Сопротивления обмоток трансформатора

Содержание

1 Определение степени увлажнения изоляции

Степень увлажнения изоляции обмоток силовых трансформаторов определяется по коэффициенту абсорбции:

, (2.1)

где R60 и R15- сопротивления изоляции, измеренные через 60 и 15 секунд соответственно после подачи напряжения;

или емкостными методами, в которых используется абсорбционные явления в неоднородном диэлектрике (С2/C50, ∆C/C50).(Эти методы более подробно изложены в лабораторной работе номер 3).

Измерение степени увлажнения производится по схемам, представленным в разделе 3 методических указаний.

При определении коэффициента абсорбции определяется сопротивление изоляции обмоток относительно корпуса через 15 и 60 секунд. Измерение изоляции можно проводить мегаомметрами МС-0,5, Ф-2, М4100 на 2500 В. Результаты измерений следует занести в таблицу 2.2.

Таблица 2.2 — Сопротивление изоляции обмоток трансформатора

относи­тельно корпуса

Температура ок­ружающей среды

Kаб.

Состояние

изоляции

°С

МОм

МОм

Коэффициент абсорбции (R60/R15) для трансформаторов мощ­ностью менее 10000 кВА, напряжением до 35 кВ при температуре +10…+30 °С должен быть не менее 1,3, а для трансформато­ров напряжением 110 кВ и выше

не менее 1,5.

2 Измерение омического сопротивления обмоток трансформа­тора постоянному току

При определении параметров сушки надо знать сопротивление обмоток трансформатора Rф. Измерение сопротивления обмо­ток постоянному току проводят методом амперметра и вольтмет­ра или мостом постоянного тока. Если нет выведенной нейтра­ли трансформатора (фазные обмотки соединены в звезду), то сопротивление Rизм измеряют между линейными выводами. Со­противление каждой фазы обмоток приближенно определяют по формулам:

а) при соединении обмоток звездой:

, (2.2)

б) при соединении обмоток треугольником:

, (2.3)

При измерении сопротивления обмоток высокого напряжения (ВН) можно воспользоваться схемой (рисунок 2.1). При этом пере­мычка между линейными выводами В и С не ставится. Ток при измерении должен быть не более 0,6 номинального тока обмо­ток трансформатора.

Результаты измерений омического сопротивления обмоток за­носятся в таблицу 2.3.

За расчетное сопротивление принимается среднеарифметичес­кое сопротивление обмоток 3-х фаз, приведенное к температуре 75°С.

Для обмотки ВН:

, (2.4)

, (2.5)

, (2.6)

где: t0 — температура окружающей среды.

Для обмотки НН:

, (2.7)

, (2.8)

Таблица 2.3 — Сопротивление обмоток постоянному току

№з

амера

Обмотка ВН

Обмотка НН

RВН

RВН75

RНН

RНН75

Фазы АВ

Фазы ВС

Фазы СА

Фаза а

Фаза в

Фаза с

RАВ

RВС

RСА

В

А

Ом

В

А

Ом

В

А

Ом

В

А

Ом

В

А

Ом

В

А

Ом

Ом

Ом

Ом

Ом

Омическое сопротивление — обмотка — Большая Энциклопедия Нефти и Газа, статья, страница 3

Омическое сопротивление — обмотка

Cтраница 3

Величина необходимого напряжения определяется по омическому сопротивлению обмотки и по требуемой силе тока. Схема питания должна предусматривать возможность регулирования тока и длительную работу.  

Величина необходимого напряжения определяется по омическому сопротивлению обмотки и по требуемой силе тока. В схему питания рекомендуется для регулирования тока включать реостат, рассчитанный на длительную работу.  

Это явление в основном обусловлено относительно большим омическим сопротивлением обмотки высшего напряжения, имеющей значительное число проводников при их малом сечении. В связи с этим маломощные преобразователи во многих случаях нуждаются в регулировании напряжения при изменении нагрузки.  

При проверке трансформаторов и дросселей измеряются омические сопротивления обмоток, проверяется их полярность и сопротивление изоляции между обмотками. Трехфазные трансформаторы некоторых систем, питающие фазосдвигающее устройство, имеют ( для фа-зировки) сложный комплект первичных обмоток, позволяющий при соединении этих обмоток в неравномерный зигзаг сдвигать фазу вторичных напряжений на 15 или 30 эл. При проверке этого трансформатора его первичные обмотки следует соединить в звезду по схеме, обеспечивающей синфазность первичных и вторичных напряжений.  

Кроме указанных допущений примем, что омическое сопротивление обмотки шр равно нулю.  

В целях упрощения мы не учитываем здесь омического сопротивления обмотки и потерь на гистерезис.  

После окончания расчета размещения обмоток полезно уточнить омическое сопротивление обмоток, найдя точны.  

Новые катушки следует подвергать следующим испытаниям: измерению омического сопротивления обмотки и сопротивления изоляции, испытанию изоляции витков и от корпуса повышенным напряжением, проверки числа витков. Образцы катушек, имеющих отклонение от данных завода-изготовителя, кроме того, надлежит испытывать на нагревание и достаточность тягового усилия.  

Методика испытаний предусматривает проверку внешнего вида, измерение омического сопротивления обмоток, испытание на электрическую прочность и отсутствие короткозамкнутых витков катушек. Кроме того, определяют коэффициент трансформации и измеряют напряжения и токи при холостом ходе и номинальной нагрузке, а также проводят испытания на перегрев обмоток. При испытании дросселей важно также измерить величину индуктивности обмотки при определенном токе под-магничивания.  

Методика испытаний предусматривает проверку внешнего вида, измерение омического сопротивления обмоток, испытание на электрическую прочность и отсутствие короткозамкнутых витков катушек.  

Контроль температуры обмоток в этой схеме осуществляется измерением омического сопротивления обмотки с помощью амперметра-вольтметра. В двигателях с фазовым ротором необходимо также контролировать температуру обмотки ротора.  

В этом выражении не учтено падение напряжения в омическом сопротивлении обмотки W. В течение полупериода, когда напряжение Uon отрицательно, диод Д закрыт и обмотка Wz разомкнута. В то же время транзистор Tz открыт и насыщен отрицательным напряжением, приложенным к его базе.  

Страницы:      1    2    3    4    5

О реальной точности измерения активного сопротивления обмоток трансформаторов в условиях подстанций

17 июня 2014 г.

Для организации технического обслуживания по фактическому состоянию трансформаторов с сверхнормативным сроком эксплуатации необходимы приборы контроля, в частности приборы для измерения активного сопротивления обмоток, позволяющие обнаруживать зарождение дефекта на ранней стадии. Однако реальная точность измерения в условиях подстанции большинства предполагаемых на рынке приборов не позволяет уложиться даже в нормированный допуск разброса сопротивлений обмоток трех фаз.

В настоящее время большая часть трансформаторов российских энергосистем выработала расчетный ресурс эксплуатации в 25 лет и их надежность существенно понизилась. Экономические ограничения не позволяют в короткие сроки заменить трансформаторы, поэтому необходимо продлить срок их эксплуатации. Это позволяет переходить на техническое обслуживание трансформаторов по их фактическому состоянию. И, конечно, существенное значение в обеспечении безаварийной эксплуатации имеют средства и своевременность контроля фактического состояния. Чем выше точность средств контроля, тем на более ранней стадии можно обнаружить появление устойчивой тенденции отклонения контролируемого параметра от некоторого значения, распознать развивающийся дефект и принять решение о проведении ремонта.

Измерение активного сопротивления обмоток – один из наиболее применяемых и то же время самых простых методов контроля трансформаторов. Измеренные значения сопротивлений обмоток оцениваются по результатам сравнения с паспортными данными, с предыдущими измерениями, а также обмоток между собой. К часто выявляемым при этом дефектам относятся : нарушение пайки, некачественный контакт присоединения концов обмотки к вводам, некачественный контакт в устройстве переключения без возбуждения (ПБВ) или устройстве регулирования под нагрузкой (РПН), неправильная установка привода либо обрыв токоограничивающих резисторов в устройстве РПН, обрыв одного или нескольких из параллельных проводов в отводах.

Согласно нормативным документам сопротивление обмоток трёхфазных трансформаторов не должно отличаться более чем на 2 %. Чтобы погрешность измерителя сопротивления не оказывала существенного влияния на достоверность контроля, она должна быть в несколько раз меньше (по данным ) допуска на контроль (2 %)

δ ≤ 0,5 (0,2÷0,3) 2 % или δ ≤ | ±(0,2÷0,3) % |,

где коэффициент 0,5 учитывает разные знаки погрешностей измерения сопротивлений двух обмоток.

Рассмотрим, насколько соответствуют этому требованию существующие измерители активного сопротивления обмоток трансформаторов. Число предлагаемых на рынке России таких отечественных и импортных приборов достигает порядка полутора десятков с основной относительной погрешностью измерения в нормальных условиях ±(0,2; 0,5 – 1,5) %. Следовательно, часть измерителей уже заведомо имеет погрешность, превышающую допустимую и обусловливающую риск либо неоправданной отбраковки трансформатора, либо необнаружения возникшего дефекта.

Однако основная погрешность измерителей сопротивления нормируется по результатам метрологических испытаний, проводимых на образцовых катушках сопротивления в лабораторных условиях. При эксплуатации приборов на подстанциях возникают многочисленные дополнительные погрешности, вызываемые следующими причинами:

  1. Измерение в начале поддиапазонов прибора;
  2. Широкий диапазон температур при проведении измерений;
  3. Большая индуктивность обмоток трансформатора;
  4. Наличие переходных сопротивлений окисленных контактов в устройствах ПБВ или РПН;
  5. Наведённое переменное напряжение частотой 50 Гц и импульсные помехи.

1. В большинстве приборов весь диапазон измеряемых сопротивлений разделён на несколько поддиапазонов, внутри которых значение измерительного тока остаётся постоянным. Поэтому падение напряжения на сопротивлении обмотки Rобм в начале поддиапазона значительно меньше, чем на Rобм в конце поддиапазона. Соответственно этому погрешность измерения будет меньше в конце поддиапазона и больше в его начале, что и отражает формула, нормирующая погрешность прибора.

Рассмотрим, например, формулы для нескольких приборов и вычислим по ним погрешность измерения (согласно рекомендациям ) для двух трансформаторов с сопротивлениями обмоток R1 = 2,0 Ом; R2= 2,2 Ом, измеряемых, соответственно, на общих для большинства приборов поддиапазонах 0÷2 и 0÷20 Ом.

1.1. Основная погрешность задана в виде предела допускаемой относительной погрешности δотн = ± (где Rк – верхний (крайний) предел поддиапазона, Ri – измеряемое сопротивление). Поставив их значения Rк и Ri в формулу, получим δотн(R1) = ± 0,5% для первого трансформатора и δотн(R2) ~_ ±2,3 % для второго.

1.2. Основная погрешность задана в виде предела допускаемой приведённой погрешности δп = ±0,2 %. Учитывая, что приведённая погрешность определяется по формуле , получим из неё выражение для абсолютной погрешности и найдём численные значения: Δ(R1) = ±0,004 Ом ; Δ(R2)=±0,0440Ом. Относительную погрешность результата измерения определим из выражения , тогда δотн(R1) = ±0,2 % ; δотн(R2) = ±1,8 %.

1.3. Основная погрешность задана в виде предела допускаемой абсолютной погрешности Δ = ±(0,012Ri+0,003Rк) для одного прибора или Δ = ±(0,25 % Ri+0,25 % Rк) для другого прибора. Подставив в эти формулы значения Ri и Rк получим: для первого прибора Δ(R1) = ±0,03 Ом и Δ(R2) = ±0,086 Ом; для второго Δ(R1) = ±0,01 Ом и Δ(R2) = ±0,055 Ом. Вычисляя аналогично предыдущему расчёту относительную погрешность будем иметь: для первого прибора δотн(R1) = ±1,5 % и δотн(R2) = ±3,9 %; для второго δотн(R1)=±0,5 % и δотн(R2) = ±2,5 %.

Приведённые примеры наглядно показывают значительное увеличение погрешности в начале поддиапазонов и необходимость определения фактической погрешности результата измерения предлагаемых приборов по изложенной методике, чтобы не ошибиться в выборе.

2. При измерениях в рабочем диапазоне температур возникает дополнительная температурная погрешность, паспортные значения которой в рассматриваемых приборах имеют широкий разброс от ±0,1% на весь рабочий диапазон температур до половины основной погрешности на каждые 10°С. Выше уже было показано, до каких значений может доходить основная погрешность. При измерениях на трансформаторе никто не контролирует температуру окружающего воздуха и не вносит поправки на нее результат измерения. Поэтому результирующая погрешность измерения сопротивления обмотки прибором с такой основной погрешностью и дополнительной температурной погрешностью может возрастать до (8÷10)%.

3. Выражение для напряжения на обмотке при измерении её сопротивления на токе I имеет вид: . Тогда сопротивление обмотки рассчитывается по формуле , где второй член определяет абсолютную погрешность измерения, вызванную индуктивностью трансформатора при нестабильном токе, т.е. . Разделив обе части указанной формулы на сопротивление R, получим выражение для определения дополнительной относительной погрешности измерения, вызванной нестабильностью измерительного тока: или .

В качестве примера решим по этой формуле обратную задачу: по заданной погрешности δ(R)L и известной τ определим максимально допустимое значение нестабильности измерительного тока. Для трансформатора ТРДЦН – 63000/220 экспериментально измерены следующие параметры: R=1,25 Ом, L1=80 Гн при I1=2А и L2=14 Гн при I2=5А. Задаваясь δ(R)L ≤ 0,1%, находим: δ(I)/dt ≤ 0,0016 % / 1c для τ = 64с; δ(I)/dt ≤ 0,009 % / 1c для τ = 11,2 с. Таким образом, требования к стабильности тока высоки, но насколько они выполняются – неизвестно, так как этот параметр не нормирован в документации на приборы.

4. В процессе эксплуатации на контактах переключающих устройств возникают оксидные плёнки, увеличивающие переходное сопротивление контактов, которое вносит дополнительную погрешность в измерение Rобм. Поэтому перед измерением рекомендуется произвести несколько полных циклов переключения, что помогает не всегда. Дополнительно уменьшить переходное сопротивление окисленных контактов можно путём увеличения измерительного тока, так как сопротивление плёнки зависит от направления и силы тока и обратно пропорционально его значению. Переключающие устройства устанавливаются в первичных обмотках трансформаторов. Значение сопротивления Rобм первичных обмоток различных трансформаторов напряжением 35 – 500 кВ находится в диапазоне 0,03–16 Ом. Влияние окисной плёнки будет наиболее сильным при малых значениях Rобм.

Обзор показал, что только несколько приборов позволяют проводить измерения сопротивлений до 0,15÷0,25 Ом на максимально токе 10 А и до 10÷25 Ом на токах 1÷0,1 А. Большинство же приборов измеряют на токе 10 А сопротивления Rобм ≤ 0,02 Ом или даже Rобм ≤ 0,002 Ом, т.е. только вторичные обмотки. Измерение первичных обмоток осуществляется при значительно меньших токах от 1А до 1мА, не оказывающих существенного влияния на сопротивление окисной плёнки.

5. Из-за большого реактивного сопротивления обмотки, особенно сетевой, уровень помех на ней может быть значительным. При регистрации помех с помощью цифрового осциллографа амплитуда переменного напряжения с частотой сети в отдельных случаях достигала 3,3В, а амплитуда импульсных помех – 23 В. Значение полезного сигнала на обмотке, определяемого произведением IRобм, в диапазоне сопротивлений первичных обмоток 0,03–16 Ом для рассматриваемых приборов составляет 0,3÷8 В (в лучшем случае) и 0,003÷0,02 В (в худшем).

Для подавления помех используются аналоговые и цифровые фильтры. Требуемый коэффициент подавления фильтров рассчитывается по формуле . Задаваясь, например, δпомех = 0,1%, получим К=0,7(104÷103) (для лучшего случая) и К=0,7 · 106 ÷ 1,1 · 105 (для худшего), т.е. во втором случае помехозащищенность прибора обеспечить значительно сложнее и помехи на подстанции будут вносить дополнительную погрешность.

Миллиомметр для измерения активных сопротивлений обмоток МИКО-7

При создании прибора МИКО-7 удалось избежать наиболее часто встречающихся недостатков, среди рассмотренного выше оборудования для измерения активного сопротивления:

  • специальными мерами устранена погрешность в начале шкалы поддиапазонов, поэтому предел основной относительной погрешности выражается формулой δ­отн ≤ ±0,1% в широком поддиапазоне сопротивлений от 0,5 мОм до 1 кОм, а также в поддиапазоне 10÷500 мкОм;
  • дополнительная температурная погрешность не превышает ±0,2% в диапазоне температур от -20 до +40°C;
  • уменьшена нестабильность измерительного тока до 0,001% / 1с;
  • увеличены токи при измерении сопротивлений Rобм = 0÷0,7 Ом до 10А и Rобм = 16 Ом до 2А. Вследствие этого уменьшается индуктивность обмотки, а значит и погрешность из-за нестабильности тока;
  • возросло значение полезного сигнала на сетевых обмотках до 0,3÷15В.

Миллиомметр МИКО-7 имеет ряд отличительных особенностей:

  • Высокая реальная точность измерения.
  • Автоматический выбор пределов измерения.
  • Регулируемая мощность полезного сигнала на обмотке для исключения перегрева маломощных обмоток электродвигателей и электромагнитов, а значит и увеличить их сопротивления при измерении.
  • Питание как от сети, так и от автомобильного аккумулятора.
  • Три типа измерительных кабелей разной длины и с разным захватом зажимов «крокодил» (20÷80 мм), позволяющих подключаться ко всем типам трансформаторов.
  • Прочный пыле- и водонепроницаемый кейс.
  • Масса – 3,2 кг, габаритные размеры 270×250×130 мм.
  • Возможность расширения функций прибора (за незначительную дополнительную плату):
    • автоматический расчёт относительных отклонений сопротивлений обмоток между собой;
    • автоматический пересчёт сопротивлений линейных обмоток, соединённых по схеме треугольник или звезда, в сопротивления фазных обмоток;
    • автоматический пересчёт сопротивления обмоток, измеренных при текущей температуре, в сопротивление при паспортной температуре с учётом материала обмотки;
    • вычисление температуры по измеренному сопротивлению обмотки и паспортным данным;
    • архив измерений.

Выводы:

  1. Основная погрешность части предлагаемых на рынке измерителей активного сопротивления обмоток значительно превышает максимально допустимую для достоверной оценки состояния трансформатора.
  2. В условиях подстанции реальная погрешность измерения ещё выше из-за неполного учёта (либо совсем без него) влияющих параметров. Поэтому такие приборы не соответствуют даже нормативным требованиям контроля , не говоря уж об обнаружении развивающихся дефектов в трансформаторах.
  3. Увеличению погрешности измерения способствуют недостатки, имеющиеся в правилах сертификации приборов, и отсутствие необходимых эталонов. В результате пригодность прибора, предназначенного для измерения в индуктивных цепях, доказывается на безиндуктивных эталонах сопротивления, а нестабильность тока и его минимальное значение не нормированы.
  4. Указанное несоответствие погрешностей предлагаемых приборов задачам контроля зачастую для специалистов энергопредприятий не очевидна, поэтому и приборы с неудовлетворительными техническими характеристиками пользуются спросом.
  5. Изменить сложившуюся ситуацию могли бы разработка и внедрение обязательных требований к измерителям сопротивлений, используемым на предприятиях крупнейших энергокомпаний России.
  6. Новая разработка СКБ ЭП – измеритель сопротивления МИКО-7 – полностью соответствует нормативным требованиям для достоверного контроля состояния трансформаторов и задача раннего обнаружения возникающих дефектов.

Список литературы:

  1. Алексеенко Г.В. Испытание мощных трансформаторов и реакторов. – М: Энергия, 1977.
  2. Сборник методических пособий по контролю состояния электрооборудования. Раздел 10. – М: ОРГРЭС, 1997.
  3. РД 34.45-51.300.97. Объём и нормы испытаний электрооборудования. – 6-е изд. – М.: НЦ ЭНАС, 2000
  4. РМГ 63-2003. ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. – М.: ИПК Издательство стандартов, 2004
  5. Новицкий П.В., Зограф Н.А. Оценка погрешности результатов измерений. – Л: Энергоатомиздат, 1991.

2. Определение параметров трансформатора

Для определения коэффициента трансформациип, а также параметров схемы замещения (рис. 18.2) и потерь мощности в трансформаторе проводят опыты холостого хода (опыт ХХ) и опыт короткого замыкания (КЗ) тран­сформатора.

На рис. 18.2 обозначено:

 активное и индуктивное сопротивления первичной обмотки;

и  приведенные к числу витков первичной обмотки активное и индуктивное сопротивления вторичной обмотки;

 R0  активное сопротивление намагничивающей ветви, обусловленное потерями мо­щ­ности в стальном магнитопроводе;

 Х0  индуктивное сопротивление намагничивающей ветви, обусловленное основным магнитным потоком;

 приведенное к чис­лу витков первичной обмотки сопротивление нагрузки;

 приведенные к числу витков первичной обмотки вторичное напряжение и вторичный ток.

При опыте ХХ к первичной обмотке трансформатора под­водится но­минальное напряжение (рис. 18.3)

где  полное сопротивление первичной обмотки.

При этом вторичная обмотка разомкнута (I2= 0) и напряжение на её зажимах

Измерив напряжение U20, ток I0 и активную мощность Рх и пренебрегая падением напряжения на первичной обмотке (вви­ду его небольшого значения по сравнению с ЭДС), т. е. пользуясь упрощённой схемой замещения трансформатора при ХХ (рис. 18.3,а и б), определяют:

 коэффициент трансформации

 параметры намагничивающей ветви схемы замещения трансфор­ма­тора

 потери мощности при ХХ, называемые потерями в стали Р0, которые затрачиваются в основном на на­грев магнитопровода от действия вихревых токов и циклического перемагничивания стали, т. е.

При опыте К3 (рис. 18.4) в отличие от опасного аварийного корот­кого замыкания трансформатора, возникающего случайно при работе при напряжении , к первичной обмотке подводят такое пониженное нап­ряжение(меньшее напряженияв 8…20 раз в зави­симости от типа и мощности трансформатора), при котором в его об­мотках устанавливаются токи, равные соответствующим номинальным значениям:

,

где Sн  номинальная мощность трансформатора (в ВА или в кВА).

Ввиду малости магнитного потока Ф (пропорциональ­ного пониженному напряжению ) при опыте К3 и соответственно потерь в стали (а они пропорциональны магнитному потоку в квадрате, т. е.Ф2) активная мощность, потребляемая трансформатором из сети, идёт в основном на нагрев обмоток, т. е. равна электрическим потерям (назы­вае­мыми потерями в меди Рм) в проводах обмоток:

Измерив напряжение Uк, ток I1н и активную мощность Рк, определяют:

 параметры схемы замещения при КЗ трансфор­матора (пользуясь упрощенной схемой замещения, рис. 18.4, а):

где и соответственно полное, активное и реактивное сопротивления К3 трансформатора;

 напряжение К3 (рис. 18.4, б), выраженное в процентах,

uк( ) = 100Uк /U1н;

 потери мощности при КЗ трансформатора (потери в меди)

Активное сопротивление — обмотка — трансформатор

Активное сопротивление — обмотка — трансформатор

Cтраница 1

Активное сопротивление обмоток трансформатора полагаем равным нулю.  

Активное сопротивление обмоток трансформатора вначале не учитываем.  

Активное сопротивление обмоток трансформатора вызывает потери энергии в трансформаторе.  

Активное сопротивление обмоток трансформатора гтр и его индуктивность рассеяния Ls в начале расчета выпрямителя обычно неизвестны. Поэтому, приступая к расчету схемы выпрямителя, нужно иметь возможность определить эти величины хотя бы приближенно, исходя из заданных параметров выпрямителя.  

Активными сопротивлениями обмоток трансформаторов мощностью 31 5 Мва, ввиду их незначительных величин, пренебрегаем.  

Измерение активных сопротивлений обмоток трансформаторов, генераторов, двигателей, контактов выключателей и разъединителей производится мостами, омметрами и методом амперметра и вольтметра на постоянном и переменном токе ( фиг.  

Действие активного сопротивления обмоток трансформатора сводится к снижению напряжения выпрямленного тока при протекании тока / 0 по замкнутой цепи фазы выпрямления.  

Согласно ГОСТ активные сопротивления обмоток трансформаторов, по которым определяются электрические потери и активные падения напряжения, должны быть приведены к температуре 75 С.  

Ввиду наличия активного сопротивления обмоток трансформатора и магнитных потоков рассеяния напряжение на зажимах вторичной обмотки зависит от нагрузки.  

Находим ориентировочные значения активных сопротивлений обмоток трансформатора.  

Схему замещения для активных сопротивлений обмоток трансформатора с расщепленной обмоткой можно представить в виде трехлучевой звезды аналогично схеме замещения для полных сопротивлений.  

Страницы:      1    2    3    4

  • Трансформаторы высокочастотные
  • Трансформатор звезда треугольник
  • Как подобрать трансформатор тока для трехфазного счетчика
  • Виды трансформаторов и их применение
  • Звезда треугольник трансформатор
  • Высокочастотные трансформаторы
  • Трансформатор напряжения нтми 10
  • Отличие автотрансформатора от трансформатора
  • Монтаж трансформаторов
  • Принцип работы вольтодобавочный трансформатор
  • Трансформатор напряжения для чего нужен

Испытание силовых трансформаторов

В соответствии с Правилами устройства электроустановок все силовые трансформаторы подвергаются испытаниям. Они производятся периодически в процессе эксплуатации, при вводе оборудования в работу, а также после возникновения аварийных ситуаций. Лаборатория «Технопром-Замер» выполняет комплексные испытания силовых трансформаторов с применением современного оборудования, гарантирующего высокую точность проводимых исследований. При этом проверяется соответствие оборудования данным, предоставленным заводом-производителем, и изменение его характеристик в процессе эксплуатации, соответствие их требованиям нормативных документов. Результаты испытаний оформляются протоколом установленной формы.

Виды проводимых испытаний

  • Испытание повышенным напряжением промышленной частоты.
  • Замер характеристик изоляции.
  • Измерение сопротивления обмоток постоянному току.
  • Изучение условий ввода оборудования в эксплуатацию.
  • Замер потерь на холостом ходу.
  • Определение коэффициента трансформации на каждом ответвлении.
  • Фазировка.
  • Проверка полярности выводов однофазных и групп соединения трёхфазных трансформаторов.
  • Испытание на пробой трансформаторного масла.
  • Включение толчком на рабочий режим.

Последовательность проверки силовых трансформаторов

1. Замер характеристик изоляции трансформаторов выполняется при температуре не менее +10 °С. Перед выполнением работы поверхности трансформатора и изоляторы тщательно очищаются от загрязнений. Порядок выполнения испытаний указан в таблице №1.

Схемы измерения характеристик изоляции трансформаторов

Таблица 1

Трансформаторы с двумя обмотками Трансформаторы с тремя обмотками
Измеряемые обмотки Заземлённые части Измеряемые обмотки Заземлённые части
НН
ВН
ВН+НН
Бак, ВН
Бак, НН
Бак
НН
СН
ВН
ВН+СН
ВН+СН+НН
Бак, СН, ВН
Бак, ВН, НН
Бак, НН, СН
Бак, НН, Бак

При проведении испытаний выводы обмоток одного напряжения соединяются. Выводы остальных обмоток и трансформаторный бак надёжно заземляются. В начале испытаний замеряют R15 и R60 для вычисления коэффициента абсорбции, после чего производится определение остальных параметров изоляции трансформатора.

В давно отключенных и остывших трансформаторах температуру изоляции считают равной температуре масла в верхних слоях бака. В сухих трансформаторах температура измеряется с помощью термометра, помещённого в термосигнализатор.

Измерение сопротивления изоляции производится мегаомметром 2500В, имеющим максимальный предел измерения не менее 10000 МОм. Очерёдность подключения выводов прибора определяется таблицей №1 и рисунком №1.

До начала выполнения замеров обмотки, подвергающиеся испытаниям в обязательном порядке, заземляются минимум на 2 минуты для удаления ёмкостного заряда. После подключения выводов мегаомметра согласно рисунка, рукоятка вращается со скоростью около двух оборотов в секунду, а на 15 и 60 секунде производится фиксация показаний стрелки. В соответствии с полученными значениями вычисляется коэффициент абсорбции R60 /R15, где:

R60 – показатель сопротивления изоляции, полученный по истечении минуты с начала испытаний, то есть одноминутное значение сопротивления изоляции;

R15 — показатель сопротивления изоляции, полученный по истечении пятнадцати секунд с начала испытаний, то есть пятнадцатисекундное значение сопротивления изоляции.

Параметры R60 для вводимых в эксплуатацию трансформаторов с обмотками высокого напряжения до 35 кВ, должны соответствовать параметрам, указанным в таблице №2 для масляных и в таблице №3 для сухих.

Минимально допустимые параметры сопротивления изоляции R60 обмоток

масляных силовых трансформаторов, МОм

Таблица 2

Напряжение трансформатора Температура обмотки,°С
10 20 30 40 50 60 70
До 35 кВ мощностью не более 10МВ·А 450 300 200 130 90 60 40

Минимально допустимые параметры сопротивления изоляции R60 обмоток сухих силовых трансформаторов, МОм

Таблица 3

Номинальное напряжение трансформаторов, кВ Сопротивление изоляции, МОм
до 1
от 1 до 6
свыше 6
100
300
500

При возникновении ситуаций, когда происходит расхождение между температурой измеренной при наладке оборудования и указанной в паспорте завода-изготовителя, приведение параметров изоляции производится к наиболее подходящей величине, указанной в документации на данный вид оборудования. Коэффициент абсорбции для трансформаторов напряжением до 35 кВ и мощностью не более 10000 кВ·А при температурах от 10 до 30 °С должен составлять не менее 1,3.

2. Замеры сопротивления обмоток постоянному току.

Данный вид измерений выполняется на каждом ответвлении обмоток с применением омметра «ВИТОК»

или с применением амперметра-вольтметра, подключённого согласно рисунка №2.

Измерение обмоток трансформатора с применением амперметра-вольтметра

Рисунок №2

Для измерения небольшого сопротивления вольтметр подключается непосредственно к выводам трансформатора, одновременно с этим производится замер температуры обмотки. Если масляный трансформатор находится в отключенном состоянии длительное время, температуру измеряют в верхних слоях масла. Полученное по результатам замеров значение не должно иметь более 2% отклонения от среднего значения сопротивления на остальных ответвлениях фаз или указанного в паспорте заводом-изготовителем при условии отсутствия специальных отметок в паспорте изделия.

Сравнение полученных при одной и той же температуре параметров производится по формуле R2= R1 (245+t2) / (245+t1), где:

R1 — параметры сопротивления, полученные при t1;

R2 — параметры сопротивления, полученные при t2.

3. Замер коэффициента трансформации. Выполняется с применением вольтметров, установленных на всех фазах и ответвлениях обмоток согласно рисунку №3.

Схема установки вольтметров при замере коэффициента трансформации

Рисунок №3

Подаваемое напряжение может лежать в границах от 1% номинального до рабочего, указанного на корпусе или в сопроводительной документации. Для замера параметров используется только оборудование с классом точности 0,5. Допускается проведение измерений коэффициента трансформации по фазным напряжениям. При этом испытания допускается производить как при однофазном, так и трёхфазном возбуждении трансформатора. Полученные результаты не должны иметь отклонение более 2% от указанных в паспорте изделия или полученных при измерении на том же ответвлении на других фазах. На трансформаторах с возможностью регулирования числа витков обмотки параметры должны соответствовать значениям ступеней регулировки.

4.Проверка группы соединения обмоток трансформатора.

Работа выполняется при установке оборудования, если отсутствуют заводские данные на угловое смещение векторов линейных напряжений обмотки низкого напряжения относительно векторов линейных напряжений обмотки высокого напряжения или существуют сомнения в правильности указанной информации. Группа соединений должна соответствовать информации указанной на табличке, установленной на корпусе трансформатора и в прилагаемой технической документации. Данная работа может выполняться двумя способами.

Методом двух вольтметров. У испытываемого трансформатора соединяются выводы а и А. К обмоткам ВН подаётся напряжение 220В, после чего поочерёдно измеряется напряжение между выводами фаз с-В, в-С, в-В, рисунок №4. Полученные данные сравнивают с вычисленными по формулам значениями, которые приведены в таблице №4.

Метод двух вольтметров для проверки группы соединения трансформатора

Рисунок №4

Таблица №4

К – линейный коэффициент трансформации.

Если при сравнении расчётные и измеренные параметры напряжений соответствуют друг другу, то группа соединений является правильной.

Методом постоянного тока. Однофазные трансформаторы проверяются подведением к обмоткам ВН постоянного тока от АКБ напряжением до 12 В, при этом в обмотку НН присоединяется гальванометр. В момент подачи напряжения стрелка прибора отклоняется влево при группе соединения 6 или вправо при группе соединения 0.

При работе с трёхфазными трансформаторами к выводам АВ обмотки ВН от аккумуляторной батареи подаётся постоянный ток от 2 до 12 В, а к выводам низкого напряжения ca, bc, ab поочерёдно подключают гальванометр, рисунок №5.

Схема подключения гальванометра.

Рисунок №5

После подачи напряжения отслеживается отклонение стрелки прибора и его показания записываются следующим образом, отклонение влево-минус, вправо- плюс. После этого аналогичным образом подаётся питание на выводы СА и ВС и фиксируются результаты показаний гальванометра, подключенного к выводам ca, bc, ab. Полученная информация сравнивается данными таблицы №5.

Определение группы соединения обмоток трансформатора по показаниям гальванометра

Таблица №5

Подача питания к выводам Показания стрелки гальванометра, подключенного к выводам
ав вc са ав вс са ав вс са
Для группы 0 для группы 4 для группы 8
АВ + +
ВС + + +
СА + + +
Для группы 6 для группы 10 для группы 2
АВ + + + + + +
ВС + + + + + + +
СА + + + + + +
Для группы 11 для группы 3 для группы 7
АВ + 0 0 + + 0
ВС + 0 + 0 0 0 +
СА 0 + + 0 +
Для группы 1 для группы 5 для группы 9
АВ + 0 0 + 0 +
ВС 0 + + 0 0 +
СА 0 + 0 + 0 + 0

5. Испытание повышенным напряжением.

Высоковольтные испытания маслонаполненных трансформаторов с использованием переменного тока с частотой 50 Гц выполняются после проведения работ со вскрытием бака, замены масла, ремонта обмоток или изоляции. Сухие трансформаторы подлежат испытаниям в обязательном порядке. Испытательное напряжение для различных типов трансформаторов указано в таблице №6. Время проведения испытания составляет 60 секунд.

Таблица №6

6. Измерение потерь и тока холостого хода.

Данный вид работ выполняются на трансформаторах с мощностью свыше 1000 кВа. Испытательное напряжение подключается со стороны вводов НН, его величина должна соответствовать протоколу заводских испытаний, но не свыше 380В. Потери холостого хода в трёхфазных трансформаторах замеряют при однофазном возбуждении, в соответствии со схемой предоставленной производителем. У трансформаторов с напряжением на вторичной обмотке 0,4 кВ, потери холостого хода при рабочем напряжении замеряются с использованием вольтметров и амперметров, подключенных в соответствии с рисунком №6.

Измерение потерь и тока холостого хода

Рисунок №6

При проведении испытаний напряжение подаётся на низковольтную обмотку, при этом высоковольтная оставляется разомкнутой. За подводимое напряжение допускается принимать линейное напряжение на зажимах а – с. При этом производится замер величины холостого хода Iхх и мощность Рхх. Потери и ток холостого хода рассчитываются по следующей формуле:

Iхх = (Ia + Iв + Iс)/3; Pхх = Рав + Рвс

Данные, полученные при измерении и вычислении, сравниваются с указанными в заводской документации. При расхождении полученных результатов более чем на 10%, производится поиск и устранение неисправностей, после чего провести повторные испытания.

При замере холостого хода к любой из обмоток НН при разомкнутых остальных обмотках подают рабочее напряжение номинальной частоты, а при проведении испытаний трехфазных трансформаторов, кроме этого, практически симметричное. Ток холостого хода трехфазного трансформатора Iх х. определяют как среднеарифметическое значение токов трех фаз и выражают в процентах от номинального тока Iн.

Ix.x.=(Iизм/Iн)x100

Если в процессе испытаний напряжение было ниже рабочего, ток и потери холостого хода приводят к номинальному напряжению путем экстраполяции кривых потерь и тока холостого хода.

Работы по измерению потерь, возникающих на холостом ходу трансформатора, возможно проводить напряжением 5-10% от номинального. Измеряют подводимое напряжение U1 и суммарную мощность Ризм., потребляемую испытуемым трансформатором и измерительными приборами.

Затем рассчитывают мощность, потребляемую оборудованием Рпр. Потери в трансформаторе Р10 при U1 вычисляют по формуле :

Р10= Ризм — Рпр

Потери холостого хода приводятся к номинальному напряжению по формуле:

Р0=Р10(Uн / U1)n

где Ро — потери на холостом ходу при рабочем напряжении Uн, n — показатель степени, имеющий примерные значения (при возбуждении трансформатора напряжением 5-10 % номинального), для трансформаторной стали горячего проката — 1,8, для трансформаторной стали холодного проката-1,9. Разница между полученными данными о возникающих потерях не должна превышать 10% по отношению к заводским показателям.

7. Фазировка трансформаторов

Перед включением оборудования в параллельную работу в обязательном порядке производится его фазировка. При этом выполняется замер величины пофазного напряжения и его симметрии. При выявлении не симметрии работы по фазировке останавливаются до устранения причин несовпадения фаз.

Для обеспечения бесперебойной параллельной работы силовых трансформаторов необходимо выполнить:

  • правильную фазировку включенных в параллель трансформаторов;
  • одинаковое положение устройств регулировки напряжения, анцапф и РПН;
  • одинаковые коэффициенты трансформации, напряжения КЗ группы соединения обмоток.

8. Пробное включение оборудования толчком на рабочее напряжение.

Перед проведением данного испытания необходимо убедиться в исправном состоянии защитных и блокирующих устройств. Проверить работоспособность блокировки выключателей, проверить температуру устройств на всех установленных термометрах, проверить наличие и уровень трансформаторного масла в расширительном бачке, убедиться в исправности его соединения с баком. Открыть кран маслопровода газового реле и убедиться в отсутствии в нём воздуха.

Убедиться в правильной установке устройства регулировки напряжения (анцапфы). Проверить трансформатор на отсутствие течи масла, наличие и правильность заземления бака, отсутствие забытых предметов на крышке трансформатора. Осмотреть разрядники, подключенные к линейным выводам (при их наличии).

Пробное включение оборудования выполняется со стороны установленной защиты, что позволит при необходимости быстро вывести из работы трансформатор. Цепь сигнальных контактов газовой защиты подключить на отключение. Подать рабочее напряжение на трансформатор не менее чем на 30 минут для наблюдения за его работой и прослушивания на предмет выявления нехарактерных для его работы звуков.

Убедившись в работоспособности трансформатора, его отключают от напряжения, после чего несколько раз производится толчковая подача рабочего напряжения для настройки защиты от скачков намагничивающего тока. После окончания испытаний оформляется протокол, трансформатор ставится под рабочую нагрузку и сдаётся в эксплуатацию.

Наши преимущества

Опытные инженера

  • Наши сотрудники имеют многолетний опыт испытаний и измерений.

Полная отчетность

  • Мы предоставим полную картину по проверяемому оборудованию

Профессионализм и опыт

  • Немногие компании детально разбираются в нюансах электроизмерений

Современное оборудование

  • Производим измерения современным оборудованием, это позволяет получить высокое качество и увеличить скорость измерений

Бесплатная консультация

  • Наши специалисты проконсультируют по любым вопросам.

Работы по испытанию силовых трансформаторов проводятся квалифицированными специалистами, имеющими соответствующий допуск и группу по электробезопасности, кроме того, своевременно проведенные электроизмерения помогают избежать аварии, выхода из строя электрооборудования и выявить дефекты на раннем этапе. Ознакомиться с ценами, получить консультацию, заказать услугу можно по указанным на сайте телефонам.

Для изоляции обмоток электрических машин применяется большое количество разнообразных электроизоляционных материалов, выбор которых определяется условиями работы машины и характеризуется нагревостойкостью, относительной влажностью окружающей среды, механической прочностью, озоностойкостью и другими критериями. Наиболее характерными видами дефектов изоляции обмоток электрических машин являются местные дефекты (трещины, расслоения, воздушные включения, местные перегревы и т.п.), охватывающие незначительную часть площади изоляции.

Объектом испытания в силовых трансформаторах являются, прежде всего, активная часть трансформатора, жидкий диэлектрик (для маслонаполненных трансформаторов), изоляция вводов, целостность бака, состояние средств защиты и предохранительные устройства.

При испытании трансформатора во время монтажа или ремонта измеряют ряд характеристик для определения их состояния или качества ремонта. Объем и последовательность испытаний зависят от целей и возможности их проведения.

К таким испытаниям относятся:

  • Измерение потерь холостого хода.
  • Измерение сопротивления короткого замыкания трансформатора.
  • Проверка коэффициента трансформации.
  • Определение группы соединения обмоток.
  • Измерение сопротивления обмоток постоянному току.
  • Испытание трансформаторов включением на номинальное напряжение.
  • Измерение сопротивления изоляции.
  • Испытание повышенным напряжением промышленной частоты.
  • Измерение тангенса угла диэлектрических потерь (tg δ) изоляции обмоток.
  • Испытание и анализ трансформаторного масла

Высоковольтные испытания силовых трансформаторов в Санкт-Петербурге

Силовые трансформаторы могут быть включены в работу без предварительной ревизии и сушки, если проведены высоковольтные испытания и измерения характеристик в ходе пусконаладочных работ. Испытания и измерения характеристик также дают возможность сверить характеристики оборудования с данными завода-изготовителя. Высоковольтные испытания силовых трансформаторов проводятся с учетом требований техники безопасности (ПОТ), установленном в нормативных документах: ПУЭ ,7-е издание, ПТЭЭП, ОиНИЭ.Помимо комплекса электроизмерительных работ в объеме приемосдаточных испытаний после монтажа, проводятся и плановые испытания в эксплуатации, испытания до и после ремонтов, требования к которым несколько отличаются от пусконаладочных.

Требования к испытательному оборудованию и ТБ

Для высоковольтных испытаний силовых трансформаторов и сопутствующих измерений требуется электронный мегаомметр типа Ф 4102/2-М; амперметр типа Э 526;измеритель сопротивления постоянному току ИСО-1 или аналогичный; испытательная установка АИД-70 или аналог, а также вольтметр типа Э 545 и комплект К-50. Средства защиты, применяемые при испытаниях и измерениях силовых трансформаторов, стандартные: диэлектрические перчатки, боты или коврик, переносное заземление и предупреждающие плакаты. Средства защиты применяются соответствии с НД «Инструкция по применению и испытанию СЗ, используемых в электроустановках». Перед испытаниями требуется закоротить и заземлить все выводы трансформатора, для размагничивания после работы.

Бригада, которая должна проводить испытания и измерения характеристик силовых трансформаторов, должна иметь в составе не менее двух человек, один из которых- производитель работ должен иметь группу по электробезопасности не ниже IV, остальные- члены бригады – не ниже III. Персонал, имеющий группу IIпо электробезопасности, могут находится вне зоны испытания и выполнять функции наблюдателей и охранников, не допуская посторонних к испытываемому оборудованию. Также в их задачи входит наблюдение за целостностью ограничительного периметра и контроль за наличием предупредительных табличек.

Измерения трансформаторов

Наряду с высоковольтными испытаниями силовых трансформаторов, требуется провести измерения характеристик. Это замеры изоляционных характеристик, в том числе сопротивление изоляции и тангенса угла диэлектрических потерь, измерение сопротивления обмоток постоянному току, коэффициента трансформации, измерение потерь холостого хода, короткого замыкания, проверка группы соединений обмоток трехфазных трансформаторов и полярности выводов однофазных трансформаторов, проверка работы переключающего устройства, системы охлаждения, фазировка. К режиму испытаний относятся испытания обмоток трансформатора, физико-химический анализ трансформаторного масла, вводов, встроенных трансформаторов тока и включение толчком на номинальное напряжение.

«Высоковольтные испытания трансформаторов повышенным напряжением промышленной частоты проводятся для каждой из обмоток. Все остальные обмотки заземляют. Испытательное напряжение плавно поднимается до нормированного значения, выдерживается в течение 1 мин. и плавно понижается.

При отсутствии испытательной установки необходимой мощности испытание обмоток трансформаторов, автотрансформаторов, масляных и дугогасящих реакторов с нормальной изоляцией, а также другие виды работ, связанных с высоковольтными испытаниями трансформаторов, не проводится» (согласно «Объемам и нормам испытания электрооборудования»).

Высоковольтные испытания трансформаторов

Для каждого типа трансформаторов существует свое испытательное напряжение, которое зависит от класса изоляции обмотки и типа силового трансформатора. Различается напряжение для герметизированных трансформаторов и для облегченной обмотки, а также есть разница между показателями для пусконаладочных работ и работ профилактических. Частота испытательного тока при высоковольтных испытаниях силовых трансформаторов принимается в 50 Гц. Для сопоставления напряжения, типа трансформаторов и типа работ, легче все пользоваться таблицей.

Испытательное напряжение для облегченной изоляции, кВ

Класс трансформатора, кВ

Пуско-наладка

Профилактика

До 0,69

4,5/2,7

4,3/2,6

16,2/9,0

15,3/8,5

22,5/14,4

21,3/13,6

31,5/21,6

29,8/20,4

40,5/33,3

38,3/31,5

49,5/45,0

46,8/42,5

76,5

72,3

Испытательное напряжение для герметизированных трансформаторов, кВ

9,0

8,5

18,0

17,0

25,2

23,8

34,2

32,3

45,0

42,5

В том случае, если испытание сопротивления на заводе было проведено с помощью другого напряжения, испытательное напряжение должно быть скорректировано. В высоковольтных испытаниях силовых трансформаторов испытанию подвергается изоляция каждой обмотки. Чтобы результаты были «чистыми», следует заземлить выводы расщепленных ветвей обмоток вместе с баком трансформатора. Заземлить также следует выводы измерительных обкладок (ИО) вводов, а также ИО встроенных трансформаторов тока.

По правилам, установленным нормативными документами: «Контроль величины испытательного напряжения должен производиться на стороне высшего напряжения испытательного трансформатора. Исключение могут составлять силовые трансформаторы небольшой мощности с номинальным напряжением до 10 кВ включительно. Для них допускается испытательное напряжение измерять вольтметром, включая его на стороне НН испытательного трансформатора. Класс точности низковольтного вольтметра должен быть 0,5».

Начало высоковольтных испытаний трансформаторов следует начинать с подъема напряжения с наименьшего значения. Старт напряжения следует начать со значения, равного или немного превышающего треть от расчетного испытательного. Скорость повышения напряжения должна составлять 2-3 кВ в секунду, при этом повышение должно производиться равномерно, что должно быть отслежено по приборам. Выдержка времени – 60 секунд, после чего напряжение плавно и без остановок следует снизить до нуля, или, максимум, до того значения, с которого начинался рост. При высоковольтных испытаниях трансформаторов равномерность повышения-понижения имеет решающее значение, поскольку позволяет отследить точку, в которой может наступить пробой изоляции. Резкий скачок напряжения в разы повышает такую возможность, вне зависимости от состояния изоляции. После испытания обмотки заземляются. Таким же образом производится высоковольтное испытание на прессующих кольцах, бандажах и полубандажах ярем, ярмовых балках, стяжных шпильках, находящихся в доступе – обычно это происходит при ремонте активной части трансформатора.

В высоковольтных испытаниях трансформаторов изоляция считается прошедшей испытания, если не произошло одно или несколько действий:

  • пробой изоляции;
  • задымление;
  • выделение газа или дыма;
  • возгорание;
  • звуки разрядов.

В том случае, если повреждения изоляции выявлено не было, и, как визуально, так и по приборам, изоляция осталась целой, и не было допущено утечки тока, в протоколе фиксируется, что силовой трансформатор испытания повышенным напряжением промышленной частоты выдержал. При этом должен быть указан класс изоляции и схема испытания.

Помимо обмоток и иных частей трансформатора, в ходе высоковольтных испытаний трансформаторов проводится испытание цепей КИА (контрольно-измерительной аппаратуры), защитной аппаратуры. Для этого производится подключение одного вывода измерительного аппарата к зажимам испытуемых цепей. Второй вывод аппарата заземляется. Можно также объединить незаземленные цепи, чтобы провести общее испытание. Так же, как и при общих высоковольтных испытаниях трансформаторов, испытание цепей защитной и контрольно-измерительной аппаратуры длится минуту при напряжении 1 кВ. То же касается и манометрических термометров, но здесь рекомендуемое напряжение снижается и составляет 0,75 кВ.

Что касается высоковольтных испытаний трансформаторов с облегченной изоляцией, для обмоток ниже 35 кВ (включительно), переменный ток при испытаниях может быть заменен выпрямленным напряжением с измерением тока утечки.

Работы оформляются в протокол согласно документу «Объем и нормы испытаний электрооборудования РД 34.45-51.300-97». В ротоколе указывается заказчик, исполнитель, объект, его местонахождение, дата испытания, климатические условия, данные испытательных приборов (марка, заводской номер, диапазон измерения, класс точности, дата проверки, дата следующей проверки, свидетельство о проверке, орган проверки, заключение), а также результаты испытания. В них входят: указание фазы установки, тип, заводской номер, год изготовления, внешний осмотр, сопротивление изоляции тангенс угла диэлектрических потерь, коэффициент трансформации. В протоколе также в обязательном порядке указываются номер свидетельства о регистрации электролаборатории, и Ф,И.О. сотрудников ЭЛ
, проводивших испытания. Мероприятия по технике безопасности позволяют минимизировать риск нарушения работы силового трансформатора и провести испытания с минимальным риском для жизни работников ЭЛ.

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  • ПУЭ (Правила устройства электроустановок), 7-е изд., гл. 1.8, п. 1.8.16, пп. 1-14
  • ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Прил. 3 Раздел 2, прил. 3.1, таб. 5.
  • Паспорт завода-изготовителя.
  • РД 34.45-51.300-97. (Объем и нормы испытаний электрооборудования), Раздел 6, пп. 6.1, 6.4, 6.7-6.14, 6.21.

Испытания силовых трансформаторов

Испытание силового трансформатора повышенным напряжением и с использованием других методов осуществляется с целью проверки работоспособности оборудования, выявления и дальнейшего устранения скрытых дефектов. В рамках проводимых испытаний проверяется соответствие электрооборудования требованиям ПУЭ гл.1.8.16. и ПТЭЭП гл. 2.1. Это необходимо для снижения риска аварий, непредвиденной поломки оборудования и других негативных последствий.

Своевременные испытания трансформаторов способствуют безопасной и экономически выгодной эксплуатации системы электроснабжения в течение долгих лет. Выделяют 2 типа испытаний:

  1. Профилактические – проводятся в отношении действующего электрооборудования с целью выявления возможных неполадок, их своевременного устранения и недопущения аварийных ситуаций. Такие работы выполняются в промежутках между капитальными ремонтами, согласно установленным графикам.
  2. Послеремонтные – проводятся после капремонта с целью проверки достигнутых рабочих характеристик.

Инженерный центр «ПрофЭнергия» имеет все необходимые лицензии для проведения испытаний силовых трансформаторов, слаженный коллектив профессионалов и сертификаты, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если Вы хотите заказать высоковольтные испытания, а также по другим вопросам, звоните по телефону: +7 (495) 181-50-34.

Замер сопротивления изоляции обмоток

Этот тип измерений осуществляется с целью контроля целостности изоляции, чтобы удостовериться в отсутствии замыканий и проконтролировать степень влажности оборудования. Замер выполняется мегомметром с предельной отметкой на шкале 2,5 кВ, позволяющим измерить сопротивление изоляционного слоя и выяснить коэффициент абсорбции.

Для исследования изоляции обмотки повышенного напряжения нужен мегомметр с предельной отметкой 2,5 В, а при малом напряжении достаточно модели на 1 кВ. Испытания осуществляются вдвоем, причем для главного контролирующего лица требуется IV группа допуска, а для его помощника – минимум III.

Испытание трансформатора повышенным напряжением осуществляется при капремонте агрегатов с напряжением до 35 кВ, если в процессе ремонта выполняется замена обмоток и изоляции. Номинал прикладываемого напряжения при испытаниях берется по заводским характеристикам. При капремонте с неполной сменой изоляции и при реконструкции трансформаторов прикладываемое напряжение берется равным 0,9 заводского значения. Напряжение прикладывается на 1 минуту. Величины испытательных напряжений указаны в таблице.

В отношении изоляции вторичных обмоток и присоединенных к ним цепей используется напряжение 1 кВ, прикладываемое на 1 минуту.

Класс напряжения трансформатора (кВ)

Испытательное напряжение (кВ) (в знаменателе указано напряжение для облегченной изоляции)

Силовые трансформаторы, шунтирующие и дугогасящие реакторы.

На заводе

При вводе

В эксплуатации

До 0.69

5,0/3,0

4,5/2,7

4,3/2,6

18,0/10,0

16,2/9,0

15,3/8,5

25,0/16,0

22,5/14,4

21,3/13,6

35,0/24,0

31,5/21,6

29,8/20,4

45,0/37,0

40,5/33,3

38,3/31,5

55,0/50,0

49,5/45,0

46,8/42,5

85,0

76,5

72,3

Испытательное напряжение (кВ) для герметизированных трансформаторов

На заводе

При вводе

В эксплуатации

9,0

8,5

18,0

17,0

25,2

23,8

34,2

32,3

45,0

42,5

Методика испытания и измерения силовых трансформаторов

I. Общая часть.

1. Цель работы.

Целью проведения пуско-наладочных работ на силовых трансформаторах является проверка возможности включения трансформаторов в работу без предварительной ревизии и сушки, а также соответствия их характеристик данным заводов-изготовителей.

2. Техника безопасности.

Испытания и измерения силовых трансформаторов может производить бригада в составе не менее 2 человек из лиц ЭТЛ. Производитель работ при высоковольтных испытаниях должен иметь группу по электробезопасности не ниже IV, а остальные не ниже III группы. Работы проводятся по наряду с применением защитных средств.

Все выводы трансформатора на время производства работ должны быть закорочены и заземлены. Снимать закоротки и заземление допускается только на время испытаний.

3. Техническая оснащенность.

3.1. Средства защиты:

— переносное заземление;

— предупредительные плакаты;

— диэлектрические боты или коврик;

— диэлектрические перчатки.

3.2. Приборы:

— мегаомметр электронный Ф 4102/2-М;

— амперметр Э 526;

— мост постоянного тока Р 333;

— испытательная установка АИД-70;

— вольтметр Э 545.

II. Испытания и измерения.

1. Замеры изоляционных характеристик.

Перед началом испытаний необходимо провести внешний осмотр трансформатора, проверить исправность бака и радиаторов, состояние изоляторов, уровень масла, целостность маслоуказательного стекла, заземление трансформатора.

Замеры изоляционных характеристик допускается измерять не ранее чем через 12 ч. после окончания заливки трансформатора маслом. Характеристики изоляции измеряются при температуре изоляции не ниже 10 °С у трансформаторов напряжением до 150 кВ, мощностью до 80 МВА.

1.1. Сопротивление изоляции.

Характеристики изоляции измеряются по схемам и в последовательности, указанным ниже:

  1. НН –ВН + Бак
  2. ВН –НН + Бак
  3. ВН + НН –Бак

При измерении все выводы обмоток одного напряжения соединяют вместе, остальные обмотки и бак трансформатора должны быть заземлены.

В начале измеряют R60 и R15, а затем остальные характеристики трансформатора. Сопротивление изоляции трансформатора измеряют по приведенным ниже схемам мегаомметром на 2500 В с верхним пределом измерения не ниже 10000 МОм.

Перед началом измерения все обмотки должны быть заземлены не менее чем на 5 минут, а между отдельными измерениями не менее чем на 2 минуты.

Для трансформаторов на напряжение до 35 кВ включительно, мощностью до 10 МВА сопротивление изоляции обмоток должно быть не ниже следующих значений:

Температура обмотки, °С 10 20 30 40 50 60 70

R60//, МОм 450 300 200 130 90 60 40

Сопротивление изоляции сухих трансформаторов при температуре обмоток 20-30 °С должно быть для трансформаторов с номинальным напряжением:

До 1 кВ включительно – не менее 100 МОм;

Более 1 кВ до 6 кВ включительно – не менее 300 МОм;

Более 6 кВ – не менее 500 МОм.

Измерения производятся по схеме, представленной на рис. 1, при соблюдении всех требований техники безопасности, причем рабочая зона должна быть ограждена и вывешены плакаты «СТОЙ, НАПРЯЖЕНИЕ».

Измерение сопротивления изоляции доступных стяжных шпилек, бандажей и прессующих колей относительно активной стали и ярмовых балок, а также ярмовых балок относительно обмоток и магнитопровода.

Производится в случае осмотра активной части трансформатора. Используются мегаомметры на напряжение 1000-2500 В.

Измеренные значения должны быть не менее 0,5 МОм.

1.2. Измерение тангенса угла диэлектрических потерь (см. методику).

Тангенс угла диэлектрических потерь (tg d) в изоляции и емкости обмоток производят при помощи мостов переменного тока (Р-5026) по перевернутой схеме при напряжении 10 кВ. Испытательное напряжение не должно превышать 60 % номинального напряжения испытуемой обмотки (см. методику замера tg d). Схемы и условия измерения диэлектрических потерь в изоляции силового трансформатора те же, что и при измерении сопротивления изоляции. При сравнении измеренных значений с заводскими учитываются температуры, при которых производились измерения. Зависимость поправочного коэффициента от разности температур приведена ниже. Приведенное к заводской температуре значение tg d, измеренное при монтаже, не должно превышать заводских данных более чем на 30 %. Значения tg d изоляции, равные или меньше 1 % (после приведения к заводской температуре), с паспортными данными не сравниваются и считаются удовлетворительными.

2. Испытание обмоток трансформатора.

Повышенным напряжением переменного тока от постороннего источника производится вместе с вводами (рис. 2). Испытательное напряжение зависит от класса изоляции обмотки:

Номинальное напряжение

Испытательное напряжение,

кВ, обмоток трансформатора

с изоляцией: нормальной 4,5 16 23 32 41 50 59 63 77

облегченной, в том числе

Время испытания составляет 1 мин. При отсутствии испытательной установки необходимой мощности испытание обмоток трансформаторов, автотрансформаторов, масляных и дугогасящих реакторов с нормальной изоляцией не проводится. В эксплуатации для обмоток 35 кВ и ниже испытание напряжением переменного тока может быть заменено испытанием выпрямленным напряжением с измерением тока утечки. Выпрямленное испытательное напряжение принимается равным амплитудному значению испытательного напряжения промышленной частоты.

3. Измерение сопротивления обмоток постоянному току.

Измерение производится на всех ответвлениях обмоток, если в паспорте трансформатора нет других указаний.

Измеряются, как правило, линейные сопротивления, при наличии нулевого вывода измеряют также одно из фазных сопротивлений.

Сопротивления обмоток трехфазных трансформаторов, измеренные на одинаковых ответвлениях разных фаз при одинаковой температуре, не должны отличаться более чем на 2%. Кроме того, должна соблюдаться одинаковая для всех фаз и соответствующая положениям переключателя закономерность изменения сопротивления постоянному току в различных положениях переключателя. Если из-за конструктивных особенностей трансформатора это расхождение может быть большим, и об этом указано в заводской технической документации, следует руководствоваться нормой на допустимое расхождение, приведенное в паспорте трансформатора.

Перед измерением сопротивления обмоток трансформаторов, снабженных устройствами регулирования напряжения, следует произвести не менее трех полных циклов переключения.

4. Коэффициент трансформации.

Коэффициент трансформации силовых трансформаторов определяют для проверки соответствия паспортным данным и правильности подсоединения ответвлений обмоток к переключателям.

Определение коэффициента производится методом «двух вольтметров». По этому методу к одной из обмоток трансформатора подводится напряжение, и двумя вольтметрами одновременно измеряется подводимое напряжение и напряжение на другой обмотке трансформатора. Подводимое напряжение не должно превышать номинальное и в тоже время должно составлять не менее 1% номинального напряжения.

Испытания трехфазных трансформаторов допустимо производить при трехфазном и однофазном возбуждении. При этом измеряют линейные напряжения на одноименных зажимах обеих обмоток.

Коэффициент трансформации находят для всех ответвлений обмоток и всех фаз, и не должен отличаться более чем на 2 % от значений, указанных в паспорте трансформатора для каждого положения переключателя.

При испытаниях трехобмоточных трансформаторов достаточно определить коэффициент трансформации для двух пар обмоток.

Работа производится при строгом соблюдении всех требований правил техники безопасности, при этом подача напряжения производится на обмотку высокого напряжения, после подключения измерительных приборов.

5. Измерение потерь холостого хода.

Опыт холостого хода проводят для измерения тока и потерь холостого хода.

Измерение производится у трансформаторов мощностью 1000 кВА и более, при напряжении, подводимом к обмотке низшего напряжения, равном указанному в протоколе заводских испытаний (паспорте). У трехфазных трансформаторов потери холостого хода измеряются при однофазном возбуждении по схемам, применяемым на заводе-изготовителе.

В трехфазных трансформаторах токи холостого хода различных фаз за счет различной длины пути потока каждой фазы несколько различаются. Ток средней фазы обычно на 20-35 % меньше тока крайних фаз.

У трехфазных трансформаторов соотношение потерь в разных фазах не должно отличаться от соотношений, приведенных в протоколе заводских испытаний (паспорте), более чем на 5 %.

У однофазных трансформаторов отличие измеренных значений не должно превышать 10 %.

Ток холостого хода трехфазного трансформатора Iх определяется как среднеарифметическое токов трех фаз и выражается в процентах номинального тока Iном.

Iх = (I изм. / Iном.) х 100

6. Проверка группы соединений обмоток трехфазных трансформаторов и полярности выводов однофазных трансформаторов.

Проверка проводится при отсутствии паспортных данных методом двух вольтметров, либо методом импульсов постоянного тока, если отсутствуют паспортные данные или есть сомнения в достоверности имеющихся данных.

Группа соединений должна соответствовать указанным в паспорте трансформатора, а полярность выводов –обозначениям на крышке трансформатора.

7. Проверка работы переключающего устройства.

Снятие круговой диаграммы производится на всех положениях переключателя. Диаграмма не должна отличаться от диаграммы завода-изготовителя. Проверку срабатывания устройства следует производить согласно заводским инструкциям.

8. Проверка системы охлаждения.

Режим работы охлаждающих устройств должен соответствовать заводской инструкции.

9. Фазировка трансформатора.

Должно иметь место совпадение по фазам.

10. Испытания трансформаторного масла.

Испытания трансформаторного масла перед вводом в эксплуатацию трансформаторов производится в соответствии с табл. 25.2 п. 1-7 «Объемов и норм». По решению руководителя предприятия испытания масла по пп. 1, 6,7 табл. 25.2 могут не производится.

У трансформаторов всех напряжений масло из бака РПН испытывается в соответствии с инструкцией завода-изготовителя. У трансформаторов напряжения 35 кВ включительно масло испытывается на пробой в течение первого месяца эксплуатации 3 раза. Масло из трансформаторов мощностью до 630 кВА включительно, установленных в эл. сетях, допускается не испытывать.

Испытания трансформаторного масла проводятся Заказчиком в специализированной лаборатории, имеющей право на испытание масла.

11. Испытания вводов.

Испытания вводов проводятся в соответствии с методикой испытания вводов.

12. Испытание встроенных трансформаторов тока.

Испытание встроенных трансформаторов тока проводятся в соответствии с методикой испытания измерительных трансформаторов.

13. Испытание включением толчком на номинальное напряжение.

В процессе 3-5 кратного включения трансформатора на номинальное напряжение не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора.

Результаты заносятся в протокол.

НТД и техническая литература:

  • Межотраслевые правила по охране труда (ПБ) при эксплуатации электроустановок.
  • ПОТ Р М — 016 — 2001. — М.: 2001.
  • Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание
  • Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.
  • Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.
  • Сборник методических пособий по контролю состояния электрооборудования. — М.: ОРГРЭС, 1997.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *