Плотность тока

Плотность тока

У этого термина существуют и другие значения, см. Плотность (значения).

Плотность тока

j → {\displaystyle {\vec {j}}}

Размерность

L−2I

Единицы измерения

СИ

А/м2

Примечания

векторная величина

Связь между током и плотностью тока

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы электрического тока, протекающего через элемент поверхности единичной площади. При равномерном распределении плотности тока и сонаправленности её с нормалью к поверхности, через которую протекает ток, для величины вектора плотности тока выполняется:

j = | j → | = I S , {\displaystyle j=|{\vec {j}}|={\frac {I}{S}},}

где I — сила тока через поперечное сечение проводника площадью S (также см. рисунок).

Иногда речь может идти о скалярной плотности тока, в таких случаях под ней подразумевается именно та величина j, которая приведена в формуле.

В общем случае:

I = | ∫ S ( j → , d S → ) | = | ∫ S j n d S | {\displaystyle I=|\int \limits _{S}({\vec {j}},{\vec {dS}})|=|\int \limits _{S}j_{n}dS|} ,

где j n {\displaystyle j_{n}} — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу поверхности площадью d S {\displaystyle dS} ; вектор d S → {\displaystyle {\vec {dS}}} — специально вводимый вектор элемента поверхности, ортогональный элементарной площадке и имеющий абсолютную величину, равную её площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение.

Как видим из этого определения, сила тока есть поток вектора плотности тока через некую заданную фиксированную поверхность.

В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости v → {\displaystyle {\vec {v}}} и имеют одинаковые заряды q {\displaystyle q} (такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их n {\displaystyle n} ,

j → = n q v → {\displaystyle {\vec {j}}=nq{\vec {v}}}

или

j → = ρ v → , {\displaystyle {\vec {j}}=\rho {\vec {v}},}

где ρ {\displaystyle \rho } — плотность заряда этих носителей.

Направление вектора j → {\displaystyle {\vec {j}}} соответствует направлению вектора скорости v → {\displaystyle {\vec {v}}} , с которой движутся заряды, создающие ток, если q положительно.

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под v → {\displaystyle {\vec {v}}} следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

j → = ∑ i n i q i v → i , {\displaystyle {\vec {j}}=\sum _{i}n_{i}q_{i}{\vec {v}}_{i},}

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где n i {\displaystyle n_{i}} — концентрация частиц каждого типа, q i {\displaystyle q_{i}} — заряд частицы данного типа, v → i {\displaystyle {\vec {v}}_{i}} — вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

j → = ∑ i q i v → i {\displaystyle {\vec {j}}=\sum _{i}q_{i}{\vec {v}}_{i}}

Сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны.

Закон Ома

В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома:

j → = σ E → {\displaystyle {\vec {j}}=\sigma {\vec {E}}}

где σ {\displaystyle \sigma \ } — удельная проводимость среды, E → {\displaystyle {\vec {E}}} — напряжённость электрического поля. Или:

j → = 1 ρ E → , {\displaystyle {\vec {j}}={\frac {1}{\rho }}{\vec {E}},}

где ρ {\displaystyle \rho \ } — удельное сопротивление.

В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность σ {\displaystyle \sigma } в этом случае, вообще говоря, должна рассматриваться как тензор, а умножение на неё — как умножение вектора на матрицу.

Формула для работы электрического поля (плотности её мощности)

w = E → ⋅ j → , {\displaystyle w={\vec {E}}\cdot {\vec {j}},}

вместе с законом Ома принимает для изотропной электропроводности вид:

w = σ E 2 = j 2 σ ≡ ρ j 2 , {\displaystyle w=\sigma E^{2}={\frac {j^{2}}{\sigma }}\equiv \rho j^{2},}

где σ {\displaystyle \sigma } и ρ {\displaystyle \rho } — скаляры, а для анизотропной:

w = E → σ E → = j → ρ j → , {\displaystyle w={\vec {E}}\sigma {\vec {E}}={\vec {j}}\rho {\vec {j}},}

где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор σ {\displaystyle \sigma } и тензор ρ {\displaystyle \rho } порождают соответствующие квадратичные формы.

4.1. Сила тока и плотность тока в проводнике

Таким образом, скорость в выражении (4.7) — это дрейфовая скорость носителей тока в присутствии внешнего электрического поля или любого другого силового поля, обуславливающего направленное (упорядоченное) движение носители заряда. Если в веществе возможно движение зарядов разного знака, то полная плотность тока определяется векторной суммой плотностей потоков заряда каждого знака.

Как уже указывалось, в отсутствие электрического поля движение носителей заряда хаотично и не создает результирующего тока. Если, приложив электрическое поле, сообщить носителям заряда даже малую (по сравнению с их тепловой скоростью) скорость дрейфа, то, из-за наличия в проводниках огромного количества свободных электронов, возникнет значительный ток.

Поскольку дрейфовая скорость носителей тока создается электрическим полем, логично предположить пропорциональность

так что и плотность тока будет пропорциональна вектору напряженности (рис. 4.4)

(4.9)

Более подробно этот вопрос обсуждается в Дополнении

Входящий в соотношение (4.9)

Коэффициент пропорциональности называется проводимостью вещества проводника.

Проводимость связывает напряженность поля в данной точке с установившейся скоростью «течения» носителей заряда. Поэтому она может зависеть от локальных свойств проводника вблизи этой точки (то есть от строения вещества), но не зависит от формы и размеров проводника в целом. Соотношение (4.9) носит название закона Ома для плотности тока в проводнике (его называют также законом Ома в дифференциальной форме).

Рис. 4.4. Силовые линии электрического поля совпадают с линиями тока

Чтобы понять порядки величин, оценим дрейфовую скорость носителей заряда в одном из наиболее распространенных материалов — меди. Возьмем для примера силу тока I = 1 А, и пусть площадь поперечного сечения провода составляет
1 мм2 = 10–6 м2. Тогда плотность тока равна j = 106 А/м2. Теперь воспользуемся соотношением (4.7)

Носителями зарядов в меди являются электроны (е = 1.6·10-19 Кл), и нам осталось оценить их концентрацию . В таблице Менделеева медь помещается в первой группе элементов, у нее один валентный электрон, который может быть отдан в зону проводимости. Поэтому число свободных электронов примерно совпадает с числом атомов. Берем из справочника плотность меди — r Cu=8,9·103 кг/м3. Молярная масса меди указана в таблице Менделеева — MCu = 63,5·10–3 кг/моль. Отношение

— это число молей в 1 м3. Умножая на число Авогадро Na = 6,02·1023 моль–1, получаем число атомов в единице объема, то есть концентрацию электронов

Теперь получаем искомую оценку дрейфовой скорости электронов

Для сравнения: скорости хаотического теплового движения электронов при 20°С в меди по порядку величины составляют 106 м/с, то есть на одиннадцать порядков величины больше.

Возьмем произвольную воображаемую замкнутую поверхность S, которую в разных направлениях пересекают движущиеся заряды. Мы видели, что полный ток через поверхность равен

где dq — заряд, пересекающий поверхность за время dt. Обозначим через q ‘ заряд, находящийся внутри поверхности. Его можно выразить через плотность заряда , проинтегрированную по всему объему, ограниченному поверхностью

Из фундаментального закона природы — закона сохранения заряда — следует, что заряд dq, вышедший через поверхность за время dt, уменьшит заряд q ‘ внутри поверхности точно на эту же величину, то есть dq ‘ = –dq или

Подставляя сюда написанные выше выражения для скоростей изменения заряда внутри поверхности , получаем математическое соотношение, выражающее закон сохранения заряда в интегральной форме

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.

Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом. Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными. Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2. В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2. В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S. Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника. Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Электрический ток в металлах

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *