Расчет магнитной цепи

Расчет магнитных цепей

При расчете магнитных цепей возможны два типа задач:

Прямая задача – определение магнитных потоков участков магнитной цепи по заданным намагничивающим силам.

Обратная задача – определение необходимых намагничивающих сил по заданному магнитному потоку одного из участков магнитной цепи.

Расчет неразветвленных магнитных цепей

Простейшей неразветвленной магнитной цепью является замкнутый (или с зазором) магнитопровод с одинаковым (или разным) поперечным сечением участков и одинаковой магнитной проницаемостью по длине (рис.34.1).

а) обратная задача

Заданы конфигурация и геометрические размеры магнитной цепи, кривая намагничивания ферромагнитного материала и магнитный поток или индукция в каком-либо сечении. Требуется найти МДС, ток или число витков намагничивающей обмотки.

Расчет проводим в такой последовательности:

1. Разбиваем магнитную цепь на участки постоянного сечения и определяем длины lk (м) и площади поперечного сечения Sk (м2) участков (длины участков берем по средней силовой линии);

2. Исходя из постоянства потока вдоль всей цепи, по заданному потоку и сечениям Sk находим магнитные индукции на каждом участке:

3. По кривой намагничивания определяем напряженности поля Hk для ферромагнитных участков магнитной цепи; напряженность поля в воздушном зазоре

,

где H – в А/м; В – в Тл;

4. Подсчитываем сумму падений магнитного напряжения вдоль всей магнитной цепи и на основании закона полного тока приравниваем эту сумму полному току :

. По известному числу витков обмотки находим ток, либо по заданному току вычисляем число витков.

б) прямая задача

Заданы конфигурация и геометрические размеры магнитной цепи, кривая намагничивания материала сердечника и полный ток (намагничивающая сила обмотки). Требуется рассчитать магнитный поток или индукцию на каком-либо участке цепи.

Задача решается методом последовательного приближения:

1. Задаемся значениями магнитной индукции В (в пределах кривой намагничивания) и для каждого из них находим напряженность поля в сердечнике (по кривой намагничивания) и в воздушном зазоре (по формуле );

2. Для каждого значения Bk рассчитываем ;

3. По полученным данным строим зависимость из которой по заданной намагничивающей силе (рис. 34.1) находим искомый магнитный поток Фk.

Расчет разветвленной магнитной цепи с одной

намагничивающей силой

Расчет разветвленной магнитной цепи с одной намагничивающей силой аналогичен расчету цепи постоянного тока с нелинейными резисторами.

Пусть имеется разветвленная

магнитная цепь (рис.34.2), для которой заданы геометрические размеры, кривая намагничивания и намагничивающая сила обмотки – Требуется рассчитать магнитные потоки отдельных участков Ф1,Ф2,Ф3.

Задача решается в следующей последовательности:

1. Рассчитываются и строятся вебер-амперные характеристики для первой, второй и третьей ветвей (рис.34.3);

2. Поскольку участки с потоками Ф2 и Ф3 включены параллельно, то суммированием ординат характеристик Ф2 и Ф3 строится вебер-амперная характеристика параллельного разветвления ;

3. Участки цепи 1 и 2-3 включены последовательно, поэтому, суммируя абсциссы характеристик Ф1 Ф2-3, строим результирующую характеристику всей цепи.

4. По заданному значению намагничивающей силы находится поток в неразветвленной части магнитной цепи и затем потоки Ф2 и Ф3.

Расчет разветвленной

магнитной цепи методом двух узлов

Если намагничивающие обмотки расположены не на одном, а на нескольких стержнях магнитопровода, то есть в цепи имеется несколько намагничивающих сил, то расчет такой цепи целесообразно проводить методом двух узлов.

Пусть требуется рассчитать магнитные потоки для цепи (рис.34.4) по заданным геометрическим размерам, кривой намагничивания материала сердечника и заданным намагничивающим силам.

Введем в расчет разность магнитных потенциалов между двумя узлами магнитной цепи d и k .

Выразим магнитный потенциал точки d через магнитный потенциал точки k, следуя из точки k в точку d сначала по первой, затем по второй и, наконец, по третьей ветви:

В этом уравнении – падение магнитного напряжения на первой ветви. Записав по аналогии уравнения для двух других ветвей, получаем:

(34.1)

Задача решается графически:

1. Рассчитываем и строим вебер-амперные характеристики:

и

2. Строим суммарную характеристику:

3. Так как по первому закону Кирхгофа , то точка пересечения характеристик Ф3 и Ф1 + Ф2 и дает решение задачи.

Вопросы для самоконтроля

1. Какую задачу при расчете магнитной цепи называют прямой, а какую – обратной?

2. Приведите пример неразветвленной магнитной цепи.

3. Поясните решение обратной задачи.

4. Поясните решение прямой задачи.

5. Приведите пример разветвленной магнитной цепи.

6. Поясните методику расчета разветвленной магнитной цепи с одной намагничивающей силой.

7. Поясните методику расчета разветвленной магнитной цепи с несколькими намагничивающими силами методом двух узлов.

> Реакция якоря

Магнитная индукция в воздушном зазоре

Распределение индукции в воздушном зазоре зависит от нагрузки стартерного электродвигателя. При отсутствии тока в якоря магнитную индукцию по всей длине расчетной дуги можно принять постоянной.

Под нагрузкой ток якоря создает МДС и обусловленный его магнитный поток. МДС якоря разделяют на две составляющие, действующие в продольном и поперечном направлениях по отношению к МДС обмотки возбуждения.

Продольная МДС якоря на пару полюсов:

(5.1)

где — ток якоря.

Поперечная МДС якоря на пару полюсов:

(5.2)

где А — линейная нагрузка якоря.

При установке щеток на геометрической нейтрали () действует только поперечная МДС якоря. Если щетки сдвинуты с геометрической нейтрали против направления вращения якоря, продольная МДС является размагничивающей по отношению к основной МДС обмотки возбуждения .

При сдвиге щеток по направлению вращения якоря продольная МДС является намагничивающей и . Как правило, в стартерных электродвигателях сдвиг щеток по направлению вращения не допускается из-за ухудшения коммутации.

МДС поперечной реакции якоря искажает магнитное поле под полюсом, ослабляя его на сбегающем и усиливая на набегающем краях полюса.

При достаточно большой поперечной МДС или малой МДС возбуждения может иметь место перемагничивание сбегающего края полюса так называемое «опрокидыванием поля».

В насыщенной магнитной системе ослабление или изменение направления поля на одном крае полюса не компенсируется его усилением на другом, поэтому при неизменной МДС возбуждения результатом воздействия поперечной МДС будет уменьшение рабочего магнитного потока в воздушном зазоре. Учет совместного влияния МДС и (реакции якоря) на характеристики электродвигателя сводится к получению картины поля под полюсом и вычислению среднего значения индукции в воздушном зазоре. Индукция определяется по площади фигур, характеризующих изменение индукции под полюсом.

Метод расчета магнитной цепи

Дата публикации: 07 апреля 2013.
Категория: Машины постоянного тока.

В статье представлен метод расчета магнитной цепи машины постоянного тока. Дано определение основному магнитному потоку. На рисунке показано что такое средняя магнитная линия.

Основным магнитным потоком Фδ называется поток в воздушном зазоре δ, приходящийся на один главный полюс машины. Значение Фδ определяет значение индуктируемой в обмотке якоря э. д. с.

При проектировании машины постоянного тока возникает необходимость определения зависимости Фδ от тока возбуждения полюсов. Эта задача решается путем расчета магнитной цепи машины при холостом ходе, когда ток якоря Iя = 0. Вследствие симметрии устройства машины и равенства потоков всех полюсов достаточно рассмотреть магнитную цепь одной пары полюсов.

Магнитная цепь изображена на рисунке 1, причем для каждого полюса штриховой линией показана такая магнитная линия потока Фδ, длину которой можно считать средней для всех магнитных линий. Магнитную цепь можно рассчитать на основе закона полного тока для средней магнитной линии (рисунок 1):

(1)

где H – напряженность магнитного поля; dl – элемент длины магнитной линии; Σi – полный ток, охватываемый магнитной линией.

Рис. 1. Магнитная цепь машины постоянного тока

Точное вычисление линейного интеграла (1) на практике затруднительно. Поэтому магнитную цепь разбивают на участки: воздушный зазор (δ), зубцы якоря (hz), спинку якоря (Lа), полюсы (hm), ярмо (Lя) и заменяют интеграл суммой, предполагая, что на протяжении каждого участка H постоянна. Тогда вместо равенства (1) получим

2Hδδ + 2Hzhz + 2HаLа + 2Hmhm + 2HяLя = 2wвiв , (2а)

где δ, hz, Lа, hm, Lя – показанные на рисунке 1 геометрические размеры, равные длинам отрезков средней магнитной линии; Hδ, Hz, Hа, Hm, Hя – напряженности магнитного поля на соответствующих участках; wв – число витков обмотки возбуждения на полюс; iв – ток возбуждения.

Отдельные члены соотношения (2а) представляют собой намагничивающие силы (н. с.) отдельных участков магнитной цепи, а их сумма – полную намагничивающую силу машины на пару полюсов.

Так как для каждого участка магнитной цепи намагничивающая сила F = Hl, то вместо (2а) можно также написать

2Fδ + 2Fz + 2Fа + 2Fm + 2Fя = 2Fв = 2wвiв , (2б)

где Fв – полная намагничивающая сила на один полюс.

При расчете магнитной цепи, исходя из заданного значения э. д. с. Eа и пропорциональной ей индукции в зазоре Bδ, определяют значения H на отдельных участках цепи, предполагая при этом, что поток распределяется равномерно по сечениям этих участков, и затем вычисляют сумму (2а) или (2б).

Подобный приближенный расчет дает достаточную для технических целей точность.

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

2.1 Методы расчета магнитных цепей постоянного тока

Главная → Примеры решения задач ТОЭ → РЕШЕНИЕ ЗАДАЧ ТОЭ – МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ → 2 Магнитное поле и магнитные цепи при постоянных токах → 2.1 Методы расчета магнитных цепей постоянного тока Методы и примеры решения задач ТОЭ → РЕШЕНИЕ ЗАДАЧ ТОЭ – МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ → 2 Магнитное поле и магнитные цепи при постоянных токах

Расчет магнитных цепей при постоянных токах

Основанием к расчету магнитных цепей служат: первый закон Кирхгофа для магнитных цепей и закон полного тока – второй закон Кирхгофа для магнитных цепей.
Первый закон Кирхгофа для магнитных цепей гласит: алгебраическая сумма магнитных потоков в узле магнитной цепи равна нулю.

Закон полного тока применяется к замкнутому контуру, образованному средними магнитными линиями магнитной цепи и имеет вид:

∫ H → ⋅ dl → = ∑ I⋅w ,

где

∫ H → ⋅ dl → = ∑ H⋅l – падение магнитного напряжения UM = H·l в контуре;

F= ∑ I⋅w – магнитодвижущая сила контура (м. д. с.).

Второй закон Кирхгофа для магнитных цепей сформулируем следующим образом: алгебраическая сумма магнитных напряжений UM = H·l в замкнутом контуре магнитной цепи ( ∑ U M = ∑ H⋅l ) равна алгебраической сумме магнитодвижущих сил F = I·w в том же контуре ( ∑ F = ∑ I⋅w ) :

∑ U M = ∑ F

или

∑ H⋅l = ∑ I⋅w .

Задачи на расчет магнитной цепи могут быть двух видов: прямая задача на расчет магнитной цепи – когда задан поток и требуется рассчитать магнитодвижущую силу (м. д. с.) и обратная задача на расчет магнитной цепи – когда по заданной м. д. с. требуется рассчитать магнитный поток.

В обоих случаях должны быть известны геометрические размеры магнитной цепи и заданы кривые намагничивания ее материалов.

Алгоритм прямой задачи расчета неразветвленной магнитной цепи

Дана конфигурация и геометрические размеры неразветвленной магнитной цепи, кривая (или кривые) намагничивания магнитного материала и магнитный поток или индукция магнитного поля в каком-либо сечении. Требуется найти магнитодвижущую силу, ток или число витков намагничивающей обмотки.

Расчет проводим в соответствии с алгоритмом:

1. Разбиваем магнитную цепь на однородные (из одного магнитного материала) участки постоянного сечения и определяем длины lk и площади поперечного сечения Sk участков. Длины участков (в метрах) берем по средней силовой линии.

2. Исходя из постоянства потока вдоль всей неразветвленной магнитной цепи, по заданному магнитному потоку Ф и сечениям Sk участков находим магнитные индукции на каждом участке:

B k = Ф S k .

Если задана магнитная индукция на каком-либо участке магнитной цепи, то магнитный поток вдоль всей неразветвленной цепи

Ф = Bk·Sk.

3. По найденным магнитным индукциям Bk участков цепи и кривой намагничивания материала k-го участка цепи (например, рис. 2.1, табл. 2.1) определяем напряженности поля Hk на каждом участке магнитной цепи.

Напряженность поля в воздушном зазоре находим по формуле

H возд = B возд μ 0 = B возд 4π⋅ 10 −7 .

4. Подсчитаем сумму падений магнитных напряжений UMk = Hk·lk вдоль всей магнитной цепи ∑ U Mk = ∑ H k ⋅ l k и на основании второго закона Кирхгофа для магнитной цепи приравниваем сумме магнитодвижущих сил Fk = Ik·wk вдоль всей магнитной цепи:

∑ H k ⋅ l k = ∑ I k ⋅ w k .

Основным допущением при расчете является то, что магнитный поток вдоль всей неразветвленной магнитной цепи полагаем неизменным. В действительности не большая часть потока всегда замыкается, минуя основной путь. Этот поток называют потоком рассеяния.

Единицы измерения магнитных величин

B – индукция магнитного поля, Тл (Тесла);

H – напряженность магнитного поля, А/м (Ампер/метр);

Ф – поток индукции магнитного поля, Вб (Вебер);

F = I·w – магнитодвижущая сила (м. д. с.), А (Ампер);

UM = H·l – магнитное напряжение, А (Ампер!).

Константы

μ 0 =4π⋅ 10 −7 Гн/м – магнитная постоянная.

Рис. 2.1 Кривые намагничивания стали и чугуна

Таблица 2.1 – Данные основной кривой намагничивания листовой электротехнической стали Э11

Примеры пользования таблицей:

1) При B = 0,80 Вб/м2: H = 318 А/м; при B = 0,85 Вб/м2: H = 352 А/м.

2) При B = 1,13 Вб/м2: H = 701 А/м.

Решение задач на расчет магнитных цепей при постоянных токах

Задача 2.1. На рис. 2.2 изображен разрез трех катушек, по которым проходят токи I1 = 8 А, I2=10 А и I3 = 5 А.

Рис. 2.2

Катушки размещены на стальном сердечнике. Первая катушка (левая) w1 имеет 8 витков, вторая (средняя) w2 – 10 витков и третья (правая) w3 – 6 витков. Определить полную магнитодвижущую силу (м. д. с.) по замкнутым контурам а, b, с, d, е, f, показанным на рис. 2.2. Контур е охватывает катушки w’2 с 4 витками и w’3 с 2 витками.

Изменится ли результат решения задачи, если при тех же данных катушки разместить на сердечнике из другого магнитного материала?

Решение

Воспользуемся законом полного тока. Линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, проходящих сквозь поверхность, ограничиваемую контуром интегрирования,

∫ H → ⋅ dl → = ∑ I⋅w .

Пользуясь законом полного тока, найдем:

В правой части последнего выражения коэффициент 2 учитывает то обстоятельство, что витки w3 охватываются контуром интегрирования (циркуляции) дважды.

Следует заметить, что при пользовании правилом винта необходимо всегда сопоставлять направление обхода по контуру циркуляции с направлениями токов, пронизывающих поверхность, ограниченную контуром циркуляции.

Результаты решения задачи не изменятся, если катушки разместить на сердечнике из другого магнитного материала, так как м. д. с. определяется только величиной полного тока и не зависит от магнитных свойств вещества.

Задача 2.2. Определить магнитодвижущую силу (прямая задача расчета одноконтурной магнитной цепи), необходимую для получения магнитного потока в 5,9·10–4 Вб в кольцеобразном сердечнике, сечением S = 5 см2. Длина средней линии магнитной индукции l = 25 см.

Определить Н (напряженность магнитного поля в сердечнике) и μ r (относительная магнитная проницаемость материала сердечника). Материал сердечника – слаболегированная электротехническая листовая сталь Э11.

Решение

Найдем магнитную индукцию

B= Ф S = 5,9⋅ 10 −4 5⋅ 10 −4 =1,18   Вб м 2 .

По кривой намагничивания для стали Э11 найдем, что индукции B = 1,18 Вб/м2 соответствует H = 800 А/м.

Общая магнитодвижущая сила по второму закону Кирхгофа для магнитной цепи (закону полного тока)

F = H·l = 800·0,25 = 200 А.

Определим абсолютную магнитную проницаемость:

μ a = B H = 1,18 800 =1475⋅ 10 −6    Гн м .

Магнитная проницаемость (относительная магнитная проницаемость)

μ r = μ a μ 0 = 1475⋅ 10 −6 4π⋅ 10 −7 =1175.

Задача 2.3. На рис. 2.3 изображен электромагнит, сердечник которого изготовлен из слаболегированной листовой электротехнической стали Э11, а якорь – из литой стали.

Рис. 2.3

Какой ток должен быть пропущен через обмотку электромагнита (прямая задача расчета одноконтурной магнитной цепи), состоящую из w = 500 витков, для того, чтобы в якоре была создана магнитная индукция в 0,84 Вб/м2. Размеры на рис. 2.3 даны в миллиметрах. Длина воздушного зазора δ = 1 мм. Площадь сечения воздушного зазора считать равной площади сечения сердечника (пренебрегаем потоком рассеяния). Чему равна статическая индуктивность электромагнита?

Решение

Это пример прямой задачи на расчет магнитной цепи. На рис. 2.3 пунктиром проведена средняя линия магнитной индукции (приближенно). Длина проходящей вдоль сердечника части средней линии магнитной индукции abсd = l1 = 0,28 м. Сечение сердечника S1 = 2·2 = 4 см2 = 4·10–4 м2.

Сечение якоря S2 = 2·2,5 = 5 см2 = 5·10–4 м2, длина проходящей через него части средней линии магнитной индукции efgh = l2 = 0,16 м. Магнитная индукция в якоре B2 = 0,84 Вб/м2 (по условию задачи).

Из условия равенства магнитных потоков в якоре и в сердечнике (одноконтурная магнитная цепь, потоком рассеяния пренебрегаем)

Ф1 = B1·S1 = B2·S2

найдем магнитную индукцию в сердечнике:

B 1 = B 2 ⋅ S 2 S 1 = 0,84⋅5⋅ 10 −4 4⋅ 10 −4 =1,05   Вб м 2 .

Сечение воздушного зазора, длина проходящей в нем части линии магнитной индукции и магнитная индукция равны:

S 3 =4⋅ 10 −4    м 2 ;   l 3 =2δ=2⋅ 10 −3   м;   B 3 =1,05   Вб м 2 ,

напряженность магнитного поля в воздухе:

H 3 = B 3 μ 0 = 1,05 4π⋅ 10 −7 =84⋅ 10 4    А м .

Общая магнитодвижущая сила по второму закону Кирхгофа для магнитной цепи (закону полного тока)

F = H1·l1 + H2·l2 + H3·l3.

В целях большей наглядности расчеты удобно свести в таблицу, в которой данные для напряженности магнитного поля в отдельных элементах магнитопровода взяты по соответствующим кривым намагничивания. Так, для сердечника, изготовленного из стали Э11, находим, что индукции B1 = 1,05 Вб/м2 соответствует значение напряженности магнитного поля H1 = 570 А/м, а для якоря, изготовленного из литой стали, имеем, что величине B2 = 0,84 Вб/м2 соответствует значение H2 = 540 А/м.

Название участка

Материал

S,

м2

l,

м

B,

Вб/м2

H,

А/м

H·l,

А

Сердечник

Сталь Э11

4·10–4

0,28

1,05

Якорь

Литая сталь

5·10–4

0,16

0,84

Воздушный зазор

Воздух

4·10–4

0,002

1,05

84·104

Искомый ток найдем, пользуясь формулой F = I·w:

I= F w = 1925 500 =3,85  А.

Статическая индуктивность электромагнита равна отношению потокосцепления (полного магнитного потока) к току:

L ст = Ψ I = w⋅Ф I = 500⋅4,2⋅ 10 −4 3,85 =0,053  Гн=053  мГн.

Задача 2.4. Найти магнитную индукцию в якоре электромагнита (обратная задача расчета одноконтурной магнитной цепи), изображенном на рис. 2.3, если на электромагнит намотано w = 250 витков, по которым проходит ток I = 4,4 А. Сердечник изготовлен из листовой электротехнической стали Э11, а якорь – из литой стали. Размеры сердечника и якоря те же, что и в предыдущей задаче. Длина воздушного зазора 0,5 мм. Площадь сечения воздушного зазора считать равной площади сердечника.

Решение

Это пример обратной задачи на расчет магнитной цепи. Для ее решения надо построить кривую зависимости магнитного потока Ф в функции магнитодвижущей силы F и на кривой найти рабочую точку.

Чтобы построить кривую Ф = f (F) будем задаваться различными величинами магнитных потоков Ф, по которым вычисляем соответствующие им значения магнитной индукции B в каждом из участков магнитной цепи. Затем по кривым намагничивания находим напряженность поля H, соответствующую каждому значению индукции B, и, наконец, вычисляем магнитодвижущую силу по второму закону Кирхгофа для магнитной цепи (закону полного тока)

F= ∑ H k ⋅ l k .

Так, например, примем Ф = 3,2·10–4 Вб. Тогда

B серд = Ф S серд = 3,2⋅ 10 −4 4⋅ 10 −4 =0,8   Вб м 2 ; B як = Ф S як = 3,2⋅ 10 −4 5⋅ 10 −4 =0,64   Вб м 2 ; B заз = B серд =0,8   Вб м 2 .

По кривым намагничивания находим напряженности магнитного поля:

H серд =318   А м ; H як =330   А м ; H заз = B заз μ 0 = 0,8 4π⋅ 10 −7 =64⋅ 10 4    А м .

Магнитодвижущая сила

F= H серд ⋅ l серд + H як ⋅ l як + H заз ⋅ l заз =       =318⋅0,28+330⋅0,16+64⋅ 10 4 ⋅ 10 −3 =780  А.

Эта магнитодвижущая сила меньше заданной, которая равна

I·w = 4,4·250 = 1100 А.

Аналогично проводим расчеты для больших значений Ф, которые сведены в следующую таблицу:

Ф,

Вб

Bсерд,

Вб/м2

Нсерд,

А/м

lсерд,

м

Bяк,

Вб/м2

Hяк,

А/м

lяк,

м

Bзаз,

Вб/м2

Hзаз,

А/м

lзаз,

м

F,

А

3,2·10–4

0,8

0,28

0,64

0,16

0,8

64·104

1·10–3

3,6·10–4

0,9

0,28

0,72

0,16

0,9

72·104

1·10–3

4,0·10–4

1,0

0,28

0,80

0,16

1,0

80·104

1·10–3

4,4·10–4

1,1

0,28

0,88

0,16

1,1

88·104

1·10–3

Мы остановились на величине Ф = 4,4·10–4 Вб потому, что для этого значения магнитного потока суммарная магнитодвижущая сила равна 1160 А, что больше заданных 1100 А. По данным расчетов построена кривая Ф = f (F) и на ней определена рабочая точка, которая при F = 1100 А соответствует значению магнитного потока в 4,24·10–4 (рис. 2.4).

Рис. 2.4

Следовательно, искомая индукция в якоре электромагнита

B як = Ф S як = 4,24⋅ 10 −4 5⋅ 10 −4 =0,848   Вб м 2 .

Обычно в технических расчетах значения магнитной индукции округляют до сотых долей Вб/м2 (целые сотни гауссов); поэтому считаем Bяк = 0,85 Вб/м2.

Укажем, что задача могла бы быть решена и другим путем – методом проб: суть его состоит в том, что так же, как и выше, задаются некоторым значением магнитного потока Ф, для которого подсчитывают магнитодвижущую силу F. Если она окажется меньше заданной, то берут большие значения Ф до тех пор, пока не получат F больше заданной величины. После этого значения Ф, соответствующие большим и меньшим против заданного значениям F сужают до тех пор, пока для одного из сечений магнитной цепи полученные значения магнитной индукции будут различаться друг от друга не более чем на 0,1 Вб/м2 (1000 Гс). Искомое значение Ф можно затем найти путем интерполирования.

Так, например, задаемся величиной Ф = 3,2·10–4 Вб, которой соответствует магнитодвижущая сила F = 780 А, что меньше заданного значения Fзад = 1100 А. Теперь зададимся Ф’ = 4,4·10–4 Вб, для которого найдем F’ = 1160 А; это больше заданной величины Fзад. Уменьшаем значение Ф, принимая его, например, равным 4·10–4 Вб; ему соответствует значение F» = 1020 А, что вновь меньше заданной величины магнитодвижущей силы. Итак, при Ф» = 4·10–4 Вб: B»як = 0,8 Вб/м2, а при Ф’ = 4,4·10–4 Вб: B’як = 0,88 Вб/м2.

Таким образом, значения магнитной индукции B в одном из сечений (в данном случае в якоре) отличаются одно от другого менее, чем на 0,1 Вб/м2 (0,88 – 0,8 = 0.08 Вб/м2).

Окончательное значение магнитного потока найдем линейным интерполированием.

Рис. 2.5

Из треугольника MNP (рис. 2.5) имеем:

ΔФ 4,4⋅ 10 −4 −4⋅ 10 −4 = 1100−1020 1160−1020 ,

отсюда

ΔФ=0,23⋅ 10 −4   Вб,  а  Ф=4⋅ 10 −4 +0,23⋅ 10 −4 =4,23⋅ 10 −4   Вб.

Искомая индукция в якоре

B як = Ф S як = 4,23⋅ 10 −4 5⋅ 10 −4 ≈0,85   Вб м 2 .

Задача 2.5. Найти магнитную индукцию в воздушном зазоре тороида (обратная задача расчета одноконтурной магнитной цепи), изготовленного из литой стали (рис. 2.6), если на тороид намотано w = 400 витков, по которым проходит ток I = 4 А. Воздушный зазор = 2 мм. Размеры тороида на рисунке даны в мм.

Рис. 2.6

Решение

Задача может быть решена аналогично предыдущей. Мы здесь укажем, как быстрее всего найти первое приближенное значение магнитного потока. Для этого предполагаем, что вся заданная магнитодвижущая сила F = I·w расходуется на ту часть магнитопровода, которая предполагается имеющей наибольшее магнитное сопротивление. Получаемое при этом значение магнитного потока будет завышено по сравнению с фактическим, ибо в расчете не были учтены магнитные сопротивления других участков цепи.

Полагая в нашем случае, что вся магнитодвижущая сила падает на магнитном сопротивлении воздушного зазора, запишем по второму закону Кирхгофа для магнитной цепи (закону полного тока):

F=I⋅w= H возд ⋅δ= B μ 0 ⋅δ,

откуда

B= I⋅w⋅ μ 0 δ = 4⋅400⋅4π⋅ 10 −7 2⋅ 10 −3 =1,0   Вб м 2 .

Так как это значение индукции, как указано выше, явно завышено, проведем новый расчет для меньшего значения магнитной индукции, например, для 0,8 Вб/м2. По кривой намагничивания для литой стали этой индукции соответствует величина напряженности магнитного поля Hст = 490 А/м.

Общая магнитодвижущая сила по второму закону Кирхгофа для магнитной цепи (закону полного тока) при этом будет равна

F= H ст ⋅ l ст + H возд ⋅δ=490⋅0,785+ 0,8 4π⋅ 10 −7 ⋅2⋅ 10 −3 =1650  А,

что превышает заданную величину 1600 А.

Теперь проведем расчет для еще меньшей индукции B = 0,7 Вб/м2. Для нее по кривой намагничивания напряженность Hст = 380 А/м. Общая магнитодвижущая сила в этом случае будет

F= H ст ⋅ l ст + H возд ⋅δ=490⋅0,785+ 0,7 4π⋅ 10 −7 ⋅2⋅ 10 −3 =1410  А,

что меньше заданной величины 1600 А.

Таким образом, истинная величина индукции находится в пределах от 0,7 до 0,8 Вб/м2. Ее мы найдем интерполированием (рис. 2.7).

Рис. 2.7

Искомая индукция B=0,7+ΔB,  где  ΔB находится из соотношения

ΔB 0,1 = 1600−1410 1650−1410 = 190 240 ,

откуда

ΔB= 190 240 ⋅0,1≈0,08   Вб м 2 .

Итак, искомая индукция равна 0,78 Вб/м2 (7800 Гс).

Задача 2.6. Определить все магнитные потоки и ток, проходящий через катушку, расположенную на среднем стержне сердечника, если в левом стержне имеется магнитная индукция в 0,95 Вб/м2. Размеры магнитопровода на рис. 2.8 даны в миллиметрах. Материал сердечника – листовая сталь Э11. Число витков катушки w = 500.

Рис. 2.8

Решение

Покажем на рисунке средние линии магнитной индукции. По данным задачи найдем их длины:

lA = 60 см; lB = 25 см; lC = 70 см.

Задачи на сложную разветвленную несимметричную магнитную цепь решаются на основании первого и второго законов Кирхгофа для магнитной цепи:

для узла n

ФB = ФA + ФC; (1)

для контура npqn

HB·lB + HC·lC = I·w; (2)

для контура npqmn

HC·lC – HA·lA = 0. (3)

В уравнениях (2) и (3) HA, HB и HC соответственно напряженности магнитного поля в стержнях A, B и C.

Для магнитной индукции в левом стержне BA = 0,95 Вб/м2 по кривой намагничивания для листовой стали найдем HA = 447 А/м.

Из уравнения (3) получим

H C = H A ⋅ l A l C = 447⋅60 70 =384   А м .

По кривой намагничивания находим, что H = 384 А/м соответствует индукция BC = 0,89 Вб/м2.

По уравнению (1) получим

Ф B = Ф A + Ф C = B A ⋅ S A + B C ⋅ S C =         =0,95⋅20⋅ 10 −4 +0,89⋅20⋅ 10 −4 =36,8⋅ 10 −4   Вб.

Следовательно,

B B = Ф B S B = 36,8⋅ 10 −4 40⋅ 10 −4 =0,92   Вб м 2 .

Этой индукции по кривой намагничивания соответствует HB = 417 А/м. По уравнению (2) найдем

I·w = HB·lB + HC·lC = 417·0,25 + 384·0,7 = 373 А.

Искомый ток

I= F w = 373 500 ≈0,75  А.

Задача 2.7. Магнитная цепь изготовлена из листовой электротехнической стали Э11. На средний стержень сердечника намотана катушка, содержащая w = 930 витков, по которым проходит ток I = 1 А (рис. 2.8). На всем участке A сечение магнитной цепи считать SA = 20 см2, на участке B – SB = 40 см2, на участке С – SC = 20 см2. Длины средних линий магнитной индукции каждого из участков считать равными: lA = 55 см, lB = 25 см, lC = 80 см.

Найти значения магнитной индукции во всех стержнях.

Решение

Выберем на рис. 2.8 пути средних линий магнитной индукции и запишем уравнения:

для узла n

ФB = ФA + ФC; (1)

для контура npqn

HB·lB + HC·lC = I·w; (2)

для контура npqmn

HC·lC – HA·lA = 0. (3)

Построим кривые зависимостей

ФA = f1 (HA·lA) = f1 (UMnq);

ФB = f2 (I·w – HB·lB) = f2 (UMnq);

ФC = f3 (HC·lC) = f3 (UMnq).

Здесь UMnq – разность скалярных магнитных потенциалов точек n и q, или магнитодвижущая сила между теми же точками.

Для построения кривой f1 задаемся различными величинами магнитных потоков ФA, по которым находим соответствующие им значения магнитной индукции BA, для которых по кривой намагничивания определяем напряженность магнитного поля HA. Беря произведение HA·lA, находим для различных потоков значения магнитных напряжений на участке A. Результаты вычислений сводим в таблицу. Таким же путем производим расчет для построения кривой на участке C. Наконец, для построения кривой f2 (участок B) задаемся значениями ФB и по ним находим BB, HB, HB·lB и разность I·w – HB·lB. Указанные вычисления сведены в таблицу.

ФА,

10–4 Вб

BA,

Вб/м2

HA,

А/м

HAlA,

А

ФC,

10–4 Вб

BC,

Вб/м2

HC,

А/м

HClC,

А

ФB,

10–4 Вб

BB,

Вб/м2

HB,

А/м

HBlB,

А

Iw–HBlB,

А

0,5

0,5

0,5

0,6

0,6

0,6

0,7

0,7

0,7

0,8

0,8

0,8

0,9

0,9

0,9

1,0

1,0

1,0

1,1

1,1

1,1

1,2

1,2

1,2

1,3

1,3

1,3

1,4

1,4

1,4

1,5

1,5

1,5

По этим данным построены кривые ФA, ФB, ФC (рис. 2.9).

Рис. 2.9

Так как величины магнитных потоков должны удовлетворять уравнению (1), то проводим еще одну вспомогательную кривую ФB = ФA + ФC; она строится путем суммирования ординат кривых ФA и ФC для одних и тех же значений абсцисс. Точка m ее пересечения с кривой ФB = f2 (I·w – HB·lB) определяет величину искомого потока

ФB = 50,4·10–4 Вб.

Перпендикуляр mm’, опущенный из m на ось абсцисс, пересечет кривую ФA в точке n, а кривую ФC – в точке p, отрезок nm’ выражает искомый магнитный поток в стержне A:

ФA = 26,4·10–4 Вб, а отрезок pm’ – поток ФC = 24·10–4 Вб.

По найденным потокам находим магнитные индукции в каждом из стержней:

B A = Ф A S A = 26,4⋅ 10 −4 20⋅ 10 −4 =1,32   Вб м 2 ; B B = Ф B S B = 50,4⋅ 10 −4 40⋅ 10 −4 =1,26   Вб м 2 ; B C = Ф C S C = 24,0⋅ 10 −4 20⋅ 10 −4 =1,20   Вб м 2 .

Проверка. Можно убедиться, что при найденных значениях магнитных индукций удовлетворяются уравнения (1) – (3). Для этого по кривой намагничивания надо найти для каждого значения B соответствующее значение H и подставить в указанные уравнения.

Задача 2.8. Сердечник собран из листов электротехнической стали марки Э11. Форма и размеры сердечника (в мм) указаны на рис. 2.10.

Рис. 2.10

Обмотка имеет w = 400 витков, по которым проходит ток I = 3,5 А. Длина воздушного зазора составляет 1 мм. Определить магнитный поток в сердечнике. При расчете следует считать, что сечение воздушного зазора равно сечению сердечника.

Задачу решить следующими аналитическими методами: а) линейной аппроксимации, б) кусочно-линейной аппроксимации, в) дробно-линейной аппроксимации.

Результаты, полученные для каждого из случаев, сравнить с теми, какие получаются при решении задачи обычным способом.

Решение

Найдем длину средней линии магнитной индукции и сечение стального сердечника (рис. 2.10):

l1 = 2· (90 – 8) + 2· (46 – 8) = 240 мм = 0,24 м;

S1 = 8·5 = 40 мм2 = 0,4·10–4 м2.

Длина средней линии магнитной индукции в воздушном зазоре и его сечение равны:

l2 = 1 мм = 1·10–3 м;

S2 = 8·5 = 40 мм2 = 0,4·10–4 м2.

Решая задачу способом, указанным в решении задачи 2.4, найдем магнитную индукцию B = 1,35 Вб/м2 и соответствующий магнитный поток

Ф = B·S = 1,35·0,4·10–4 = 0,54·10–4 Вб.

а) Расчет магнитной цепи методом линейной аппроксимации кривой намагничивания

Здесь расчет магнитной цепи основан на замене рабочей части кривой намагничивания прямой линией в некоторой области изменения магнитной индукции. Примем, например, что магнитная индукция изменяется в пределах от нуля до 1,5 Вб/м2. Заменим кривую намагничивания (рис. 2.11) прямой линией 0b.

Рис. 2.11

Ее уравнение B = k1·H, здесь коэффициент k1 равен тангенсу угла наклона прямой 0b к оси абсцисс и выражает приближенное значение абсолютной магнитной проницаемости стали в рассматриваемом интервале

μ a1 = μ r1 ⋅ μ 0 = k 1 = B H = 1,5 2500 =6⋅ 10 −4    Гн м .

Искомый магнитный поток определяем по уравнению:

Ф= I⋅w R M1 + R M2 ,

где

R M1 = l 1 μ a1 ⋅ S 1 = l 1 μ r1 μ 0 ⋅ S 1 ;   R M2 = l 2 μ 0 ⋅ S 2 – магнитные сопротивления, соответственно стальной части и воздушного зазора.

Производим вычисления:

R M1 = l 1 μ a1 ⋅ S 1 = 0,24 6⋅ 10 −4 ⋅0,4⋅ 10 −4 =1,0⋅ 10 7    1 Гн ; R M2 = l 2 μ 0 ⋅ S 2 = 1⋅ 10 −3 4π⋅ 10 −7 ⋅0,4⋅ 10 −4 =1,98⋅ 10 7    1 Гн ; Ф= I⋅w R M1 + R M2 = 3,5⋅400 1,0⋅ 10 7 +1,98⋅ 10 7 =0,47⋅ 10 −7   Вб.

Ошибка в сравнении с результатами, полученными обычным способом, составляет

0,54⋅ 10 −4 −0,47⋅ 10 −4 0,54⋅ 10 −4 ⋅100%≈13%.

б) Расчет магнитной цепи методом кусочно-линейной аппроксимации кривой намагничивания

Здесь расчет магнитной цепи основан на замене рабочей части кривой намагничивания отрезками прямых линий, например, из двух прямых отрезков 0a и ab (рис. 2.11).

Предполагается, что рабочий режим лежит в области индукций между B1 и B2, соответствующих точкам a и b.

Уравнение прямой ab, выражающей зависимость магнитной индукции от напряженности магнитного поля в стали, имеет вид:

B ст = B 1 + k 2 ⋅ ( H ст − H 1 ), (1)

где k2 — тангенс угла наклона прямой ab с осью абсцисс:

k 2 = B 2 − B 1 H 2 − H 1 . (2)

Напряженность магнитного поля в воздухе может быть выражена следующим образом:

H в = B в μ 0 = Ф μ 0 ⋅ S 2 = B ст ⋅ S 1 μ 0 ⋅ S 2 = B ст μ ′ 0 , (3)

где ради краткости обозначено

μ ′ 0 = μ 0 ⋅ S 2 S 1 . (4)

Подставляя в уравнение (3) вместо Bст его значение из уравнения (1), получим:

H в =⋅ 1 μ ′ 0 . (5)

Для определения Hст воспользуемся уравнением второго закона Кирхгофа для магнитной цепи (законом полного тока)

Hст·l1 + Hв·l2 = I·w. (6)

Подставляя в уравнение (6) значение Нв из уравнения (5), будем иметь:

H ст ⋅ l 1 + B 1 ⋅ l 2 μ ′ 0 + k 2 ⋅ l 2 μ ′ 0 ⋅ ( H ст − H 1 )=I⋅w.

Решая это алгебраическое уравнение относительно Hст, найдем:

H ст = I⋅w⋅ μ ′ 0 − B ′ ⋅ l 2 μ ′ 0 ⋅ l 1 + k 2 ⋅ l 2 , (7)

где

B ′ = B 1 − k 2 ⋅ H 1 . (8)

Величина магнитной индукции в стали находится путем подстановки найденного значения Hс в уравнение (1):

B ст = μ ′ 0 ⋅ I⋅w⋅ k 2 + B ′ ⋅ l 1 μ ′ 0 ⋅ l 1 + k 2 ⋅ l 2 , (9)

Для нашей задачи выберем ломаную так, что:

в точке a

B1 = 1,2 Вб/м2, соответствующее H1 = 843 А/м,

в точке b

B2 = 1,5 Вб/м2, соответствующее H2 = 2500 А/м.

По формулам (2), (4), (8), (7) и (1) находим:

k 2 = B 2 − B 1 H 2 − H 1 = 1,5−1,2 2500−843 =18,15⋅ 10 −5    Гн м ; μ ′ 0 = μ 0 ⋅ S 2 S 1 = μ 0 ⋅ 0,4⋅ 10 −4 0,4⋅ 10 −4 = μ 0 =4π⋅ 10 −7    Гн м ; B ′ = B 1 − k 2 ⋅ H 1 =1,2−18,15⋅ 10 −5 ⋅843=1,05   Вб м 2 ; H ст = I⋅w⋅ μ ′ 0 − B ′ ⋅ l 2 μ ′ 0 ⋅ l 1 + k 2 ⋅ l 2 = 3,5⋅400⋅4π⋅ 10 −7 −1,05⋅1⋅ 10 −3 4π⋅ 10 −7 ⋅0,24+18,15⋅ 10 −5 ⋅1⋅ 10 −3 =1470  А м ; B ст = B 1 + k 2 ⋅ ( H ст − H 1 )=1,2+18,15⋅ 10 −5 ⋅ ( 1470−843 )=1,314   Вб м 2 .

И, наконец, искомый поток

Ф = Bст·S1 = 1,314·0,4·10–4 = 0,525·10–4 Вб.

Ошибка по сравнению с обычным способом расчета составляет

0,54⋅ 10 −4 −0,525⋅ 10 −4 0,54⋅ 10 −4 ⋅100%≈3%.

в) Расчет магнитной цепи методом дробно-линейной аппроксимации кривой намагничивания

Дробно-линейная аппроксимация делается посредством уравнения:

B ст = H ст α+β⋅ H ст . (10)

Входящие сюда коэффициенты α  и  β находятся из известных значений магнитной индукции и напряженности магнитного поля в двух выбранных точках кривой намагничивания, между которыми ожидается действительный режим работы стального участка магнитной цепи.

Для определения Нст поступим следующим образом: из уравнения (10) значение Вст подставим в уравнение (3), тогда получим:

H в = B ст μ ′ 0 = H ст μ ′ 0 ⋅ ( α+β⋅ H ст ) .

Это значение Нв подставим в уравнение (6) второго закона Кирхгофа для магнитной цепи (закона полного тока):

H ст ⋅ l 1 + H ст ⋅ l 2 μ ′ 0 ⋅ ( α+β⋅ H ст ) =I⋅w.

Решая относительно Нст это квадратное уравнение, найдем:

H ст = 1 2 ( I⋅w l 1 − 1+p q )+ 1 4 ( I⋅w l 1 − 1+p q ) 2 + I⋅w q⋅ l 1 . (11)

Второй корень квадратного уравнения, как не имеющий физического смысла, ввиду того что Нст должна выражаться положительным числом, опущен.

В уравнении (11) введены ради краткости обозначения:

p= l 2 ⋅ S 1 l 1 ⋅ S 2 ⋅ μ 0 ⋅α ;   q= β α . (12)

Проведем числовые расчеты для нашей задачи, принимая для B и H те числовые значения, какие они имеют на границах рассматриваемого интервала в указанных выше точках a и b. По уравнению (10) имеем:

1,2= 843 α+β⋅843 ;   1,5= 2500 α+β⋅2500 .

Решая эти два уравнения, найдем:

α=213   м Гн ;   β=0,581    м 2 Вб .

Далее по формулам (12), (13), (11) и (10) получим:

p= l 2 ⋅ S 1 l 1 ⋅ S 2 ⋅ μ 0 ⋅α = 1⋅ 10 −3 ⋅0,4⋅ 10 −4 0,24⋅0,4⋅ 10 −4 ⋅4π⋅ 10 −7 ⋅α 213=15,6;  q= β α = 0,581 213 =2,73⋅ 10 −3    м А ; I⋅w q⋅ l 1 = 3,5⋅400 2,73⋅ 10 −3 ⋅0,24 =2,14⋅ 10 6    А 2 м 2 ; 1 2 ( I⋅w l 1 − 1+p q )= 1 2 ( 3,5⋅400 0,24 − 16,6 2,73⋅ 10 −3 )=−125; H ст = 1 2 ( I⋅w l 1 − 1+p q )+ 2 + I⋅w q⋅ l 1 =            =−125+ 125 2 +2,14⋅ 10 6 =−125+1515=1390    А м ; B ст = H ст α+β⋅ H ст = 1390 213+0,581⋅1390 =1,363   Вб м 2 .

Искомый магнитный поток равен:

Ф = Bст·S1 = 1,363·0,4·10–4 = 0,545·10–4 Вб.

Ошибка в сравнении с обычным методом расчета магнитных цепей составляет:

0,545⋅ 10 −4 −0,54⋅ 10 −4 0,545⋅ 10 −4 ⋅100%≈0,9%.

Отметим, что расчет при помощи дробно-линейной аппроксимации приводит к удовлетворительным результатам даже в тех случаях, когда велико расстояние между граничными точками.

решение задач магнитные цепи, методы расчета магнитных цепей, расчет магнитной цепи, магнитная цепь, закон полного тока

08.08.2012, 67026 просмотров.

Магнитные цепи и их расчет

Дата публикации: 23 февраля 2015.
Категория: Электротехника.

Магнитной цепью или магнитопроводом называется путь, по которому замыкается магнитный поток. Этот путь может проходить целиком по воздуху.

Рисунок 1. Примеры магнитных цепей

На рисунке 1, а показан соленоид. Магнитная цепь здесь проходит через воздух. Магнитное сопротивление воздуха очень велико, поэтому даже при большой намагничивающей силе магнитный поток мал.

Для увеличения магнитного потока в состав магнитной цепи вводят ферромагнитные материалы (обычно литая или электротехническая сталь), имеющие меньшее магнитное сопротивление.

На рисунке 1, б представлен прямой электромагнит с разомкнутым сердечником. Магнитные линии только небольшую часть своего пути проходят по стальному сердечнику, большую же часть своего пути они проходят по воздуху. Полюсы электромагнита определяются при помощи «правила буравчика».

Подковообразный электромагнит, изображенный на рисунке 1, в, представляет магнитную цепь с лучшими условиями для прохождения магнитного потока. При такой конструкции поток большую часть пути проходит по стали и меньшую часть от полюса N до полюса S по воздуху.

На рисунке 1, г представлена конструкция магнитной цепи, применяемая в электромашиностроении и приборостроении. Между полюсами электромагнита помещается стальной якорь. Большую часть своего пути магнитные линии проходят по стали и только очень малую часть (от нескольких долей миллиметра до 2–3 мм) проходят по двум воздушным промежуткам.

Трансформаторы имеют замкнутый стальной сердечник (рисунок 1, д). Сердечники трансформаторов собираются из нескольких частей, но во время сборки принимают меры к тому, чтобы воздушные зазоры между отдельными частями практически были равны нулю.

До сих пор мы не говорили о том, что магнитный поток, созданный намагничивающей силой, не весь замыкается по тому пути, который ему предназначен. Помимо рабочего магнитного потока, существует магнитный поток рассеяния, который замыкается вне того места, где используется рабочий поток. На рисунке 1, б, в, г, д показаны потоки рассеяния.

Таким образом, общий магнитный поток, который должна создать обмотка возбуждения электромагнита, равен сумме рабочего потока и потока рассеяния.

Расчет магнитной цепи, казалось бы, можно производить по формуле:

Но если вспомнить, что относительная магнитная проницаемость µ для ферромагнитных тел непостоянна и зависит от многих причин, то становится ясно, что этой формулой можно пользоваться лишь в том случае, когда в состав магнитной цепи входят только немагнитные тела (в том числе и воздух), для которых µ есть заранее заданная величина.

На практике для расчета магнитных цепей предпочитают пользоваться графическими методами решения.

Расчет магнитной цепи производят в следующем порядке. Задаются необходимой величиной магнитного потока. Разбивают магнитную цепь на участки, имеющие одинаковые поперечные сечения и однородный материал, и для каждого участка определяют величину магнитной индукции по формуле:

Затем по кривым намагничивания для данного материала находят для каждого значения магнитной индукции величину напряженности H. Если в магнитной цепи встречаются воздушные зазоры, то зависимость B0 и H0 определяется по формуле:

Здесь B0 выражено в Вб/м², µ0 – в Гн/м, H0 – в А/см .

Если индукция выражена в гауссах, а напряженность в А/см, то зависимость между B0 и H0 будет:

H0 = 0,8 × B0 .

Определив величину H для каждого участка, находим по закону полного тока величину намагничивающей силы по формуле:

Пример. Найти намагничивающую силу обмотки электромагнита, изображенного на рисунке 2. Размеры даны в миллиметрах. Материал сердечника – электротехническая сталь. В сердечнике необходимо создать магнитный поток 60 000 Мкс. Магнитным рассеянием пренебрегаем.

Рисунок 2. К примеру расчета магнитной цепи

Проводим среднюю линию по все длине магнитной цепи. Разбиваем цепь на пять участков и определяем длину каждого участка.

Так как магнитный поток во всех участках одинаков и площадь поперечного сечения всех участков магнитной цепи (2 × 2 см), то магнитная индукция везде также будет одинакова.

По кривой намагничивания (рисунок 3) для электротехнической стали по индукции 15000 Гс находим напряженность магнитного поля H = 30 А/см. Для воздушного зазора имеем:

H0 = 0,8 × 15000 = 12000 А/см .

Рисунок 3. Кривые намагничивания электротехнической стали, литой стали и чугуна

Умножая величины напряженности на длины соответствующих участков, получаем произведения H × l для этих участков.

Результаты вычислений записываем в таблицу (таблица 1).

Таблица 1

Номера участков Материал B l H H × l
Гс см А/см А
I
II и VI
III и V
IV
Электротехническая сталь
То же
То же
Воздух
15000
15000
15000
15000
8
10 × 2
3,8 × 2
0,4
30
30
30
12000
240
600
228
4800

I × w = ∑ (H × l) = 5868 А .

Интересно отметить, что если на участках из электротехнической стали I, II, III, V и VI общей протяженностью 35,6 см (8 + 20 + 7,6 см) для проведения магнитного потока необходима намагничивающая сила 1068 А (240 + 600 + 228 А), то на воздушный зазор длиной всего 4 мм (в 89 раз меньше длины пути стали) нужна намагничивающая сила 4800 А. Отсюда становится понятной необходимость создания магнитных цепей с минимальными воздушными зазорами.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *