Стартер для люминесцентных

Стартеры для ламп являются частью пускорегулирующей аппаратуры, которая служит для зажигания люминесцентных ламп при подключении к сети 220В с частотой 50 Гц. Помимо стартеров в состав ЭМПРА входит конденсатор и дроссель.

Содержание

Как устроены и работают стартеры для ламп

Стартер представляет собой небольшую газоразрядную лампу, в которой поддерживается тлеющий разряд. Ее корпус состоит из стеклянной колбы, которая заполняется инертным газом. В качестве него может применяться неон или гелий-водород. В колбе размещено два электрода чаще всего биметаллических. Один электрод закреплен, а второй установлен подвижно. Может применяться два подвижных электрода, что повышает надежность и быстродействие системы. В случае снижения эффективности изгиба одного электрода, это компенсирует второй.

При подаче напряжения на стартер происходит тлеющий разряд. Он поддерживается незначительным током в пределах 20-50 мА. Тлеющий разряд поднимает температуру внутри колбы, от чего происходит разогрев подвижного биметаллического электрода, в результате чего он изгибается и прикасается ко второму. При замыкании цепи разряд переходит на соединительный дроссель и в последующем на саму лампу, вызывая ее подогрев. В это время ток заряда в самом стартере прекращается, поэтому его электроды охлаждаются и разгибаются. В результате в электрической цепи создается импульс высокого напряжения, который передается на дроссель и зажигает люминесцентную лампу, провоцируя ее стойкое белое свечение.

Цель стартера заключается в подогреве лампы, поскольку в противном случае она просто не зажжется при подаче напряжения. Подобный эффект можно наблюдать пытаясь включить низкокачественную люминесцентную лампочку на морозе. Если в тепле она работает безотказно, то в холоде не светит.

Для обеспечения продолжительного ресурса эксплуатации пускателя требуется наличие конденсатора. Его задача заключается в сглаживании экстра токов, благодаря чему осуществляется размыкание электродов прибора. Без наличия конденсатора электроды просто спаяются между собой. Конденсатор имеет емкость от 0,003 до 0,1 мкФ. Зачастую в конструкции люминесцентных ламп, особенно с патроном Е27, предусматривается подключение двух последовательно соединенных конденсаторов емкостью каждого по 0,01 мкФ. Это необходимо для компенсации создания радиопомех, которые обычно наблюдаются при работе ламп дневного света.

Специфика работы стартера требует соблюдение определенного напряжения. В случае его падения до уровня 80% лампочка не загорится, поскольку пускатель не сможет правильно ее прогреть. Дело в том, что напряжение зажигания самого стартера должно быть ниже, чем напряжение в сети, к которой он подключен. При этом рабочее напряжение вызывающее свечение самой люминесцентной лампы должно быть ниже, чем у пускателя.

Срок службы стартера и признаки его скорого выхода из строя

Стартеры для ламп выходят из строя чаще, чем непосредственно сама лампочка. По мере применения пускового устройства напряжение образующее тлеющий разряд снижается. Как следствие может наблюдаться замыкание между электродами стартера даже при работе лампы, когда она уже издает свет. Как следствие лампочка гасится и снова зажигается, что человеческим глазом воспринимается как мерцание. Симптомом начала таких проблем является легкое мигание при длительной работе, или вначале до набора максимального свечения.

В это время внутри стартера электроды то присоединяются, то разъединяются. Как только контакт между ними прекращается лампа горит. Подобные блики не только мешают, но и опасны для других элементов лампы, в первую очередь наблюдается перегрев дросселя. Может выйти из строя и сама колба.

Люминесцентные лампочки предлагаются в различных форматах. Лампы, применяемые в обыкновенных люстрах и светильниках, сделаны под цоколь Е14 и Е27. В этом случае стартер прячется прямо в корпусе лампочки, поэтому как только он выходит из строя, то меняется весь механизм. Для вытянутых ламп, устанавливаемых в потолочные светильники, применяются отдельные пусковые устройства. Такие стартеры для ламп нужно своевременно менять, чтобы предотвратить выход из строя всей осветительной системы.

Фактический ресурс стартера позволяет осуществлять не менее 6000 включений. Это довольно много, ведь даже пользуясь светом дважды в день, ресурс израсходуется только через 8 лет. Конечно, свет может включаться и отключаться гораздо чаще, поэтому стартеры для ламп на практике служат намного меньше.

Стартеры для ламп являются довольно специфической конструкцией, главный недостаток которой в низкой надежности. Зачастую устройство отказывает, в результате чего возникает фальстарт в виде несколько вспышек света при нажатии на включатель. Как следствие после короткого мерцания полноценное свечение так и не происходит. Любые неполадки пускателя негативно сказываются на ресурсе самой лампочки. Проблемы с запуском снижают и коэффициент полезного действия осветительного оборудования, увеличивая потребление энергии, что сопровождается малым количеством выделяемого света.

По мере эксплуатации рабочее напряжение стартера снижается, в то время как у самой лампы повышается. Такая несовместимость провоцирует возникновение тлеющего разряда даже в том случае, если лампочка уже светит, что тоже провоцирует мигание. Со временем стартер может терять в уровне эффективности разогрева лампы. В результате нажимая на выключатель, свет просто не зажигается. Чтобы все заработало, приходится по несколько раз жать на клавишу. При каждом срабатывании лампа понемногу прогревается, пока не достигнет достаточной температуры для свечения. При этом создается впечатление, что вся проблема в самом выключателе, а точнее его контактами. По этой причине осуществляется сильное надавливание на его клавишу.

Критерии выбора

Выбирая стартер под определенный тип ламп, требуется в первую очередь обращать внимание на следующие показатели:

  • Ток зажигания.
  • Напряжение.
  • Уровень мощности.
  • Тип применяемого конденсатора.

Что касается тока зажигания, он должен быть выше рабочего напряжение лампы, но не ниже напряжения в сети питания. Только при соблюдении таких условий освещение будет работать корректно.

Базисное напряжение может составлять 127 или 220В. При включении в одноламповую схему применяется устройство на 220В. Для двухламповых систем используются стартеры на 127В.

Одним из самых важных критериев выбора стартера является уровень его мощности. Он измеряется в ваттах (Вт) и прописывается на боковой части корпуса стартера. В отдельных случаях мощность может изображаться на торцевой части стартера выдавленной в пластике. Подавляющее большинство представленных в продаже пускателей производятся с мощностью 60, 90 и 120 Вт. Также бывают стартеры для ламп с диапазоном мощности 4-22 Вт, 4-65 Вт и так далее.

В некоторых странах, в том числе и России, для обозначения параметров стартера применяется маркировка. На поверхность корпуса устройства наносится буквенно-цифровая надпись ХХ-С-ХХХ. Сначала идут две цифры, которые указывают на мощность устройства. Потом указывается буква «С», обозначающая что применяемый прибор это стартер. Дело в том, что при незнании пускатель можно спутать с конденсатором или другими устройствами, поэтому присутствие в маркировке «С» позволяет избежать подобных ошибок. Сразу после буквы идет трехзначное число, которое указывает на напряжение, применяемое для работы. Это может быть 127 или 220В.

Многие производители, поставляющие свою продукцию на рынки всего мира, применяют свою собственную фирменную маркировку. В этом случае для удобства потребителей помимо собственного буквенно-цифрового обозначения применяется и стандартная расшифровка с указанием параметров мощности и напряжения. Далеко не все бренды указывают на корпусе устройства для скольких лампочек оно может поменяться. При отсутствии нужной информации ее нужно искать в инструкции.

Процесс замены пускателя

Рекомендуется менять стартеры для ламп вместе с самими лампами. В этом случае новые устройства не выйдут из строя в неподходящий момент, из-за износа старых элементов в схеме подключения.

Замену нужно осуществлять не только при полном перегорании лампы, но и в случае:

  • Мерцания.
  • Длительной задержки при включении.
  • Сильного шума при работе.
  • Существенного падения яркости.
  • Самовольного отключения на продолжительный срок с последующим включением.

В случае с люминесцентными лампами в формате цоколя Е14 и Е27 прибор просто выкручивается, а на его место ставится новая лампочка. Длинные лампы потолочного типа меняются по другой схеме. Колба лампочки поворачивается по своей осина на 45 градусов в направлении часовой стрелки. В результате ее электроды сдвигаются до выходного шлица. После этого лампа вытягивается. Стартер скрыт за отражающей крышкой светильника, поэтому ее нужно также демонтировать. Она может крепиться защелками или винтами. После извлечения крышки можно увидеть закрепленный в посадочном гнезде стартер. Он просто поворачивается против часовой стрелки до характерного щелчка и вытягивается как вилка из розетки. На его место ставится новый стартер.

Описание принципа работы

Стартер, используемый для зажигания люминесцентных ламп, характеризуется более низким напряжением, чем в электросети. При этом напряжение пускового устройства превышает аналогичный рабочий параметр источника света. Когда говорится, что стартер газоразрядных ламп вводится в работу первым, имеется в виду, что при подключении к сети питания все напряжение прикладывается именно к данному элементу, в частности, к его электродам.

Результатом данного процесса является тлеющий разряд, посредством его тока осуществляется прогрев электрода пускового устройства, а именно, с биметаллической пластиной. Это приводит к его изгибанию, что, в свою очередь, обеспечивает замыкание цепи. Затем ток проходит дальше: через дроссель и люминесцентную лампу. Схема предполагает последовательное соединение двух названных элементов, а стартер подключен параллельно к источнику света.

Далее, описывается принцип работы люминесцентных ламп: катод под действием проходящего по цепи тока прогревается, продолжительность этого процесса определяется тем, как долго электроды пускового устройства будут находиться в замкнутом положении; зажигание источника света выполняется под воздействием дросселя, в котором на момент размыкания контактов стартера возник высоковольтный импульс.

Классификация пускового устройства осуществляется на основании различий в уровнях мощности ламп:

  • от 4 до 22 Вт; от 4 до 65 Вт; от 4 до 80 Вт;
  • 18-22 Вт, 18-65 Вт;
  • 30-65 Вт;
  • 70-125 Вт;
  • от 80 до 140 Вт.

Тип используемого стартера определяется мощностью люминесцентных ламп и особенностями схемы. Существует большое количество разнотипных пусковых устройств. Например, исполнение SТ 111 (маркировка 220V 4-80W) применяется в схеме, которая предполагает использование ламп мощностью 4-80 Вт и напряжением 220 В. А вариант ST151 применяется при подключении к сети 110/127 В (маркировка 127V 4-22W).

Целесообразность использования конденсатора

Схема предполагает необходимость последовательного соединения дросселя и лампы, а стартер подключается к источнику света параллельно. Дополнительно к тому, пусковое устройство параллельно соединено с конденсатором.

Схема подключения газоразрядных лампочек:

Схема подключения

На рисунке стартер обозначен как Ст, рассматриваемый конденсатор – С1, лампа – Л, дроссель – Д. Данный вариант не подходит для ЭПРА (электронный пускорегулирующий аппарат). Задача конденсатора С1 заключается в снижении уровня помех в процессе замыкания/размыкания контактов пускового элемента.

Схема устройства стартера

Строение данного прибора несложное:

На рисунке показана схема работы стартеров. Основные элементы: 1 – контакты, 2 – неподвижный электрод, 3 – стеклянная колба, 4 – подвижный электрод с биметаллической пластиной, 5 – цоколь неоновой лампы.

Как долго служит стартер?

В теории считается, что продолжительность работы стартеров эквивалентна сроку функционирования лампы. Со временем интенсивность напряжения тлеющего разряда внутри неоновой колбы заметно снижается.

Нередко при этом электроды пускового устройства замыкаются, когда лампа находится во включенном состоянии. Это еще одна причина, объясняющая, почему электронный пускорегулирующий аппарат (ЭПРА) лучше, чем ЭмПРА.

Обзор производителей

Многие известные марки, под которыми выпускается разнотипная светотехническая продукция (светильник, лампа и прочее), занимаются производством и стартеров (код по ОКПД 31.50.42.190).

Импортных комплектующих — лампы, дросселя, стартера и конденсатора

Одни из наиболее надежных производителей: Philips, Osram, Sylvania, General Electric. Их стоимость несколько выше, но зато светильник с газоразрядным осветительным элементом будут функционировать более эффективно.

Таким образом, если планируется подключение люминесцентного источника света посредством ЭмПРА, а не ЭПРА, тогда нужно подобрать пусковое устройство хорошего качества, так как от этого будет зависеть продолжительность работы лампы.

Схема подключения предусматривает также установку конденсатора, посредством которого частично сглаживаются возникающие во время функционирования помехи. Если со временем отмечаются некоторые проблемы при эксплуатации светильника с газоразрядной лампочкой, стартер необходимо сразу заменить, так как несвоевременное замыкание и размыкание контактов приближает окончание службы осветительного элемента.

Как устроено приспособление?

Опционально стартер (пускатель) достаточно прост. Элемент представлен небольшой газоразрядной лампой, способной формировать при низком давлении газа и малом токе, тлеющий разряд.

Этот стеклянный малогабаритный баллон заполнен инертным газом – смесью гелия или неоном. В него впаяны подвижные и неподвижные электроды из металла.

Все электродные спирали лампочки оснащены двумя клеммными блоками. Одна из клемм каждого контакта задействована в цепи электромагнитного балласта. Остальные — подключены к катодам пускателя.

Расстояние между электродами пускателя не существенно, поэтому посредством напряжения сети его легко можно пробить. При этом образуется ток и нагреваются элементы, входящие в электроцепь с определенной долей сопротивления. Именно стартер и входит в число этих элементов.

Конструкции стартеров для люминесцентных ламп имеют практически идентичное устройство: 1 – дроссель; 2 – стеклянная колба; 3 – пары ртути; 4 – клеммы; 5 – электроды; 6 – корпус; 7 – биметаллический контакт; 8 – инертная газовая субстанция; 9 – вольфрамовые нити накала ЛДС; 10 – капля ртути; 11 – разряд дуги в колбе (+)

Колба размещена внутри корпуса из пластмассы или металла, выполняющего роль защитного кожуха. В некоторых образцах сверху крышки дополнительно есть специальное смотровое отверстие.

Самым востребованным материалом для производства блока считается пластик. Постоянное воздействие высоких температурных режимов позволяет выдержать специальный состав пропитки — люминофор.

Приспособления выпускаются с парой ножек, выполняющих роль контактов. Они изготовлены из разных видов металла.

В зависимости от типа конструкции электроды могут быть симметричными подвижными или асимметричными с одним подвижным элементом. Их выводы проходят через патрон лампы.

Параллельно электродам колбы подключен конденсатор, емкостью 0,003-0,1 мкф. Это важный элемент, снижающий уровень радиопомех и также участвующий в процессе загорания лампы

Обязательной деталью в устройстве является конденсатор, способный сглаживать экстратоки и в тоже время размыкать электроды прибора, осуществляя гашение дуги, возникающей между токоведущими элементами.

Без этого механизма есть большая вероятность спайки контактов при возникновении дуги, что существенно снижает срок эксплуатации пускателя.

В быту наиболее популярны образцы балластов с симметричной системой контактов и электросхемой пуска. Такие образцы меньше подвергаются влиянию падения напряжения в электрической сети

Правильная работа стартера обусловлена напряжением питающей сети. При снижении номинальных величин до 70-80%, люминесцентная лампа может не зажечься, т.к. не будет производиться достаточный нагрев электродов.

В процессе подбора нужного пускателя, учитывая конкретную модель лампы дневного света (люминесцентной или ЛЛ), необходимо дополнительно проанализировать технические характеристики каждого вида, а также определиться с производителем.

Принцип работы аппарата

Подав сетевое питание на светотехнический прибор, напряжение проходит через витки дросселя ЛЛ и нить накала, выполненную из монокристаллов вольфрама.

Далее подводится к контактам стартера и образует между ними тлеющий разряд, при этом воспроизводится свечение газовой среды посредством ее нагрева.

Поскольку в устройстве есть еще один контакт – биметаллический, он также реагирует на изменения и начинает изгибаться, видоизменяя форму. Таким образом этот электрод замыкает электрическую цепь между контактами.

Величина тока, сформированного тлеющего разряда варьируется от 20 до 50 мА, чего вполне достаточно для разогрева биметаллического электрода, который отвечает за замыкание цепи (+)

Образовавшийся в электросхеме люминесцентного прибора замкнутый контур проводит через себя ток и нагревает вольфрамовые нити, которые, в свою очередь, начинают испускать электроны со своей нагретой поверхности.

Таким образом формируется термоэлектронная эмиссия. В это же время воспроизводится разогревание ртутных паров, находящихся в баллоне.

Образованный поток электронов способствует снижению напряжения, приложенного от сети к контактам пускателя, примерно вдвое. Степень тлеющего разряда начинает падать вместе с температурой накала.

Пластина из биметалла уменьшает свою степень деформации тем самым размыкая цепочку между анодом и катодом. Течение тока через этот участок прекращается.

Изменение его показателей провоцирует внутри дроссельной катушки, в проводящем контуре, возникновение электродвижущей силы индукции.

Биметаллический контакт моментально реагирует произведением краткосрочного разряда в подсоединенной к нему схеме: между вольфрамовыми нитями ЛЛ.

Его значение доходит нескольких киловольт, чего вполне достаточно для пробивания инертной среды газов с нагретыми ртутными парами. Между концами лампы образуется электродуга, продуцирующая ультрафиолетовое излучение.

Поскольку такой спектр света не видимый для человека, в конструкции лампы есть люминофор, поглощающий ультрафиолет. В итоге визуализируется стандартный световой поток.

При изменении тока в контуре или его полного прекращения пропорционально происходят изменения магнитного потока через поверхность пластины, что ограничивает этот контур и приводит к возбуждению в этой схеме ЭДС самоиндукции

Однако напряжения на пускателе, подсоединенного параллельно лампе, недостаточно для формирования тлеющего разряда, соответственно, электроды остаются в разомкнутой позиции в период свечения лампы дневного света. Далее стартер не используется в рабочей схеме.

Поскольку после продуцирования свечения показатели тока нужно лимитировать, в схему вводится электромагнитный балласт. За счет своего индуктивного сопротивления он выполняет роль ограничивающего устройства, предотвращающего поломки лампы.

Виды стартеров для люминесцентных приборов

В зависимости от алгоритма работы, пусковые устройства делят на три основных вида: электронные, тепловые и с тлеющим разрядом. Несмотря на то, что механизмы имеют различия в элементах конструкции и в принципах работы, они выполняют идентичные опции.

Пускатель электронного типа

Процессы, воспроизводимые в системе контактов стартеров, не являются управляемыми. Помимо этого, значительное воздействие на их функционирование оказывает температурный режим окружения.

Например, при температуре ниже 0°C скорость нагревания электродов замедляется, соответственно, прибор будет затрачивать больше времени на зажигание света.

Также при нагреве контакты могут спаиваться друг с другом, что приводит к перегреванию и разрушению спиралей лампы, т.е. ее порче.

Большинство моделей электронных балластов для ЛДС выпущены на базе микросхемы UBA 2000T. Такой тип устройства позволяет устранить перегрев электродов, за счет чего существенно увеличивается эксплуатационный срок контактов лампы, соответственно, и период ее работы

Даже корректно функционирующие устройства с течением времени имеют свойство изнашиваться. Они дольше сохраняют накал контактов лампы, тем самым уменьшая ее производственный ресурс.

Именно для устранения такого рода недостатков в полупроводниковой микроэлектронике стартеров были задействованы сложные конструкции с микросхемами. Они дают возможность лимитировать количество циклов процесса имитации замыкания электродов пускателя.

В большинстве представленных на рынках образцах, схемотехническое устройство электронного стартера составлено из двух функциональных узлов:

  • управленческой схемы;
  • высоковольтного узла коммутации.

В качестве примера можно привести микросхему электронного зажигателя UBA2000T фирмы PHILIPS и высоковольтный тиристор TN22 производства STMicroelectronics.

Принцип работы электронного стартера основан на размыкании цепи посредством нагревания. Некоторые образцы обладают существенным преимуществом – опцией ждущего режима зажигания.

Таким образом размыкание электродов производится в необходимой фазности напряжения и при условии оптимальных температурных показателей нагрева контактов.

Полупроводниковые элементы электронного балласта должны подходить по ключевым рабочим характеристикам, а именно, соотношению значения мощности и напряжения сети подсоединенного светотехнического прибора

Важно, что при поломках лампы и неудачных попытках ее запуска такого типа механизм выключается, если их число (попыток) достигнет 7. Поэтому о досрочном выходе из строя электронного стартера и не может быть и речи.

Как только произойдет замена лампочки на исправную, приспособление сможет возобновить процесс запуска ЛЛ. Единственный минус этой модификации – высокая цена.

В схеме со стартером в качестве дополнительного метода снижения радиопомех могут использоваться симметрированные дросселя с обмоткой, разделенной на идентичные участки, с равным количеством витков, накрученных на общее устройство – сердечник.

На сегодняшний день, выпускаемые балласты имеют сборно-стержневую конструкцию. Вырубка магнитного провода осуществляется из стальных листов. Как правило, такие дроссели имеют две симметричные обмотки

Все области катушки соединены в последовательном порядке с одним из контактов лампы. При включении оба его электрода будут работать в одинаковых техусловиях, таким образом снижая степень помех.

Тепловой вид пускателя

Ключевой отличительной характеристикой тепловых зажигателей является длительный период пуска ЛЛ. Такой механизм в процессе функционирования использует много электричества, что негативно сказывается на его энергозатратных характеристиках.

Тепловой стартер также называют термобиметаллическим. Разогрев контактов происходит с замедлением, что эффективно сказывается на работе светотехнического прибора в низкотемпературной среде

Как правило, этот вид применяется в условиях низкого температурного режима. Алгоритм работы существенно разнится с аналогами других видов.

В случае отключения питания электроды устройства находятся в замкнутом состоянии, при подаче – образуется импульс с высоким напряжением.

Механизм тлеющего разряда

Пусковые механизмы, основанные на принципе тлеющего разряда, имеют в своей конструкции биметаллические электроды.

Они выполнены из металлических сплавов с различными коэффициентами линейного расширения при нагреве пластины.

Минусом зажигателя тлеющего разряда является низкий уровень импульса напряжения, из-за чего нет достаточной надежности загорания ЛЛ

Возможность розжига лампы определяется длительностью предшествующего нагрева катодов и показателей тока, протекающего через светотехнический прибор в момент размыкания цепи контактов стартера.

Если при первом рывке пускатель не зажигает лампу, он будет автоматически воспроизводить попытки до того момента, пока лампа не засветится.

Поэтому такие устройства не используются при низких температурных режимах или неблагоприятном климате, например, при повышенной влажности.

Если не будет обеспечиваться оптимальный уровень нагрева контактной системы лампа будет затрачивать много времени на розжиг или же будет выведена из строя. Согласно стандартам ГОСТа, потраченное стартером время на зажигание не должно превышать 10 секунд.

Пусковые приборы, выполняющие свои функции посредством теплового принципа или тлеющего разряда, в обязательном порядке оборудуются дополнительным устройством – конденсатором.

Роль конденсатора в схеме

Как уже было отмечено ранее, конденсатор располагается в кожухе приспособления параллельно его катодам.

Этот элемент решает две ключевые задачи:

  1. Понижает степень электромагнитных помех, создаваемых в диапазоне радиоволн. Они возникают в результате контакта системы электродов пускателя и образуемых лампой.
  2. Влияет на процесс зажигания люминесцентной лампы.

Такой дополнительный механизм снижает величину импульсного напряжения, сформированного при размыкании катодов стартера, и наращивает его продолжительность.

Конденсатор снижает вероятность слипания контактов. Если в устройстве не предусмотрен конденсатор, напряжение на лампе довольно быстро увеличивается и может доходить до нескольких тысяч вольт. Такие условия снижают степень надежности розжига ламп

Поскольку использование подавляющего устройства не позволяет достичь полного нивелирования электромагнитных помех, на входе схемы вводят два конденсатора, общая емкость которых составляет не менее 0,016 мкф. Они соединяются в последовательном порядке с заземлением средней точки.

Основные недостатки пускателей

Главным минусом стартеров является ненадежность конструкции. Отказ запускающего механизма провоцирует фальстарт – визуализируются несколько вспышек света до начала полноценного светового потока. Такие неполадки снижают ресурс вольфрамовых нитей лампы.

Пусковые аппараты образуют внушительные потери энергии и понижают КПД устройства лампы. К недостаткам также относится зависимость от напряжения и значительный разброс времени срабатывания электродов

У люминесцентных ламп со временем наблюдается повышение рабочего напряжения, тогда как у стартера, наоборот, чем выше срок службы, тем ниже напряжение зажигания тлеющего разряда. Таким образом выходит, что включенная лампа может провоцировать его срабатывание, из-за чего свет погаснет.

Разомкнувшиеся контакты пускателя вновь зажигают свет. Все эти процессы осуществляется в доли секунды и пользователь может наблюдать только мерцание.

Пульсирующий эффект вызывает раздражение сетчатки глаза, а также приводит к перегреванию дросселя, снижению его ресурса и выходу из строя лампы.

Такие же негативные последствия ожидают и от значительного разброса времени контактной системы. Его зачастую недостаточно для полноценного предварительного разогрева катодов лампы.

В итоге прибор загорается после воспроизведения ряда попыток, что сопровождаются увеличенной длительностью процессов перехода.

Если стартер подключен в цепь одноламповой схемы, в этом случае нет возможности снизить световую пульсацию.

С целью снижения негативного эффекта рекомендуется использовать такого рода схемы только в помещениях, где применены группы ламп (по 2-3 образца), включать которые необходимо в разные фазы трехфазной цепи.

Расшифровка маркировочных значений

Общепринятой аббревиатуры для моделей стартеров отечественного и зарубежного производства не существует. Поэтому рассмотрим основы обозначений по отдельности.

Декодировка значения 90С-220 выглядит так: стартер, функционирующий с люминесцентными образцами, сила которых составляет 90 Вт, а номинальное напряжение 220 В (+)

Согласно ГОСТу, расшифровка буквенно-цифровых значений -, нанесенных на корпус прибора, выглядит следующим образом:

  • – цифры, указывающие на мощность световоспроизводящего механизма: 60 Вт, 90 Вт или 120 Вт;
  • – стартер;
  • – напряжение, применяемое для работы: 127 В или 220 В.

Для реализации зажигания ламп иностранные разработчики выпускают приспособления с различными обозначениями.

Электронный форм-фактор выпускается многими фирмами.

Наиболее известная на отечественном рынке — Philips, производящая стартеры таких типов:

  • S2 рассчитаны на мощность 4-22 Вт;
  • S10 — 4-65 Вт.

Фирма OSRAM ориентирована на выпуск стартеров как для одиночного подключения осветительных приборов, так и для последовательного. В первом случае это маркировка S11 с ограничением по мощности 4-80 Вт, ST111 — 4-65 Вт. А во втором, например, ST151 — 4-22 Вт.

Выпускаемые модели стартеров представлены в широком ассортименте. Ключевые параметры, учитывающиеся при подборе — соразмерные значения характеристикам ламп люминесцентного типа.

На что смотреть при выборе?

В процессе выбора пускового механизма недостаточно основываться на имени разработчика и ценовом диапазоне, хотя и эти факторы должны быть учтены, т.к. указывают на качество прибора.

В этом случае выигрывают надежные аппараты, положительно зарекомендовавшие себя на практике. Стоит обратить внимание на такие фирмы: Philips, Sylvania и OSRAM.

Стартер FS-11 бренда Sylvania. Подбирается к лампам дневного света, мощностью 4-65 Вт. Может использоваться в сети переменного тока. Работает по принципу тлеющего разряда

Самыми основными эксплуатационными параметрами пускателя считаются такие технические особенности:

  1. Ток зажигания. Этот показатель должен быть выше рабочего напряжения лампы, но не ниже сети питания.
  2. Базисное напряжение. При подключении в одноламповую схему применяется аппарат на 220 В, двухламповую – на 127 В.
  3. Уровень мощности.
  4. Качество корпуса и его огнеустойчивость.
  5. Эксплуатационный срок. При стандартных условиях применения, стартер должен выдерживать не менее 6000 включений.
  6. Длительность разогрева катодов.
  7. Тип применяемого конденсатора.

Также необходимо учитывать индуктивное противодействие катушки и коэффициент выпрямления, отвечающий за соотношение обратного сопротивления к прямому при постоянном напряжении.

Дополнительная информация об устройстве, работе и подключении пускорегулирующего механизма люминесцентных ламп представлена в этой статье.

ЭПРА — то, что нужно каждому люминесцентному светильнику!

В статье перечислены основные преимущества ЭПРА перед устаревшими аналогами.

Потолочные и настенные светильники с люминесцентными трубчатыми лампами давно исправно служат в различных офисных, служебных и бытовых помещениях. По виду, по количеству устанавливаемых ламп и их мощности эти светильники отличаются широким разнообразием. Этим объясняется их широкая популярность. Но до относительно недавнего времени людям приходилось мириться с некоторыми их недостатками.

Дело в том, что люминесцентная лампа не может напрямую подключаться к сети, для работы ей нужны определенные условия подачи напряжения и контроль тока. Проблему эту решает пускорегулирующая аппаратура (ПРА) для люминесцентных ламп.

Прежде это был целый набор: стартер (биметаллический контакт для пуска лампы), дроссель (для сглаживания пульсаций тока) и конденсатор (для стабилизации напряжения). Вся эта в буквальном смысле «теплая компания» имела склонность сильно нагреваться, шуметь при работе и частенько выходить из строя, попутно портя лампы.

Рис. 1. Люминесцентная лампа включенная с помощью дросселя и стартера

Недостатки эти удалось устранить, когда появилась электронная пускорегулирующая аппаратура – ЭПРА. Конструктивно ЭПРА представляет собой электронный блок на одной плате, который легко монтируется в составе светильника и не занимает много места. Лампы светильника подключаются к ЭПРА по простой и понятной схеме, прилагаемой к каждому блоку, а дроссель, стартер и конденсатор просто убираются.

Люминесцентные светильники, оснащенные ЭПРА, запускаются плавно и быстро, без неприятных морганий и шума. Кроме того, блок ЭПРА греется намного меньше, чем устаревшая пусковая аппаратура, а это ведет к экономии электроэнергии. В каждом блоке ЭПРА реализовано несколько видов защит для лампы, поэтому переживать за ее сохранность и пожарную безопасность с ЭПРА уже не придется.

Рис. 2. Электронное пускорегулирующее устройство (ЭПРА)

Ну, а напоследок приведем еще одно бесспорное достоинство ЭПРА. Этот умный электронный блок обеспечивает лампам светильника ровное и приятное глазу свечение. Кто был вынужден долго работать при свете люминесцентных светильников со старой пускорегулирующей аппаратурой, тот знает, насколько быстро устают глаза от их мерцающего света.

ЭПРА полностью устраняет эту проблему, ведь не зря современными требованиями правил охраны труда во всех офисных помещениях люминесцентные светильники предписано оснащать этим надежным электронным устройством.

Александр Молоков

Стартер для ламп дневного света — важный элемент их электрической схемы. Значимость его наличия в их конструкции напрямую связана с назначением элемента. Без такого пускового приспособления срок службы источников света значительно уменьшается.

Стартер в газоразрядной лампе: назначение и устройство

При подключении ламп дневного света (ЛДС) используется пускорегулирующее устройство. Основные его элементы — это стартер (пускатель) и дроссель (электромагнитный балласт). Значимость деталей обусловлена их функциональностью.

Стартер для люминесцентных ламп (ЛЛ) выполняет такие функции:

  1. Замыкание цепи. Значительно упрощается процесс зажигания. Разогрев ламповых электродов ускоряется за счет возникновения повышенного показателя электрического тока.
  2. Разрыв электроцепи. После подачи напряжения ток через ЛЛ сразу не потечет, так как газовый промежуток внутри источника света выступает в роли изолятора. Для его пробоя необходимо напряжение, которое превысит показатель напряжения питающей сети. Посредством разрыва цепи пускателем в дросселе создается импульс повышенного напряжения, происходит быстрое зажигание лампочки.

Применяются такие устройства в электрических сетях с рабочей частотой в 50–60 Гц, напряжением в 220 В и ниже.

Технические характеристики конструкции приборов могут несколько отличаться, но основное назначение принципа их работы одно — зажигание газоразрядных источников света.

Стартер для ЛЛ: принцип работы

Целесообразно классифицировать запускающее устройство на три вида, исходя из принципа действия, а именно:

  1. Электронный пускатель. Размещается в обычном корпусе. Его полупроводниковые компоненты должны соответствовать основным рабочим требованиям соотношения показателя мощности и питающего напряжения подключенной лампы. Работа такого типа приспособления заключается в принципе ключа — размыкании цепи посредством нагрева. Приборы этого вида с таким важным параметром, как ждущий режим зажигания, считаются наиболее эффективными во время эксплуатации. Посредством этого размыкание контактов реализуется в нужной фазности напряжения и при оптимальных температурных параметрах нагрева электродов.

Важно! Применяемые в этом типе пускателя электронные элементы позволяют значительно увеличить срок эксплуатации как стартера, так и самой лампы. Единственный недостаток, в сравнении с аналогами электронного пускателя, – значительная стоимость устройства.

  1. Тепловой стартер. Характерно продолжительное время запуска источника освещения при наличии такого типа пускателя. Плохая экономичность (значительно потребляет электроэнергию) компенсируется термобиметаллическими характеристиками. Этот параметр позволяет устройствам работать при низких температурных показателях. Основное отличие от аналогов — при отсутствии напряжения контакты механизма уже замкнуты, а при подаче питания возникает импульс очень высокого напряжения.
  2. Устройства тлеющего разряда. Пускатели, основа работы которых заключается в тлеющем разрядном принципе, обустроены биметаллическими электродами. Их состав — сплавы металлов различных коэффициентов температурного расширения.

Важно! Коммутационные процессы стартеров, которые оборудованы контактной системой управления, оказываются полностью неуправляемыми. Пускатели с биметаллическими контактами не стоит применять при пониженных температурных показателях или подобных неблагоприятных условиях. Вследствие плохого нагрева биметаллических контактов светильник будет зажигаться очень долго или же полностью выйдет из строя.

Стартер для ламп дневного света, работающий по тепловому принципу или посредством действия тлеющего разряда, обязательно оснащается дополнительным элементом — конденсатором.

Стартер ламп дневного света: устройство

В основу конструкции пускателя входят такие компоненты:

  1. Корпус.
  2. Стеклянная колба. Ее внутренняя инертная газовая среда может быть наполнена гелиево-водородной смесью либо неоном.
  3. Анод и катод — два электрода. Возможны два варианта конструктивного их исполнения, а именно:
  • симметричные электроды, подвижные контакты;
  • несимметричные элементы, одна подвижная часть.
  1. Выводы электродов проходят через цоколи.

Стоит помнить! Чаще применяются на практике модели стартеров с симметричными электродными системами.

Баллон с инертной газовой средой располагается внутри корпуса — металлического или пластмассового, с верхним отверстием. Популярный материал корпуса — пластик. Посредством специальной пропитки корпус легко выдерживает высокие температурные показатели, рабочая функциональность этого параметра может несколько отличаться. Любой пускатель для ЛЛ оборудован исключительно двумя контактами, ножками.

Надежная эксплуатация стартерной системы ламп напрямую зависит от напряжения в электросети объекта (нагревание биметаллических электродов). Если происходит снижение его показателей до 80% от номинального, то лампы могут не зажечься. Только электронные компоненты определенного типа пускателей не так подвержены уменьшению напряжения в электросети.

Подобрать стартер для конкретной ЛДС не составляет труда, стоит лишь изучить определенные технические особенности разных моделей и производителей.

Выбор стартера: на что обращать внимание

Самые распространенные критерии, основываясь на которых потребители покупают элементы освещения для своего дома, — это производитель и цена. Такие параметры важны, но далеко не всегда можно выбрать подходящее конструктивное решение устройства, руководствуясь лишь этими моментами. При покупке пускового элемента стоит обратить внимание на:

  1. Номинальное напряжение. Для подключенной двухламповой системы подойдет устройство пуска, рассчитанное на 127 В. Если система подключения одноламповая, применим стартер на 220 В. В маркировке это указано.
  2. Мощность. В зависимости от уровня мощности ламп принято различать и пусковые устройства, которые также обладают разными мощностными показателями.
  3. Качественный корпус. Основной параметр — огнеустойчивость. Так как в конструкции элемента не исключен вариант возгорания за счет электродуги, перегрева.
  4. Срок эксплуатации. Этот параметр по-разному оценивается у разных производителей. К примеру, срок службы стартеров фирмы Филипс, при нормальных условиях эксплуатации, обозначенных на упаковке, подразумевает возможное количество включений лампы, превышающее 6 000 раз.
  5. Продолжительность замкнутого состояния электродов или время катодного подогрева. Разброс в значениях этой характеристики у разных производителей — значителен.
  6. Тип конденсатора.

Стоит помнить! Маркировка отечественных производителей отличается от заграничных.

Основа маркировки по ГОСТу:

  1. Буква «С» — стартер.
  2. Цифры перед «С» — это мощность источника света (60 Вт; 90 Вт или 120 Вт).
  3. Цифры после — это напряжение (127 В или 220 В).

Заграничная маркировка:

  1. Под лампы мощностью от 4 Вт до 80 Вт и с показателем напряжения в 220 В стартеры обозначаются: S10; FS-U; ST 111.
  2. Для лампочек мощностью не больше 22 Вт и напряжением 127 В пускатели маркированы: S2; FS-2; ST 151.

Обратите внимание! Маркировки по ГОСТу таких деталей для ЛДС приводятся на корпусе пускателя.

Производителей подобных элементов стартерной системы зажигания ламп достаточно много. Основной момент, на который покупатель должен обратить внимание при выборе модели, – соответствие всех технических характеристик прописанным профильным параметрам ГОСТа.

Стартер для люминесцентных ламп дневного света: ходовые модели

Важные эксплуатационные характеристики пускорегулирующего устройства источников света — индуктивность и коэффициент выпрямления.

Под индуктивностью подразумевается индуктивное сопротивление одного из основных структурных элементов системы зажигания ламп — дросселя. Этот параметр позволяет контролировать мощностные показатели электричества, которое поступает на контакты источника света.

Коэффициент выпрямления также немаловажен, поскольку отвечает за отношение обратного сопротивления к прямому при показателях постоянного напряжения на элементах зажигающего устройства. Чтобы подобрать оптимально подходящую модель стартера, обеспечив длительную работу источнику света, важно учесть эти моменты.

Стоит выделить основные характеристики и преимущества каждой модели стартерного устройства для источников света, уделив внимание самым надежным, зарекомендовавшим себя на практике. К таковым относят:

  1. Модель FS-11 компании Sylvania. Популярность модели обусловлена ее эксплуатационными характеристиками:
  • реализуется зажигание ламп мощностью от 4 Вт и до 65 Вт;
  • может эксплуатироваться в сетях переменного тока (частота — 50–60 Гц; напряжение 127 В и 220 В);
  • газовая смесь блоков с принципом тлеющего разряда, обустроены двумя контактами из меди.

Стартерные устройства фирмы Sylvania, модель FS-11, отмечены ENEC (Европейский знак качества).

  1. Модели S2. Коэффициент выпрямления — не больше 2,5 мк. Чаще производятся компанией Филипс. Единственный нюанс, которым обладают стартеры такой модификации, заключается в применении их исключительно при благоприятных температурных показателях.
  2. Стартер типа S2. Характерна полиуретановая пропитка корпуса и установка балластов электромагнитного типа. Дроссель соединяется напрямую с конденсатором. Длительность катодного подогрева у таких моделей напрямую зависит от мощности ламп. Цена — приблизительно 30 руб.

  1. Модели S10. Чаще производителем таких модификаций выступает фирма «Евросвет». Корпуса обустроены таким образом, что устройства могут эксплуатироваться при экстремальных температурных показателях. Недостаток — плохая переносимость повышенной влажности. Коэффициент выпрямления — 3,5 мк, а индуктивность — не больше 5 Гн. Для таких типов пускателей применяются дроссели с тлеющим разрядным принципом, а конденсаторы — проходного типа. Стоимость — около 40 руб.

  1. Модель «Ферон». Такая модификация производится под цоколь Р2. Незначительный коэффициентный показатель выпрямления — характерная особенность этого типа, а индуктивность может достигать 2,4 Гн. Номинальное напряжение применимо не более 12 В, используют стартеры этой модификации для подключения к показателю мощности в 60 Вт.

  1. Модель «Лемансо». Высокие технические характеристики:
  • подходят для цоколей типа Р3;
  • приборы выдерживают значительно повышенные или пониженные температурные показатели (до 40 градусов);
  • применимы под мощность около 40 Вт;
  • коэффициент выпрямления — менее 3,3 мк;
  • модели обустроены конденсатором ортодонтального типа;
  • применяется принцип тлеющего разряда дросселя;
  • ножки встроены, надежно закреплены.

У модели полное соответствие конструктивных характеристик нормам ГОСТа. Контакты нагреваются очень быстро, а сами устройства не содержат вредных изотопов. Цена — около 33 руб.

  1. Модель «Делюкс МН». Для такой модификации характерны следующие особенности:
  • подходит для цоколя типа Р3;
  • хороший показатель индуктивности;
  • применима модель для мощности не более 60 Вт;
  • выпрямляющий коэффициент — 3,3 мк;
  • конденсатор монтируется проходного типа;
  • дроссель выдерживает значительный показатель сопротивления — 40 Ом.

Корпус у такой модификации пластиковый. Купить можно за 30 руб.

  1. Модель DS2. Особенность такого типа стартера заключается в том, что разработана модификация под тип цоколя А3. Основные технические характеристики:
  • конденсатор проходного типа, емкостью 5 пФ;
  • индуктивность — около 2,2 Гн;
  • дросселем выдерживается сопротивление не больше 33 Ом;
  • монтирован надежный балласт, качественно препятствующий интерференции;
  • такая модификация устройства способна работать при нестандартных температурных показателях – как при +40 °C, так и при –15 °C.

Еще одним значимым преимуществом выступает продолжительный срок эксплуатации. Стоимость — около 45 руб.

  1. Модель СТ 151. Для нее характерны следующие параметры:
  • огнеустойчивый корпус, производится из поликарбоната;
  • ножки подвижные, посредством этого параметра исключается проблема с интерференцией;
  • выдерживают заниженные температурные показатели, вплоть до –15 °C. Стоимость — 30–32 руб.
  1. Модель «Евросвет». Электроды этой модели изготовлены из биметалла, тлеющий ток — 30 А. В качестве преимущества можно выделить надежный конденсатор и балласт электромагнитного поля. Недостатком модели выступает непереносимость заниженных температур. Индуктивность устройств такого типа — 2,5 Гн. Цена — 35 руб.
  1. Зажигатели марки Philips. Деталь этой компании представлена устройством тлеющего разряда. Преимущества заключаются в высоком качестве производства детали с соблюдением всех необходимых требований к его эксплуатации. Особенности модели:
  • конденсатор, встроенный в зажигатель;
  • материал корпуса — огнеустойчивый карбонат;
  • для активации заряда не применяются вредные изотопы;
  • легкий монтаж.
  1. Продукция OSRAM. Комплектующие, производимые этой фирмой, реализуют быстрое и безопасное включение ламп. Значимое преимущество — наличие диэлектрического огнеустойчивого корпуса из макролона. Встроены конденсаторы со специальными помехоподавляющими компонентами.
  1. Модель для ламп 4-20СК127С. Модификация применяется под конкретную модель — 4-20СК127С. Предназначены для люминесцентных источников света мощностью не больше 20 В.

Важно! Пользователю стоит понять, что нужно выбирать модель проверенного производителя и с хорошими характеристиками, ведь такая деталь прослужит намного дольше аналогичных моделей малоизвестных компаний.

Причем, если лампочка дневного света перестает функционировать, в большинстве случаев причина такой неисправности может быть вызвана поломкой стартера устройства.

Как проверить исправность стартера

Несмотря на простоту конструкции детали, выход ее из строя способен существенно навредить источнику света.

Важно! При наличии неисправного светильника с люминесцентными источниками света в первую очередь нужно проверить работоспособность пускового устройства.

Самый простой способ проверки такого зажигающего элемента лампы – замена его на аналогичное устройство. Заменить стартер достаточно просто. Если люминесцентная лампа после этого начнет работать, то причина ее неисправности была именно в поломке пускателя.

Определиться с исправностью пускателя можно также при наличии специальных измерительных приборов — мультиметра или тестера. Мультиметр значительно многофункциональнее своего аналога (тестера).

Подобрать стартер под определенные технические характеристики люминесцентного источника света не составляет труда. Пользователю достаточно руководствоваться знаниями устройства зажигающего элемента, а также разбираться в особенностях его механических и эксплуатационных характеристик.

Особое значение стоит уделить маркировке стартера, особенно — показателю мощности и номинального напряжения. От выбора качественного пускателя напрямую зависит эффективная работоспособность светильника и срок его службы.

Как работают стартеры люминесцентных ламп

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда. Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.

Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.

В некоторых конструкциях стартеров смотровое окно отсутствует. Стартер имеет два электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлен
из биметалла.

В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биметалла. Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.

Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего на­пряжения, устанавливающегося на люми­несцентной лампе при ее горении.

Схема подключения двух люминесцентных ламп через стартер.

При включении схемы на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стар­тера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА). Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.

Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, что­бы ток предварительного подогрева като­дов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предваритель­ного подогрева катодов определяется вре­менем, в течение которого электроды стар­тера остаются замкнутыми.

Когда элек­троды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются. Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.

После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.

Стартеры тлеющего заряда.

Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с. и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Со­гласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.

Параллельно электродам стартера включен конден­сатор емкостью 0,003-0,1 мкф. Этот конденсатор обыч­но размещается в корпусе стартера. Конденсатор выпол­няет две функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность.

При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжи­тельность его действия очень небольшая. В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.

Принципиальная схема включения люминесцентной лампы.

Применение конденсаторов в стартёре не обеспечи­вает полного подавления радиопомех, создаваемых лю­минесцентной лампой. Поэтому необходимо дополни­тельно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединен­ных последовательно, и среднюю точку заземлить.
Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметри­рованной обмоткой где обмотка дросселя разделе­на на две совершенно одинаковые части, имеющие рав­ное число витков, намотанных на один общий сердеч­ник.

Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дрос­селя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмот­ками.

В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного со­противления дросселя и активного сопротивления всей сети. Такие схемы называются отстающими.

В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лам­пу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается кон­денсатор, емкость которого рассчитывается таким обра­зом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.

Устройство люминесцентной лампы.

В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину. Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.

При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует. Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.

Один из недостатков рассмотренных схем — низкий коэффициент мощности. Он составляет величину 0,5-0,6. Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов согласно правилам устройства электро­установок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.

При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным. Расчеты показывают, что для ламп мощ­ностью 20 и 40 вт при напряжении 220 в емкость кон­денсатора составляет 3-5 мкф.

Основной недостаток стартерных схем зажигания — их низкая надежность, которая обусловлена ненадежно­стью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со сни­жением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических элек­тродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает кон­тактирования электродов, и лампа не будет зажигаться. Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.

Схема запуска сгоревшей люминисцентной лампы.

У люминесцентной лампы по мере старения наблю­дается увеличение ее рабочего напряжения, а у старте­ра, наоборот, с ростом срока службы напряжение зажи­гания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.

При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лам­пы. Подобные же явления могут иметь место при ис­пользовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.

Стартеры имеют значительные разбросы времени кон­тактирования электродов, и оно очень часто недостаточ­но для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после не­скольких промежуточных попыток, что увеличивает дли­тельность переходных процессов, снижающих срок служ­бы ламп.

Общий недостаток всех одноламповых схем — невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавли­вается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.

Двухламповые схемы включения. Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе. Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа — ПРА.

Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй — опе­режает на угол 60°. Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.

Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенси­рованной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *