик термопары и удлиняющих ее проводов возникает дополнительная погрешность (табл. 4). Эту погрешность следует учитывать при оценке общей погрешности измерения температуры.?

Таблица 4

Характеристика удлиняющих проводов

НСХ ТЭП

Наименование пары жил

Обозначение

Максимальная рабочая температура, °С

Погрешность °С

ХА(К)

медь-константан

М

5,5

ХА(К)

медь -титан/ медь-никель

МТ-НМ

4,9

XK(L)

хромель/копель

ХК

3,3

ПП(R)

медь/сплав ТП

П

2,4

МК(М)

медь/копель

МК

3,3

ВР(А)

медь/медь-никель

М-МН

4,2

Примечание. Термопреобразователи ПР применяются без удлиняющих проводов.

Необходимость применения удлиняющих проводов отпадает при использовании термопар со встроенным в головку нормирующим преобразователем, в котором вводится поправка на изменение температуры свободных концов термопары и создается на выходе унифицированный токовый или цифровой сигналы. К таким преобразователям относятся ТХАУ, Метран 281 (интеллектуальный), в последнем используется термопара ТХА. Характеристики этих термопреобразователей приведены в табл. 3. С преобразователями температуры SITRANS Т работают и термоэлектрические преобразователи. Компенсация влияния температуры свободных концов может быть с внутренним сенсором Pt100 и внешняя. Допускается подключение двух термопар для вычисления разности температур или с целью резервирования. При использовании различных термопар измерения производятся в диапазоне температур от -200 до 2300 °С с погрешностью ±(1…3) °С.

Термопара

Термоэлектрические явления

Принципы

  • Термоэлектрические явления
    • эффект Зеебека, эффект Пельтье, эффект Томсона
  • эффект Эттингсгаузена
  • Эффект Нернста — Эттингсгаузена

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля, равной 300 °C, и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ.Фотография термопары

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Международный стандарт на термопары МЭК 60584 (п.2.2) даёт следующее определение термопары: Термопара — пара проводников из различных материалов, соединённых на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединённые навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 31 июля 2012 года.

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения

Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения. Упоминания об этом их применении относятся к началу 1830-х годов. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров — номинальные статические характеристики преобразования (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

  • платинородий-платиновые — ТПП13 — Тип R
  • платинородий-платиновые — ТПП10 — Тип S
  • платинородий-платинородиевые — ТПР — Тип B
  • железо-константановые (железо-медьникелевые) ТЖК — Тип J
  • медь-константановые (медь-медьникелевые) ТМКн — Тип Т
  • нихросил-нисиловые (никельхромникель-никелькремниевые) ТНН — Тип N.
  • хромель-алюмелевые — ТХА — Тип K
  • хромель-константановые ТХКн — Тип E
  • хромель-копелевые — ТХК — Тип L
  • медь-копелевые — ТМК — Тип М
  • сильх-силиновые — ТСС — Тип I
  • вольфрам и рений — вольфрамрениевые — ТВР — Тип А-1, А-2, А-3

Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ.

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопар. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью ±0,0025×T имела бы точность ±2,5 °C при 1000 °C.

Тип

термопары

IEC (МЭК)

Материал

положительного

электрода

Материал

отрицательного

электрода

Темп.

коэффициент,

μV/°C

Темп.

диапазон, °C

(длительно)

Темп.

диапазон,°C

(кратковременно)

Класс точности 1 (°C) Класс точности 2 (°C) IEC (МЭК)

Цветовая маркировка

K Хромель

Cr—Ni

Алюмель

Ni—Al

40…41 0 до +1100 −180 до +1300 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Зелёный-белый
J Железо Константан

Cu—Ni

55.2 0 до +700 −180 до +800 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 750 °C
±2,5 от −40 °C до 333 °C
±0,T от 333 °C до 750 °C
Чёрный-белый
N Нихросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100 −270 до +1300 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Сиреневый-белый
R Платинородий

Pt—Rh (13 % Rh)

Платина 0 до +1600 −50 до +1700 ±1,0 от 0 °C до 1100 °C
± от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
S Платинородий

Pt—Rh (10 % Rh)

Платина 0 до 1600 −50 до +1750 ±1,0 от 0 °C до 1100 °C
± от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
B Платинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +1700 0 до +1820 ±0,0025×T от 600 °C до 1700 °C Отсутствует
T Медь Константан

Cu—Ni

−185 до +300 −250 до +400 ±0,5 от −40 °C до 125 °C
±0,004×T от 125 °C до 350 °C
±1,0 от −40 °C до 133 °C
±0,0075×T от 133 °C до 350 °C
Коричневый-белый
E Хромель

Cr—Ni

Константан

Cu—Ni

68 0 до +800 −40 до +900 ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 800 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 900 °C
Фиолетовый-белый

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *