Статор

Принцип работы электродвигателей. Основные понятия.

Магнетизм

Наиболее характерное магнитное явление — притяжение магнитом кусков железа — известно со времен глубокой древности. Ещё одной очень важной особенностью магнитов является наличие у них полюсов: северного (отрицательного) и южного (положительного). Противоположные полюса притягиваются, а одинаковые — отталкиваются друг от друга.

Магнитное поле

Магнитное поле можно условно изобразить линиями в виде магнитного потока, движущегося от северного полюса к южному. В некоторых случаях определить, где северный, а где южный полюс, достаточно сложно.

Электромагнетизм

Вокруг проводника, при пропускании по нему электрического тока, создаётся магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы для магнетизма и электромагнетизма.

Магнитное поле вокруг проводников можно усилить, если намотать их на катушку со стальным сердечником. Когда проводник намотан на катушку, все линии магнитного потока, образуемого каждым витком, сливаются и создают единое магнитное поле вокруг катушки.

Чем больше витков на катушке, тем сильнее магнитное поле. Это поле имеет такие же характеристики, что и естественное магнитное поле, а, следовательно, у него тоже есть северный и южный полюса.

Вращение вала электродвигателя обусловлено действием магнитного поля. Основные части электродвигателя: статор и ротор.

Ротор:

Подвижная часть электродвигателя, которая вращается с валом электродвигателя, двигаясь вместе с магнитным полем статора.

Статор:

Неподвижный компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

Вращение под действием магнитного поля

Преимуществом магнитных полей, которые создаются токопроводящими катушками, является возможность менять местами полюса магнита посредством изменения направления тока. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.

Одинаковые полюса магнитов отталкиваются друг от друга, противоположные полюса — притягиваются. Можно сказать, что это свойство используется для создания непрерывного движения ротора с помощью постоянной смены полярности статора. Ротором здесь, является магнит, который может вращаться.

Чередование полюсов с помощью переменного тока

Чередование полюсов с помощью переменного тока

Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:

Переменный ток — AC

Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.

Трёхфазный переменный ток

Трёхфазное питание — это непрерывный ряд перекрывающихся напряжений переменного тока (AC).

Смена полюсов

На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.

Для наглядности мы заменили ротор вращающимся магнитом, а статор — катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе — B1 и B2 , а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая — южным. Таким образом, если A1 — северный полюс, то A2 — южный.

Питание в сети переменного тока

Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.

Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.

Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)

Вращение ротора

Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.

Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.

Индукция

Ранее мы установили, как обыкновенный магнит вращается в статоре. В электродвигателях переменного тока AC установлены роторы, а не магниты. Наша модель очень схожа с настоящим ротором, за исключением того, что под действием магнитного поля ротор поляризуется. Это вызвано магнитной индукцией, благодаря которой в проводниках ротора наводится электрический ток.

Индукция

В основном ротор работает так же, как магнит. Когда электродвигатель включен, ток проходит по обмотке статора и создаёт электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Таким образом, в обмотках ротора индуцируется ток, который затем создаёт вокруг ротора электромагнитное поле и поляризацию ротора.

В предыдущем разделе, чтобы было проще объяснить принцип действия ротора, заменив его для наглядности магнитом. Теперь заменим магнитом статор. Индукция — это явление, которое наблюдается при перемещении проводника в магнитном поле. Относительное движение проводника в магнитном поле приводит к появлению в проводнике так называемого индуцированного электрического тока. Этот индуцированный ток создаёт магнитное поле вокруг каждой обмотки проводника ротора. Так как трёхфазное AC питание заставляет магнитное поле статора вращаться, индуцированное магнитное поле ротора будет следовать за этим вращением. Таким образом вал электродвигателя будет вращаться. Электродвигатели переменного тока часто называют индукционными электродвигателями переменного тока, или ИЭ (индукционными электродвигателями).

Принцип действия электродвигателей

Индукционные электродвигатели состоят из ротора и статора.

Токи в обмотках статора создаются фазовым напряжением, которое приводит в движение индукционный электродвигатель. Эти токи создают вращающееся магнитное поле, которое также называется полем статора. Вращающееся магнитное поле статора определяется токами в обмотках и количеством фазных обмоток.

Вращающееся магнитное поле формирует магнитный поток. Вращающееся магнитное поле пропорционально электрическому напряжению, а магнитный поток пропорционален электрическому току.

Вращающееся магнитное поле статора движется быстрее ротора, что способствует индукции токов в обмотках проводников роторов, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставляет ротор вращаться. Принципы действия индукционного электродвигателя представлены на иллюстрациях справа.

Таким образом, ротор и статор являются наиболее важными составляющими индукционного электродвигателя переменного тока. Они проектируются с помощью САПР (системы автоматизированного проектирования). Далее мы подробнее поговорим о конструкции ротора и статора.

Статор элетродвигателя

Статор — это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью — из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.

Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры — класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.

Асинхронные электродвигатели

В предыдущих разделах мы разобрали, почему электродвигатели переменного тока называют также индукционными электродвигателями, или электродвигателями типа «беличье колесо». Далее объясним, почему их ещё называют асинхронными электродвигателями. В данном случае во внимание принимается соотношение между количеством полюсов и числом оборотов, сделанных ротором электродвигателя.

Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать следующим образом: частота сети (F), умноженная на 120 и разделенная на число полюсов (P).

Если, например, частота сети 50 Гц, то синхронная частота вращения для 2-полюсного электродвигателя равна 3000 мин-1.

Синхронная частота вращения уменьшается с увеличением числа полюсов. В таблице, приведенной ниже, показана синхронная частота вращения для различного количества полюсов.

Синхронная частота вращения для различного количества полюсов

Число полюсов

Синхронная частота вращения 50 Гц

Синхронная частота вращения 60 Гц

Узлы электродвигателя

Вал ротора имеет цилиндрическую форму и производится из стали. Металлические стержни, замыкающиеся с двух сторон, дают ему название – короткозамкнутый ротор. Указанная конструкция обеспечивает высокую степень защиты, поскольку не возникает необходимость частого технического обслуживания устройства, нет нужды в замене подающих ток щеток и т.д.

Если присмотреться к фото ротора электродвигателя, то он напоминает клетку для белки, откуда и название «беличья клетка». Конструкция представляет собой собранные стальные листы небольшой толщины. В специальные пазы помещается обмотка, которая может быть нескольких типов.

Определяющее значение имеет ответ на вопрос о том, каков двигатель – фазного или короткозамкнутого типа. Большее распространение имеют последние конструкционные новинки. Стержни из меди, имеющие большую толщину, помещаются в пазы без дополнительной изоляции. Медные кольца позволяют соединить концы обмотки.

Бывают ситуации, когда «беличья клетка» получает альтернативу в виде литья. Таково в целом устройство ротора электродвигателя короткозамкнутого типа.

Однако существуют модели моторов переменного тока с роторами фазного типа. Их используют крайне редко, в основном, из-за предназначения для более мощных двигателей. Еще одна причина, по которой используют фазные модели – необходимость создания значительного усилия во время пуска.

К основным причинам поломки двигателя асинхронного типа относят износ подшипников, в которых осуществляется вращение вала. Центровка или балансировка ротора электродвигателя осуществляется за счет установленных в статоре крышек. Двигатели также имеют подшипники для облегчения вращательных движений.

Кроме того устройство подразумевает установку крыльчатки, обеспечивающей должное охлаждение двигателя. Статор имеет специальные ребра, улучшающие отдачу тепла от нагреваемого устройства. Именно так обеспечивается работа моторов переменного тока в нормальных тепловых условиях.

Полноценное проведение диагностического осмотра мотора

Для того, чтобы осмотреть статор и другие центральные элементы электродвигателя, используют специальные козлы, оснащенные двумя катками в верхней своей части. Последние упрощают вращение деталей.

Самостоятельный ремонт мотора следует начинать с тщательного изучения всей технической документации. Далее определяется степень износа подшипников, обнаруживаются и устраняются иные дефекты.

Проверить ротор двигателя необходимо на предмет состояния всех металлических элементов, крепления пластин к валу, качества замкнутой проводки и, наконец, должного функционирования вентиляторов.

Технические работы ведутся с использованием набора специальных ключей, обыкновенного тестера и механизмов для подъема. Главное не забыть отключить мотор от сети. Все узлы очищаются от слоя пыли при помощи щеточек и обдуваются сжатым воздухом. В дальнейшем мелкие детали и все их крепления желательно складывать в отдельный ящик, чтобы избежать пропажи.

Ротор электродвигателя разбирается с учетом следующих рекомендаций. Как только щит будет отделен от корпуса двигателя, его сдвигают вдоль вала, стараясь не повредить изоляцию обмоток. Для этих целей используют картон высокой плотности, размещая его между статором и ротором, а впоследствии укладывая на него детали.

С вала также снимаются пружины и подшипники. Демонтируется обмотка короткозамкнутого типа и сердечник. Главным требованием при выемке ротора является аккуратное движение вдоль оси.

При проверке вентиляторов обращают внимание на целостность лопастей и надежность их крепления. Делается процедура при помощи молотка. Дефектные детали заменяются. Нельзя нарушать балансировку, поэтому перед осмотром необходимо сделать заметку на роторе, чтобы при сборе каждый элемент встал на свое место.

Ремонт

Ремонтные работы всего устройства выполняются с целью восстановления его функциональности и работоспособности. Иногда требуется замена некоторых деталей. Например, при нагреве статора по разным причинам, может образоваться нагар на конструкции якоря электродвигателя.

Последовательность шагов тогда следующая:

  • демонтаж двигателя;
  • очистные работы;
  • разборка всех узлов;
  • восстановление поврежденных частей;
  • покраска;
  • сборка двигателя и проверка его в нагрузочном режиме.

Если оборудование представлено фазным типом, то требуются ремонтные работы отдельным его узлам, в том числе и щеточно-коллекторному.

Если стержень имеет трещины, то он подлежит восстановлению или замене. Делается это так: на месте трещины проводится надрез и высверливание отверстий от точки этого надреза до торца замыкающего кольца. Та часть, которая оказалась высверленной, заполняется медным сплавом.

Не стоит забывать и о проверке двигателя на обрыв и короткое замыкание. Сопротивление ротора и статора проверяются при помощи омметра, сверяясь при этом с техническими характеристиками в инструкции по эксплуатации. Однако прибор должен быть крайне чувствителен ввиду стремления сопротивления к нулю в обмотках мощных моделей моторов.

Виды обмоток — Обмотчик электрических машин

Оглавление

Обмотчик электрических машин

Классификация и основные элементы

Потери и кпд электрических машин

Особенности электрических машин различных типов

Требования к изоляции

Изоляционные материалы

Обмоточные провода

Методы изолирования токопроводящих частей электрических машин

Виды и конструкция изоляции обмоток

Виды обмоток

Основные элементы и обозначения обмоток машин переменного тока

Способы изображения схем обмоток

Схемы трехфазных однослойных обмоток статоров

Схемы трехфазных двухслойных обмоток статоров

Соединение обмоток статоров в несколько параллельных ветвей

Обмотки статоров с дробным числом пазов на полюс и фазу

Схемы обмоток статоров многоскоростных двигателей

Особенности схем обмоток одно- и двухфазных двигателей

Намотка катушек из круглого провода

Укладка однослойных обмоток статоров из круглого провода

Укладка двухслойных обмоток статоров из круглого провода

Механизация изготовления и укладки обмоток статоров из круглого провода

Обмотки статоров для механизированной укладки

Механизированная намотка статоров совмещенным методом

Заклинивание пазов обмоток статоров

Механизированная намотка статоров раздельным методом

Формовка и бандажирование лобовых частей обмотки статоров

Комплексная механизация намотки статоров

Изготовление катушек из прямоугольного провода

Укладка обмоток статоров в полуоткрытые пазы

Укладка обмоток статоров в открытые пазы

Крепление обмоток статоров из прямоугольного провода

Изготовление стержневых обмоток статоров машин переменного тока

Особенности укладки обмоток статоров крупных электрических машин

Схемы обмоток фазных роторов

Обмотки фазных роторов с дробным числом пазов на полюс и фазу

Таблицы положений стержней в волновых обмотках роторов

Технология изготовления стержней волновых обмоток фазных роторов асинхронных двигателей

Технология укладки стержневой обмотки ротора

Короткозамкнутые роторы

Основные элементы и обозначения обмоток якорей машин постоянного тока

Простые петлевые обмотки машин постоянного тока

Уравнительные соединения машин постоянного тока первого рода

Простые волновые обмотки машин постоянного тока

Несимметричные волновые обмотки машин постоянного тока

Сложные петлевые и волновые обмотки машин постоянного тока

Уравнительные соединения машин постоянного тока второго рода

Комбинированные обмотки машин постоянного тока

Изготовление катушек якоря из круглого провода

Изготовление катушек якоря из прямоугольного провода

Особенности изготовления одновитковых обмоток якоря

Подготовка якоря к укладке обмотки якоря

Укладка обмотки якоря

Конструкция и типы коллекторов

Пайка коллекторов

Крепление обмоток якорей и роторов

Намотка проволочных бандажей

Бандажи из стеклоленты

Отделка якоря

Крепление обмоток роторов турбогенератора

Виды полюсных катушек обмоток возбуждения

Катушки обмоток возбуждения из изолированного провода

Катушки обмоток возбуждения из неизолированной шинной меди, намотанной плашмя

Катушки обмоток возбуждения из шинной меди, намотанной на ребро

Особенности изготовления катушек возбуждения крупных синхронных гидрогенераторов

Пропиточные составы и методы пропитки обмоток

Сушка обмоток

Пропитка обмоток лаками с растворителями

Пропитка обмоток лаками без растворителей

Пропитка обмоток в компаундах

Контроль и испытания обмоток

Измерение сопротивления обмоток

Измерение сопротивления изоляции обмоток

Контроль обмоток, уложенных в пазы

Проверка правильности маркировки выводных концов фаз обмотки статора

Испытание электрической прочности изоляции обмоток

Испытание междувитковой изоляции обмоток

Автоматизация испытаний электрических машин

Виды и система планово-предупредительных ремонтов

Частичный ремонт обмоток

Ремонт обмоток статоров

Ремонт обмоток фазных роторов асинхронных двигателей

Ремонт обмоток якорей, катушек возбуждения

Заключение, литература

Страница 10 из 84

ГЛАВА III
ОСНОВНЫЕ ЭЛЕМЕНТЫ И ИЗОБРАЖЕНИЕ СХЕМ ОБМОТОК
§ 9. ВИДЫ ОБМОТОК
Конструкция катушек обмотки, расположение их в машине и схеме соединения между собой зависят от назначения обмотки и типа машины. Катушки обмотки возбуждения состоят из большого числа витков. Они надеваются на стальные сердечники, вместе с которыми образуют полюсы машины. Такие катушки называют полюсными.
Обмотки статоров синхронных машин, статоров и фазных роторов асинхронных машин и якорей машин постоянного тока состоят из катушек с небольшим числом витков. Катушки равномерно распределяются по пазам сердечников, поэтому такие обмотки называют распределенными. В катушке распределенной обмотки статора машины переменного тока (рис. 15) различают прямолинейные (пазовые) части 3, 5, которые при укладке обмотки в машину размещаются в пазах сердечника, криволинейные лобовые части 2, 4, соединяющие ее пазовые части друг с другом, и выводные концы 1, 6, которыми называют начало первого и конец последнего витка катушки.



Рис. 15. Катушка распределенной обмотки статора
Рис. 16. Стержни обмотки: а — волновой, б — петлевой

Места перегибов в лобовых частях 7, 8 называют головками катушек. Радиусы изгиба головок зависят от конструкции и размеров катушек и от напряжения машины. Длина прямолинейных частей катушек делается несколько большей, чем длина паза (паза), и после укладки катушек их прямолинейные части всегда выступают из пазов с обоих торцов сердечника.

В зависимости от типа обмотки в каждом пазу может располагаться или только одна пазовая сторона катушки, или две стороны разных катушек. В первом случае сторона катушки занимает весь паз (см. рис. 12,а). Такую обмотку называют однослойной. Во втором случае обмотка располагается в пазах в два слоя: в верхней части паза сторона одной катушки, в нижней— другой (см. рис. 12,6, 13, 14). Такая обмотка называется двухслойной.
Конструкция катушек обмотки, технология ее производства и способы укладки в пазы зависят от того, каким проводом они намотаны — круглым или прямоугольным. Катушки из круглого провода укладывают в полузакрытые пазы (см. рис. 12), имеющие узкую прорезь — шлиц, через которую при ручной укладке обмотки опускают в паз поочередно каждый проводник катушки. Проводники как бы «всыпают» в пазы, поэтому обмотку из мягких катушек, намотанных из круглого провода, называют всыпной. Катушкам всыпной обмотки до укладки в пазы не может быть придана окончательная форма. Их лобовые части изгибают и формуют уже после того, как обмотка уложена и закреплена в пазах.
Катушки из прямоугольного провода укладывают в пазы с параллельными стенками (см. рис. 13, 14). Жесткость прямоугольного провода больше, чем круглого, и катушкам уже в процессе изготовления до укладки в пазы придают окончательную форму со всеми характерными изгибами их лобовых частей (см. рис. 15).
Катушки распределенной обмотки могут состоять из одного, двух или нескольких витков. Одновитковые катушки в некоторых типах обмоток делят пополам на два стержня (рис. 16). Каждый стержень состоит из одной пазовой и двух половин лобовых частей. Такая обмотка называется стержневой. Стержни обмотки соединяются между собой в головках после их установки в пазы и образуют витки обмотки. По направлению изгиба лобовых частей различают волновую (рис. 16, а) и петлевую (рис. 16,б) обмотки. Катушечные обмотки из прямоугольных проводов применяют в статорах машин средней и большой мощности, стержневые обмотки — в статорах крупных гидро- и турбогенераторов, роторах асинхронных двигателей и в якорях машин постоянного тока.
В электрических машинах применяют также неизолированную от корпуса обмотку — это обмотка короткозамкнутых роторов асинхронных двигателей и демпферная (успокоительная) обмотка синхронных машин.
Короткозамкнутые обмотки образуются из неизолированных стержней, расположенных в пазах, и колец, замыкающих эти стержни по обоим торцам сердечника. Короткозамкнутые обмотки могут быть выполнены из вставных стержней или литыми. В обмотке из вставных стержней их выступающие из пазов концы припаивают тугоплавким припоем к замыкающим кольцам. В литых короткозамкнутых обмотках и стержни и замыкающие кольца образуются одновременно заливкой роторов алюминием или его сплавами. В короткозамкнутых роторах асинхронных двигателей применяют и тот и другой тип обмотки. Успокоительную обмотку синхронных машин делают только из вставных стержней, которые размещают в пазах полюсных наконечников, и соединяют между собой по торцам полюсов замыкающими кольцами или сегментами.

ВИДЫ ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЕЙ И СПОСОБЫ ИХ ИЗОБРАЖЕНИЯ

Важная составная часть электродвигателей — ее обмотки, в которых происходят основные рабочие процессы по преобразованию энергии. В наиболее распространенных типах электрических машин можно выделить:

трехфазные обмотки машин переменного тока, используемые обычно в статорах трехфазных асинхронных и синхронных машин, а также в роторах асинхронных двигателей с контактными кольцами.

однофазные обмотки статоров асинхронных однофазных двигателей с короткозамкнутым ротором.

обмотки якорей коллекторных машин постоянного и однофазного переменного тока.

короткозамкнутые обмотки роторов асинхронных электродвигателей.

обмотки возбуждения синхронных и коллекторных машин.

Обмотки возбуждения синхронных и коллекторных машин состоят, как правило, из сравнительно простых полюсных катушек. Несложным является и устройство короткозамкнутых обмоток роторов асинхронных двигателей. Остальные же виды перечисленных выше обмоток представляют собой достаточно сложные системы размещенных в пазах изолированных проводников, соединенных по особым схемам, требующим специального изучения.

Виток обмоток:

Простейшим элементом обмотки является виток, который состоит из двух последовательно соединенных проводников, размещенных в пазах, находящихся, как правило, под соседними разноименными полюсами.

Лежащие в пазах проводники витка являются его активными сторонами, поскольку именно здесь наводится ЭДС от главного магнитного поля машины. Находящиеся вне паза части витка, соединяющие между собой активные проводники и располагающиеся по торцам магнитопровода, называются лобовыми частями.

Проводники, образующие виток, могут состоять из нескольких параллельных проводов. Обычно к этому прибегают, чтобы сделать обмотку мягкой и облегчить ее укладку в пазы.

Один или несколько последовательно соединенных витков образуют катушку или секцию обмотки. Если секция состоит из одного витка, то такую обмотку называют стержневой, так как в этом случае находящиеся в пазах проводники обычно представляют собой жесткие стержни. Обмотка, состоящая из многовитковых секций, называется катушечной.

Катушка обмотки:

Катушка, или секция обмотки, характеризуется числом витков wc и шагом y, т. е. количеством охватываемых ею зубцов магнитопровода. Так, например, если одна сторона катушки (секции) лежит в первом пазу, а вторая — в шестом, то катушка охватывает пять зубцов и шаг ее равен пяти (у = 5). Шаг, таким образом, может быть определен как разность между номерами пазов, в которые уложены обе стороны катушки (у = 6 — 1 = 5).

Зачастую в обмоточных данных и технической литературе шаг обозначают номерами пазов (начиная с первого), в которые уложены стороны катушки, т. е. в данном случае это обозначение выглядит так: у = 1 — 6.

Шаг обмотки называют диаметральным, если он равен полюсному делению τ, т. е. расстоянию между осями соседних разноименных полюсов, или, что то же самое, числу пазов (зубцов), приходящихся на один полюс. В этом случае у = τ = z/2p, где z — число пазов (зубцов) сердечника, в котором размещена обмотка; 2р — число полюсов обмотки.

Если шаг катушки меньше диаметрального, то его называют укороченным. Укорочение шага, характеризуемое коэффициентом укорочения ky = у / τ, широко применяется в обмотках статоров трехфазных асинхронных электродвигателей, так как при этом экономится обмоточный провод (за счет более коротких лобовых частей), облегчается укладка обмотки и улучшаются характеристики двигателей. Применяемое укорочение шага обычно лежит в пределах 0,85 — 0,66.

В духполюсной электрической машине центральный угол, соответствующий полюсному делению, равен 180°. Хотя в четырехполюсных машинах этот геометрический угол равен 90°, в шестиполюсных — 60° и т. д., принято считать, что между осями соседних разноименных полюсов во всех случаях угол равен 180 электрическим градусам (180 эл. град.). Иначе говоря, полюсное деление τ = 180 эл. град.

Различают однослойные обмотки, где каждый паз занят стороной одной катушки (секции), и двухслойные, где в пазах размещены стороны разных катушек (секций) в два слоя.

Способы изображения обмоток:

Способы изображения обмоток электрических машин достаточно условны и своеобразны. Обмотки содержат большое число проводников, и изобразить все соединения и проводники на чертеже практически невозможно. Поэтому приходится прибегать к изображению обмоток в виде схем.

Преимущественно пользуются двумя основными способами изображения обмоток на схемах.

При первом способе цилиндрическую поверхность сердечника вместе с обмоткой (а у коллекторных машин — вместе с коллектором) как бы мысленно разрезают по образующей и разворачивают на плоскость чертежа. Такого типа схемы называются развернутыми, или схемами-развертками (рис. 2.1).

Рис. 2.1. Развернутая схема трехфазной однослойной концентрической обмотки с z = 24, 2р = 4.

При втором способе обмотку как бы проектируют на плоскость, перпендикулярную оси сердечника, показывая вид обмотки с торца (для коллекторных машин обычно со стороны коллектора). Проводники (или активные стороны секций и катушек), расположенные в пазах па поверхности сердечника, изображают кружочками и показывают торцевые (лобовые) соединения обмотки. При необходимости изображают не только видимые с данной стороны торцевые соединения обмотки, но и размещенные с обратной стороны сердечника невидимые лобовые части, причем их изображение в этом случае выносится за окружность сердечника. Схемы такого типа называют торцевыми, или круговыми (рис. 2.2).

Рис. 2.2. Торцевая схема обмотки m = 3, z = 24, 2р = 4.

Торцевая и развернутая схемы обмоток:

Наиболее распространены схемы, выполненные по первому способу. Они легче читаются и более наглядны. Для облегчения чтения и выполнения торцевых схем их выполняют упрощенным способом (рис. 2.3). Но даже после этого для обмотчика, не имеющего достаточного опыта работы с торцевыми схемами, они кажутся непонятными и неудобочитаемыми. В развернутых схемах расположение катушек и катушечных групп, соединение катушек и катушечных групп выглядит более реально и понятно.

Рис. 2.3. Торцевая схема при 2р = 4, а = 1.

Схемы дают достаточно четкое представление об устройстве и размещении на сердечнике всех элементов обмотки и соединений между ними. На схемах в основном изображают лишь проводники обмотки, стараясь по возможности опустить все остальные детали, загромождающие схему и затрудняющие ее чтение. Необходимые дополнительные технические данные приводятся на схемах в виде надписей.

Катушка, или секция на схеме изображается одной линией независимо от того, намотана она в один провод или в несколько параллельных проводов, состоит из одного витка или является многовитковой. На развернутой схеме секция или катушка изображаются в виде замкнутой, напоминающей действительную конфигурацию секции (катушки) фигуры, от которой ответвляются выводы.

В развернутых схемах двухслойных обмоток стороны катушек или секций, лежащие ближе к воздушному зазору, т. е. в верхнем слое паза, изображают сплошными линиями, а стороны, лежащие в нижнем слое, — штриховыми (пунктирными). Иногда (в книгах старых изданий) активные стороны катушек в обоих слоях паза изображают сплошными линиями, но те стороны, что лежат в верхнем слое, располагают слева, а те, что лежат в нижнем слое, — справа.

На схемах трехфазных обмоток провода разных фаз могут изображаться различающимися между собой линиями, например сплошными, штриховыми и штрихпунктирными, линиями разной расцветки или разной толщины, двойными линиями с разной штриховкой между ними.

На схемах обычно указывают номера пазов, номера коллекторных пластин, могут быть также обозначены номера секций и их сторон, номера и маркировка выводных концов катушечных групп, фаз обмотки, указаны направления токов, фазные зоны, полюса магнитного поля и т. д. (рис. 2.4 — 2.6).

Рис. 2.4. Развернутая схема двухслойной обмотки при z = 24, 2р = 4, q = 2.

Рис. 2.5. Изображение катушечных групп на схемах: а — развернутой, б – условной.

Рис. 2.6. Условные схемы двухслойной обмотки статора: а — для трех фаз при 2р = 2; б — для одной фазы при 2р = 2, в — для одной обмотки статора при 1р = 4.

Схемы необходимы не только при изучении принципа работы обмоток, их устройства, свойств и особенностей, но также и для выполнения обмоточных работ. Не имея схемы и не сверяясь с ней в процессе работы, трудно выполнить обмотку, поэтому перед началом ремонта обмотки надлежит составить ее схему или найти в справочнике аналогичную.

Упрощенные торцевые схемы:

Следует отметить, что полные развернутые и торцевые схемы сложных многополюсных обмоток с большим числом пазов получаются очень громоздкими и трудными для чтения.

В этих случаях в процессе выполнения обмоток, элементы которых повторяются, часто используют практические развернутые схемы, где изображена, например, лишь одна фаза (иногда часть фазы) трехфазной обмотки или несколько секций обмотки коллекторной машины. Широко используются также упрощенные торцевые схемы, где целые катушечные группы изображаются в виде части дуги с обозначениями выводов, а более мелкие элементы обмотки не изображают или изображают на схеме отдельно. Упрощенные торцевые схемы удобны при выполнении соединений между катушечными группами в сложных обмотках.

Ротор

Роторный экскаватор как экспонат в бывшем угольном карьере — «стальном городе» Феррополис (Германия), превращенном в музей под открытым небом

Ро́тор (от лат. roto «вращаться»):

в математике

  • Ротор — то же, что вихрь векторного поля, то есть вектор, характеризующий вращательное движение в данной точке векторного поля.
  • Ротор многогранника — выпуклое тело способное свободно вращаться в многограннике постоянно касаясь всех его граней; см. тело постоянной ширины и фигура постоянной ширины.

в медицине

  • Синдром Ротора — одна из четырёх форм синдрома гипербилирубинемии.

в технике

  • Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела (например, ротор двигателя Ванкеля) или отдающие её рабочему телу (например, ротор роторного насоса). Ротор двигателей связан с ведущим валом, ротор рабочих машин — с приводным валом. Ротор выполняется в виде барабанов, дисков, колёс.
  • Ротор — вращающаяся часть паровой турбины, компрессора, гидронасоса, гидромотора и т. д.
  • Буровой ротор — механизм, являющийся многофункциональным оборудованием буровой установки, который предназначен для вращения бурильных труб и поддержания колонны бурильных или обсадных труб при свинчивании и развинчивании в процессе спуско-подъемных операций, при поисковом бурении и капитальном ремонте скважин. Привод — цепной или карданный. Роторное бурение.
  • Ротор — устройство управления поворотом антенны в направлении приёма или передачи сигнала.
  • Ротор — любое вращающееся тело в теории балансировки.
  • Ротор — система вентилятора.

Ротор (слева) и статор (справа) электродвигателя в разборе в электротехнике

  • Ротор — вращающаяся часть электрической машины (генератора или двигателя переменного тока внутри неподвижной части — статора). Ротор асинхронной электромашины обычно представляет собой собранное из листовой электротехнической стали цилиндрическое тело с пазами для размещения обмотки. Ротор в электромашинах постоянного тока называется якорем.
  • Ротор — автоматически управляемая машина (транспортное устройство, прибор), в которой заготовки двигаются вместе с обрабатывающими их орудиями по дугам окружности. Роторная печь. Роторный экскаватор. Роторная линия (комплекс роторов).

в авиации

  • Ротор — несущий винт вертолёта.

в ветроэнергетике

  • Ротор Дарье — составная часть вертикально-осевого ветрогенератора, крыльчатка которого представляет собой двояковыпуклые лопасти, закреплённые при помощи штанг на вертикально вращающейся оси.
  • Ротор Савониуса — составная часть вертикально-осевого ветрогенератора в виде двух смещенных относительно друг друга полуцилиндрических лопастей и небольшого (10—15 % от диаметра лопасти) перекрытия, которые образуют параллельно оси вращения ротора.

в судостроении

  • Ротор Флеттнера — «парусная мачта» или заменяющий паруса ротор (на судне их устанавливается несколько), с помощью которого судно приводится в движение посредством ветра, благодаря эффекту Магнуса. Роторное судно Флеттнера.

собственные имена

  • Ротор, Артуро (1907—1988) — филиппинский врач, государственный служащий, музыкант и писатель.
  • РОТОР — Сетевой конкурс «Российский Онлайн ТОР».
  • НПО «Ротор» — предприятие — разработчик и производитель гироскопических приборов для ракетно-космической техники (СССР, Россия).
  • «Ротор» — промышленное предприятие в Барнауле.
  • «Ротор» — футбольный клуб из Волгограда (в 2015—2018 годах «Ротор-Волгоград»).
    • «Ротор-2» — фарм-клуб футбольного клуба «Ротор».
    • «Ротор-2» — название футбольного клуба «Динамо» Михайловка в 1997 году.
    • «Ротор» — название футбольного клуба «Текстильщик» Камышин в 1998 году.
    • «Ротор-Волгоград» — пляжный футбольный клуб из Волгограда.
    • «Ротор» — тренировочная база в Волгограде.
    • «Ротор» — официальный журнал волгоградского футбольного клуба.
  • «Ротор» — киргизский футбольный клуб из Бишкека.

.
Если вы попали сюда из текста другой статьи Википедии, пожалуйста, вернитесь и так, чтобы она указывала на нужную статью.

Ротор турбины состоит из следующих основных деталей: дисков или барабанов, рабочих лопаток, вала, упорного гребня и соеди­нительной муфты. На роторе реактивных турбин устанавливают разгрузочный поршень или думмис. По конструктивному исполне­нию роторы подразделяются на дисковые, барабанные и комбини­рованные. Выбор конструкции ротора зависит от типа турбины. В активных турбинах применяют дисковые роторы, в реактив­ных— обычно барабанные роторы и в активно-реактивных — ком­бинированные.

По способу изготовления различают роторы цельнокованые, со­ставные и сварные.

В зависимости от частоты вращения роторы могут быть жест­кими или гибкими. Жесткие роторы работают при частоте враще­ния значительно ниже критической, а гибкие роторы — при ча­стоте вращения выше критической. Практически рабочая частота вращения при номинальной мощности

Критической (nкр) называется частота вращения ротора, при которой частоты его вынужденных и собственных колебаний сов­падают. При критической частоте вращения наступает резонанс и ротор начинает вибрировать с увеличивающейся амплитудой ко­лебаний, что может привести к его разрушению.

Для большей надежности роторы главных судовых турбин почти всегда выполняют жесткими. При этом напряжения, возни­кающие от совместного действия изгиба и кручения, укладыва­ются в допустимые пределы. Гибкие роторы применяют в турбо­генераторах, работающих с постоянной частотой вращения. При использовании гибких роторов диаметры вала (в местах располо­жения диафрагм), шеек подшипников и наружных уплотнений меньшие, в результате чего уменьшается вес ротора, снижаются потери пара на трение в подшипниках и утечка пара через уплот­нения, а также расход масла.

Дисковые роторы выполняют цельноковаными и составными. Цельнокованые роторы изготовляют ИЗ ОДНОЙ ПОКОВКИ, и диски составляют одно целое с валом. Уплотнительные втулки, паро- и маслозащитные кольца, упорные гребни, соединительные муфты и прочие детали этих роторов боль­шей частью делают съемными, и их посад­ка на вал осуществляется с натягом. Со­ставные роторы состоят из гладкого или слегка ступенчатого вала и насаженных на него дисков.

На рис. 24 показан цельнокованый ро­тор ТНД ТЗА для сухогрузных судов типа «Ленинский комсомол». Ротор имеет де­вять дисков 6 переднего хода и три диска 7 заднего хода. С наружных сторон крайних дисков выточены канавки 8 («ласточкин хвост») для размещения груза при балан­сировке ротора. Отверстия 5 в дисках явля­ются разгрузочными. На всех дисках про­точены Т-образные пазы для установки ра­бочих лопаток. Шейками 4 ротор удержи­вается в опорных подшипниках. Заодно с ротором выточен упорный гребень 3 упор­ного подшипника и полумуфта 1 для пере­дачи мощности от турбины к редуктору. Центральное сверление 2 выполняется для того, чтобы уменьшить вес ротора и чтобы можно было контролировать качество по­ковки. С носовой стороны к ротору присо­единяют вал 10 с рабочим колесом 11 изме­рителя скорости. Гребни с канавками 12 предназначены для уплотне­ний, а специальный гребень 9 предохраняет паровые уплотнения от проникновения масла.

В случае больших диаметров ступеней применяют составные дисковые роторы. При нагревании диаметр диска несколько увеличивается, что может вызвать ослаб­ление его посадки на валу. Поэтому посад­ка диска всегда производится с некоторым натягом.

Для предохранения дисков от провора­чивания применяют шпонки, обычно уста­навливаемые симметрично (по две) для лучшей балансировки ротора.

Посадка дисков осуществляется непосредственно на вал ротора или па конические втулки. При непосредственной посадке вал изготовляют ступенчатым, с рядом уступов, на каждый из которые насаживают один или два диска. Перед посадкой диски нагре­вают до 150—200° С в масляной ванне или при помощи специаль­ных электротрансформаторов. Крайние диски укрепляют на валу стопорной втулкой.

На рис. 25 показана посадка дисков с помощью разрезных конических втулок. Натяг получают при запрессовке втулки 1 на определенную глубину. Установочное кольцо 2 обеспечивает зазор между соседними дисками в пределах 0,10—0,15 мм.

Барабанные роторы применяют в реактивных турбинах, у которых окружные скорости сравнительно невелики. По конструктив­ному исполнению они делятся на три типа: цельнокованые со сквозным центральным отверстием, применяемые в основном для быстроходных реактивных турбин небольшого диаметра; полые составные с отдельно откованными одной или обеими шейками вала; составные из насаженных на вал дисков или сваренные из отдельных дисков. На рис. 26 показан барабанный ротор, сварен­ный из отдельных дисков, по форме близких к диску равного со­противления. Кормовой вал 1 откован заодно с разгрузочным ди­ском (думмис) 2, а носовой 5 — заодно с последним диском 4. Двухвенечное регулировочное колесо 3 выполнено в виде отдель­ного кованого диска, сваренного с барабаном.

Комбинированные роторы используют в судовых турбинных установках большой мощности. Наиболее нагруженная часть ро­тора выполняется в виде диска, а менее нагруженная — в виде легкого полого барабана. Встречаются комбинированные роторы, в которых вал обычно со стороны высокого давления откован за­одно с дисками, а в части низкого давления на вал насажены диски; в некоторых конструкциях на шейку цельнокованого или составного барабанного ротора насаживают один или несколько дисков и т. д.

Турбинные валы изготовляют коваными из углеродистой стали для вспомогательных турбин, имеющих небольшие напряжения, и из легированных сталей с присадками никеля, хрома, молибдена, ванадия и др. для главных турбин.

Допускаемые касательные напряжения от совместного действия изгибающего и крутящего моментов для валов из углеродистой стали принимают 35—40 Мн/м2 (350—400 кгс/см2) и для валов из легированной стали — до 65 Мн/м2 (650 кгс/см2).

Отдельные детали ротора (диски, соединительная муфта и др.) подвергаются статической балансировке, а ротор в собранном виде динамической балансировке.

>1.3. Обмотки машин переменного тока

1.3.1. Классификация обмоток

В машинах переменного тока применяются следующие виды обмоток.

1. Обмотки, расположенные в пазах статора или ротора, и подключенные к внешней цепи.

2. Обмотки, расположенные в пазах статора или ротора и замкнутые накоротко.

3. Обмотки, по которым протекает постоянный ток, например, обмотки возбуждения синхронной машины, создающие магнитное поле.

Простейшим элементом обмотки является виток, представляющий совокупность двух последовательно соединенных проводников находящихся на расстоянии близком или равном – шагу обмотки. Совокупность нескольких последовательно соединенных витков образуют катушку или секцию. Нередко катушкой называют несколько секций, объединенных общей изоляцией. В машинах переменного тока применяются катушечные и стержневые обмотки, петлевые и волновые.

Катушечные обмотки изготавливаются в виде катушек вне машины, а затем укладываются в пазы.

Стержневые обмотки выполняются из стержней – полукатушек. Они также могут укладываться через отверстия в пазы. Если пазы полузакрытые, то стержни укладываются в них с торцов.

Пазы могут быть:

  • открытыми (рис.1.15,а);

  • полуоткрытыми (рис.1.15,б);

  • полузакрытыми (рис.1.15,в,г);

  • закрытыми (рис.1.15,д).

По форме:

  • прямоугольными (рис.1.15,а,б);

  • трапециевидными (рис.1.15,в);

  • овальными (рис.1.15,г);

  • круглыми (рис.1.15,д).

Обмотки АМ могут быть однослойными и двухслойными.

1.3.3. Двухплоскостная и трехплоскостная обмотки

Двухплоскостная однослойная обмотка с указанными данными изображена на рис. 1.16. Она состоит из катушечных групп, которые образуются посредством соединения двух катушек, различных размеров. Одна катушка охватывает другую. В силу этого, обмотка называется концентрической. Например, для фазы U имеем:

y>τ ; 1→8 наружная катушка,

y<τ ; 2→7 внутренняя катушка,

τ=6 пазов.

Особо подчеркнём, что в данном случае порядок соединения катушечных сторон в пределах катушечной группы не влияет на величину ЭДС катушечной группы и может быть приведена к полному шагу.

Изображенная (см. рис. 1.16), обмотка состоит из трёх фаз, причём каждая фаза состоит из двух последовательно соединённых катушечных групп: одной короткой и одной длинной. Лобовые части катушечных групп располагаются в двух плоскостях, следовательно, обмотка двухплоскостная.

Как показано на схеме, начала фаз U1;V1;W1 сдвинуты на 1200 эл. градусов, аналогично U2;V2;W2.

Попутно отметим, что в технической литературе можно встретить следующие обозначения выводов обмоток:

начала обмотки статора С1 , С2 , С3,

концы обмотки статора С4 , С5 , С6,

начала обмотки ротора Р1 , Р2 , Р3,

концы обмотки ротора Р4 , Р5 , Р6.

Согласно последнему ГОСТ 26772–85:

начала обмоток статора обозначаются символами U1;V1;W1,

концы обмоток статора обозначаются символами U2;V2;W2.

Если машина имеет p пар полюсов, то обмотка будет состоять из р последовательно соединённых катушечных групп.

Рассмотренная обмотка может быть выполнена с расположением лобовых частей в трёх плоскостях. Такую обмотку называют трёхплоскостной (рис. 1.18).

Концентрические обмотки выполняются из катушек различных размеров и форм, что затрудняет их изготовление. Они требуют значительного расхода провода на лобовые части. В этом отношении более предпочтительными являются равносекционные шаблонные обмотки, изготовленные из катушек одинаковой ширины и формы. Они наматываются на одном и том же шаблоне вне машины, после чего укладываются в пазы. Катушки могут быть выполнены как на разных шаблонах, (рис. 1.19,а), так и на одном (рис. 1.19,б).

Шаблонные обмотки включают в себя три типа:

  1. простая шаблонная обмотка,

  2. шаблонная обмотка «в развалку»,

  3. цепная обмотка.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *