Первичная и вторичная обмотка

Вторичная обмотка

Смотреть что такое «Вторичная обмотка» в других словарях:

  • вторичная обмотка — измерительный элемент Обмотка и (или) устройство, измеряющее напряженность магнитного поля, через которые проходит результирующее магнитное поле. Тематики электротехника, основные понятия Синонимы расщеплённая вторичная… … Справочник технического переводчика

  • вторичная обмотка для защиты — Вторичная обмотка трансформатора тока, предназначенная для присоединения к ней устройств защиты и управления. … Справочник технического переводчика

  • вторичная обмотка для измерений — Вторичная обмотка трансформатора тока, предназначенная для присоединения к ней измерительных приборов. … Справочник технического переводчика

  • вторичная обмотка трансформатора — Обмотка трансформатора, от которой отводится энергия преобразованного переменного тока. Примечание. Термин применим к любому числу обмоток трансформатора, если направление передачи энергии к ним от других обмоток трансформатора является… … Справочник технического переводчика

  • вторичная обмотка трансформатора тока — Обмотка, по которой протекает трансформированный (вторичный) ток. EN secondary winding (of a current transformer) a winding which supplies the current circuits of measuring instruments, meters, protective or control devices [IEV… … Справочник технического переводчика

Типы трансформаторных обмоток

В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:

  1. Однослойная или двухслойная цилиндрическая обмотка из прямоугольного провода. Технология ее изготовления очень проста, благодаря чему такие катушки получили широкое распространение. Обмотка имеет небольшую толщину, что уменьшает нагрев устройства. Из недостатков следует выделить небольшую прочность конструкции.
  2. Многослойная цилиндрическая обмотка является аналогом предыдущего типа, но провод расположен в несколько слоев. Окна магнитной системы при этом заполняются лучше, но появляется проблема перегрева.
  3. Цилиндрическая многослойная обмотка из провода круглого сечения обладает свойствами, близкими к предыдущим разновидностям обмоток, но к недостаткам добавляется утрата прочности по мере роста мощности.
  4. Винтовая обмотка с одним, двумя и больше ходами имеет высокую прочность, отличную изоляцию и охлаждение. По сравнению с цилиндрическими обмотками, винтовая обходится дороже в производстве.
  5. Непрерывная обмотка из провода прямоугольного сечения не перегревается, она обладает значительным запасом прочности.
  6. Многослойная обмотка из фольги устойчива к повреждениям, хорошо заполняет окно магнитной системы, но технология производства таких катушек сложная и дорогостоящая.

У трансформаторов есть шесть основных типов обмотки.

На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения — строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита — X, Y, Z для входящего напряжения и x, y, z для выходящего.

Различают обмотки и по назначению:

  • основные — к ним относятся первичная и вторичная обмотки, по которым ток подается из сети и поступает к месту потребления;
  • регулирующие — являют собой отводы, главная функция которых — изменение коэффициента трансформации напряжения;
  • вспомогательные — используются для обеспечения нужд самого трансформатора.

Автоматизированный расчет намотки трансформатора

Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.

Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.

Специальные программы облегчат расчет траснформатора.

Проще всего рассчитать параметры маломощного однофазного трансформатора. Для этого в специальной программе указываются следующие параметры:

  • напряжение, подающееся на первичную обмотку катушки , в большинстве случаев это для домашних нужд
  • напряжение составляет 220 вольт;
  • напряжение на вторичной обмотке;
  • сила тока вторичной обмотки.

Далее следует указать тип трансформатора (броневой или стержневой), вторичную мощность, значение магнитной индуктивности сердечника и плотности тока в обмотке.

Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.

Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.

Отличия первичной обмотки от вторичной

Определить тип обмотки можно по ее сопротивлению.

Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.

Главный визуальный критерий, при помощи которого можно определить тип обмотки, — толщина провода, припаянного к его выводам. Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.

Еще один верный признак, позволяющий узнать тип обмотки, — измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.

Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение — II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.

Какие функции выполняет трансформатор?

Трансформаторы широко используются в зарядных устройствах.

Главная функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.

В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.

Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета. В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью. Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.

В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.

Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.

Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.

Виды напряжений

Одна из энергетических характеристик электрического поля – напряжение, равное отношению работы по переносу заряда в джоулях к его величине в кулонах. Другое название – разность потенциалов: имея 2 точки со значениями 5 и 10 Кл, можно определить взаимодействие между ними: 10-5=5 Дж/Кл, что равно 5 В.

Напряжение в электроустановках измеряют в вольтах. Если его рабочая величина не превышает 1000, напряжение считается низким. При более высоких значениях пользуются единицей измерения кВ. Для определения разности потенциалов применяют вольтметр. Вся энергосистема сформирована из трёхфазных сетей, где выделяют 2 вида напряжений:

  • линейное – между двумя жилами кабеля с потенциалом;
  • фазное проявляется при измерении потенциала провода, находящегося под током и нулевого – нейтрального.

Когда присоединение потребителей к сети совершается по схеме Δ (треугольник), величины обоих видов напряжений равны между собой. Если подключение осуществляется с использованием Y (звезды), числовое значение линейного больше фазного в √3 раз (1,732). Маркировку измеренного в трёхфазной сети напряжения принято записывать в виде дроби: 380/660 В, 220/380 В, 127/220 В, где верхняя цифра – фазная, нижняя – линейная величина.

Производители электротехнического оборудования обязательно указывают на приборе его основные параметры: мощность в ваттах, силу тока в амперах и номинальное напряжение – базисное из стандартизованного ряда потенциалов, определяющих уровень изоляции аппаратов и сети. В таблице приведены значения основного показателя низковольтной энергосистемы.

Разновидность тока Напряжение номинальное Uном энергосетей и электроприёмников U ном для генераторов и преобразователей
~ 1ф 6, 12, 27, 40, 60, 110, 220 6, 12, 28, 42, 62, 115, 230
То же, 3ф 40, 60, 220, 380, 660 42, 62, 230, 400, 690
CONST 6, 12, 27, 48, 60, 110, 220, 440 6, 12, 28, 48, 62, 115, 230, 460

Uном для линий и энергосетей такое же, как у электроприёмников. Поставщики напряжения – это генераторы электростанций, преобразователи – вторичные обмотки трансформаторов.

Номиналы потенциала бытовой сети

Превышение или снижение в энергосистеме установленного норматива приводит к неправильной работе потребителей, поломке приборов. Особенно важно поддерживать необходимый уровень Uном в производственных схемах – здесь последствия бывают более тяжёлыми: вплоть до остановки технологического процесса. Бытовые приборы по степени восприимчивости к изменению номинала от более стойких к самым чувствительным разделяют на следующие группы:

  1. Устройства с нагревательными элементами: калориферы, утюги и чайники. При избыточном напряжении лишняя мощность уходит в тепло, защищая прибор от поломки.
  2. Аппараты с электроприводом в виде асинхронного двигателя: вентиляторы, кондиционеры, холодильники. Кратковременный перепад приведёт к сбою в работе техники, но длительное нарушение энергообеспечения вызовет пробой обмоток мотора и необходимость замены двигателя.
  3. Электронные устройства: телевизоры, ноутбуки и компьютеры. Любое отклонение питающей сети от нормы способно вывести приборы из строя, поэтому в их конструкции предусматривается защита. При кратковременных нарушениях предохранитель спасает, но длительное перенапряжение ведёт к потере дорогостоящей вещи.
  4. Приборы осветительные: лампы люминесцентные, накаливания, светодиодные. Энергосберегающие модели более требовательны к постоянству параметров сети.

Обозначенная напряжённость трансформатора

Transformare – превращать, преобразовывать. Это электрическое устройство с двумя или большим числом обмоток на магнитопроводе, предназначенное для трансформации тока или напряжения без изменения частоты. Различают следующие определения потенциалов в преобразовательном устройстве, называемом трансформатором:

  • номинальное первичное напряжение – на него рассчитана обмотка 1;
  • Uном вторичное – потенциал на зажимах обвивки 2, замеренный при холостом ходе преобразователя и стандартном значении на входящих клеммах;
  • высшее U ном трансформатора – наибольшее из приведённых напряжений обмоток;
  • низший номинальный потенциал, соответственно, меньший из показателей;
  • среднее Uном – промежуточное между двумя предыдущими значениями.

В процессе эксплуатации иногда случается режим короткого замыкания (КЗ), когда одна из обмоток трансформатора оказывается внутренне соединённой, а вторая остаётся под напряжением. Если событие происходит во время работы при номинальном напряжении, в обвивках возникают токи КЗ, в 5―10 крат выше стандартных. Явление сопровождается значительным увеличением температуры обмоток, в них действуют большие механические нагрузки – ситуация становится аварийной.

Для предотвращения подобных обстоятельств и применяют защиту, срабатывающую за доли секунды. Номинальные линейные напряжения (кВ) высоковольтных трансформаторов приведены в таблице.

Первая обмотка 3,00; 3,15 6,00; 6,30 10,00; 10,50 20, 0; 21,0 35,0; 36,5 110; 115 158: 165 220; 230 330 500
Вторая обвивка 3,15; 3,3 6,30; 6,60 10,50; 11,00 21,0; 22,0 38,5 115; 121 158: 165 230; 242 330

В целях уменьшения потерь в ЛЭП вторичные обмотки имеют Uном на 5―10% выше, чем в соответствующих линиях. Исключение – сети малой протяжённости, для них величины номинального напряжения устанавливают одинаковыми на питающее и потребляющее оборудование.

Номинальные параметры трансформаторов

Номинальным называется режим работы трансформатора, для которого он предназначен заводом-изготовителем. Условиями, определяющими номинальный режим работы, являются:

— номинальная мощность, , кВА, МВА;

— номинальное напряжение, , кВ;

— номинальный ток, , А;

— номинальные условия охлаждающей среды;

— напряжение короткого замыкания, ;

— ток холостого хода, ;

— потери холостого хода, ;

— потери короткого замыкания, .

Номинальной мощностью трансформатора называется указанное в паспорте значение полной мощности, на которую трансформатор может быть нагружен непрерывно в номинальных условиях установки и охлаждающей среды при номинальной частоте и напряжении. Если обмотки трансформатора имеют разные мощности, то за номинальную принимают наибольшую (обычно ВН). За номинальную мощность АТ принимается номинальная мощность сторон, имеющих автотрансформаторную связь. Ее называют «проходной» мощностью.

Номинальное напряжение обмоток — это напряжение первичной и вторичных обмоток при холостом ходе (линейные — для 3-хфазных или — для однофазных трансформаторов Номинальным коэффициентом трансформации для 2-х обмоточных трансформаторов называют

Для 3-хобмоточных трансформаторов определяют коэффициент трансформации каждой пары обмоток.

Номинальными токами обмоток трансформатора называют токи, определяемые по их номинальным мощностям и номинальным напряжениям. Под номинальной нагрузкой понимают нагрузку, равную номинальному току.

Напряжение короткого замыкания ( ) — это напряжение в процентах от номинального, при подведении которого к одной из обмоток трансформатора в замкнутой накоротко другой обмотке ток равен номинальному. Оно характеризует полное сопротивление обмоток трансформатора. Для 3-х обмоточных трансформаторов и АТ приводится для каждой пары обмоток (при разомкнутой третьей).

Ток холостого хода характеризует активные и реактивные потери в стали и выражается в процентах от номинального тока трансформатора.

Потери холостого хода и короткого замыкания определяют экономичность работы трансформатора. Они характеризуют потери в стали (на вихревые токи и гистерезис) и потери в обмотках при протекании по ним токов нагрузки.

Что представляет собой трансформатор?

Немного истории

В 70-х годах XIX века русский ученый П.Н. Яблочков изобрел электродуговой источник света — «свечу Яблочкова». Первоначально источниками питания дуги служили мощные гальванические батареи, но аноды в этом случае сгорали быстрее. Тогда ученый решил использовать в качестве источника тока для своего изобретения генератор переменного тока.

В этом случае возникало другое затруднение: после того как зажигалась одна электрическая свеча, из-за уменьшения напряжения на зажимах генератора возгорание других светильников было затруднено. Задача была решена, когда для питания каждого источника света был применен свой трансформатор. Эти первые трансформаторы имели незамкнутые сердечники из пучков стальной проволоки и, как следствие, обладали низким КПД. Трансформаторы с замкнутыми сердечниками, подобные современным, появились лишь спустя 9 лет.

Как устроен и как работает трансформатор?

Рисунок 1. Схема самого простого трансформатора.

Самый простой трансформатор — это сердечник из вещества с большой магнитной проницаемостью и две намотанных на него обмотки (рис. 1а). При пропускании через первичную обмотку переменного тока силой I1 в сердечнике возникает меняющийся магнитный поток Ф, которым пронизывается как первичная, так и вторичная обмотка.

В каждом из витков этих обмоток находится одинаковая по численному значению ЭДС индукции. Таким образом, отношения ЭДС в обмотках и витков в них одинаковы. На холостом ходу (I2 = 0) напряжения на обмотках практически равны ЭДС индукции в них, следовательно, для напряжений также выполняется соотношение:

U1 / U2 ≈ N1 / N2, где

N1 и N2 — число витков в обмотках.

Отношение U1 / U2 называют еще коэффициентом трансформации (k). Если U1 > U2, трансформатор называют повышающим (рис. 1б), при U1 < U2 — понижающим (рис 1в). У первого трансформатора коэффициент трансформации больше, а у второго — меньше единицы.

Один и тот же трансформатор, в зависимости от того к которой обмотке прикладывается, а с какой снимается напряжение, может быть как повышающим, так и понижающим. Вторичная обмотка необязательно одна — их может быть и несколько. Из равенства мощностей в обмотках следует, что токи в них обратно пропорциональны числу витков:

I1 / I2 ≈ N2 / N1.

Если вторичная обмотка — составная часть первичной (или первичная — вторичной), трансформатор превращается в автотрансформатор. На рис. 1г и 1д показаны схемы, соответственно, понижающего и повышающего автотрансформаторов.

Конструкция трансформаторов для точечной сварки меди.

Переменное магнитное поле вызывает появление в сердечнике вихревых токов, которые нагревают его, на что бесполезно тратится часть энергии. Чтобы уменьшить эти потери, сердечники набирают из отдельных, изолированных друг от друга листов специальной трансформаторной стали с малой энергией перемагничивания.

Чаще всего в современных трансформаторах используются магнитопроводы трех типов:

  1. Стержневые (П-образные), состоящие из двух стержней с обмотками и ярма, соединяющего их. Именно так обычно устроены сердечники мощных трансформаторов.
  2. Броневые (Ш-образные). Магнитопровод представляет собой ярмо, внутри которого находится стержень с обмоткой. Ярмо защищает каждую обмотку трансформатора от внешних воздействий — отсюда такое название. Чаще применяется в маломощных трансформаторах для электронных схем.
  3. Тороидальные — магнитопровод, имеющий форму тора, состоит из намотанной плотным рулоном трансформаторной ленты. Преимущества — относительно малый вес, высокий КПД, минимум помех. Недостаток — сложность намотки.

Как осуществить расчет трансформатора?

Сварочный трансформатор для дуговой сварки.

Важнейшие параметры трансформатора — номинальные значения токов и напряжений и мощности, на которые он рассчитан. Абсолютная точность при расчетах характеристик трансформатора по этим параметрам особого значения не имеет, поэтому можно ограничиться приблизительными значениями.

Очередность расчетов выглядит следующим образом:

  1. Расчет тока через вторичную обмотку с учетом потерь: I2 = 1,5 * I2н, где I2н — номинальный ток в ней.
  2. Расчет мощности, снимаемой с вторичной обмотки: Р2 = U2 * I2, где U2 — напряжение на ней. Если такая обмотка не одна, то результат — сумма их мощностей.
  3. Определение результирующей мощности : РТ = 1,25 * P2 при КПД порядка 80%.
  4. Расчет силы тока через первичную обмотку трансформатора: I1 = PТ / U1, где U1 — напряжение на ней.
  5. Площадь требующегося сечения магнитопровода: S = 1,3 * √PТ, где S измеряется в см2.
  6. Количество витков для первичной обмотки трансформатора: N1 = 50 * U1 / S, где S измеряется в см2.
  7. Количество витков для его вторичной обмотки: N2 = 55 * U2 / S, где S измеряется в см2.
  8. Диаметр проводников любой из обмоток трансформатора: d = 0,632 * √I, где I — сила тока в ней. Формула верна для медного провода.

Например, вторичная обмотка трансформатора, включаемого в сеть напряжением 220 В, должна давать ток 6,7 А при напряжении 36 В. Рассчитать параметры трансформатора.

Основные части конструкции трансформатора.

  1. I2 = 1,5 *6,7 А = 10 А.
  2. P2 = 36 В * 10 А = 360 Вт.
  3. PТ = 1,25 *360 Вт = 450 Вт.
  4. I1 = 450 Вт / 220 В ≈ 2 А.
  5. S = 1,3 * √450 (см2) ≈ 25 см2.
  6. N1 = 50 * 220 / 25 = 440 витков.
  7. N2 = 55 * 36 / 25 = 79 витков.
  8. d1 = 0,632 * √2 (мм) = 0,9 мм, d1 = 0,632 * √10 (мм) = 2 мм.

Если провода нужного диаметра отсутствуют, то можно заменить один толстый провод несколькими более тонкими, соединенными параллельно. Площадь сечения проводника диаметром d можно рассчитать по формуле: s = 0,8 * d2.

Например, нужен провод диаметром 2 мм, а имеется только проводник диаметром 1,2 мм. Площадь сечения нужного провода s = 0,8 * 4 (мм2) = 3,2 мм2, площадь имеющегося, вычисленная по той же формуле, равна 1,1 мм2. Легко понять, что один проводник диаметром 2 мм можно заменить тремя с диаметром 1,2 мм.

Изготовление трансформатора

Процесс изготовления силового трансформатора складывается из ряда последовательных операций.

Сборка каркасов катушек для стержневого или броневого сердечника

Рисунок 2. Схема сборки каркаса для трансформатора.

Довольно удобным материалом для сборки этих каркасов являются картон или прессшпан. Еще более крепкий каркас можно изготовить из пластика. Каркас в сборе изображен на рис. 2а. Он собран из деталей, изображенных на рисунках 2б-2г. Должно быть изготовлено по два экземпляра каждой детали. Дырочки в щечках (г) предназначены для выводов.

Порядок сборки каркаса:

  • две щечки накладываются друг на друга;
  • в их окна вкладываются детали (б) и разводятся, одна вверх, вторая вниз;
  • детали (в) устанавливаются так, чтобы их выступы совпали с выемками деталей (б).

Полученный каркас достаточно прочен и уже не рассыпается. Перед намоткой катушек заранее готовятся прокладки (рис. 2д) из полосок кабельной бумаги. Полоски аккуратно надрезаются по краям на глубину несколько мм. Эти надрезы, примыкая к щеткам, будут предохранять витки очередного слоя от проваливания в область предыдущего.

Намотка катушек

Рисунок 3. Схема петли для катушки.

Перед намоткой следует заготовить отрезки гибкого многожильного провода в термостойкой изоляции для выводов и отрезки термостойкого кембрика. Намотка производится так, чтобы провод укладывался виток к витку с некоторым натяжением. Последующие витки должны прижимать предыдущие. Чтобы предотвратить проваливание витков возле щечки, желательно очередной ряд не доматывать до нее на несколько мм, заполняя свободные участки шпагатом или нитками.

После окончания намотки каждого ряда натяжение провода должно сохраняться, чтобы при наложении прокладки из кабельной бумаги намотанная часть не распускалась. Такие прокладки должны укладываться после каждого слоя.

Если наматываемый провод тонкий, то к началу и концу обмотки, а также к отводам от нее аккуратно припаиваются заготовленные отрезки гибкого многожильного провода. Место спайки изолируется. Если обмоточный провод достаточно толстый, выводы и отводы (в виде петель) делаются из этого же провода. И на выводы, и на отводы следует надеть отрезки кембрика.

Петля (рис. 3а) пропускается сквозь отверстие сложенной вдвое полоски из плотной бумаги или хлопчатобумажной ленты, которую затягивают после того, как она прижата следующими витками (рис. 2б). Пример отвода от тонкого обмоточного провода показан на рис. 2в.

Примерно так же крепят концы обмотки из толстого провода, но используется только хлопчатобумажная лента. Схема закрепления начала обмотки показана на рис. 2г, ее конца — на рис. 2д.

И несколько слов о том, как намотать обмотку тороидального трансформатора. Обычно для их намотки используются самодельные челноки, на поверхность которых наматывается достаточный запас провода. Челнок с проводом должен проходить в отверстие тороидального магнитопровода.

Рисунок 4. Схема обода колеса велосипеда.

Гораздо проще осуществить намотку с помощью приспособления, основой которого является обод колеса велосипеда (рис. 4). Обод распиливается в одном месте, продевается в отверстие магнитопровода, после чего разрезанные части аккуратно соединяются. Затем на его внешнюю поверхность наматывается обмоточный провод необходимой длины с небольшим запасом. Для удобства обод может быть подвешен своей верхней частью на забитый гвоздь, штырь или какой-нибудь другой подходящий подвес. Намотанный провод удобно зафиксировать подходящим резиновым кольцом.

Обмотка наматывается за счет вращения обода. Завершив каждый оборот, следует передвинуть на соответствующее расстояние резиновое кольцо. Витки следует укладывать аккуратно, с натяжением. Выводы и отводы можно формировать так же, как у упомянутых выше катушек. Каждый слой и обмотка обязательно разделяются слоем изоляции. Поверх последнего слоя трансформатор обматывается киперной лентой и пропитывается лаком.

Окончание сборки трансформатора

Схема устройства однофазного трансформатора.

Когда катушки готовы, производится сборка стержневого или броневого сердечника. Следует постараться сделать как можно более узкими магнитные зазоры, для чего сборку следует производить вперекрышку. Продолжается она, пока не будет заполнено все окно. Заключительные пластины часто приходится забивать, используя деревянный молоток или прокладку из дерева.

По окончании сборки сердечник уплотняют, обжимая обоймой или стягивая, если в пластинах имеются соответствующие отверстия, шпильками, которые изолируются от сердечника картонными трубками или несколькими слоями бумаги. На концы шпилек надеваются электроизоляционные и обычные шайбы и навинчиваются гайки, которыми стягивается сердечник. Плохо обжатый сердечник будет сильно гудеть и вибрировать.

Проверка изготовленного трансформатора

Схема станка для намотки трансформаторов.

Прежде всего следует, воспользовавшись мегомметром, измерить сопротивление между отдельными обмотками, а также между сердечником и обмотками. Оно не должно быть менее 0,5 Мом. Если мегомметра нет, можно оценить эти сопротивления обычным авометром. Он должен показывать бесконечность.

После проверки изоляции на первичную обмотку трансформатора подается напряжение, равное половине номинального. Можно использовать, например, ЛАТР. Если изделие не дымится, не гудит, сильно не нагревается, на первичную обмотку подают номинальное напряжение.

Без нагрузки ток в первичной обмотке трансформатора не должен быть более 5-10% от его номинального значения. Сам трансформатор не должен сильно нагреваться и громко гудеть. Если гудение сильное, следует или стянуть его еще сильнее, или вбить в зазор между пластинами деревянные или пластмассовые пластинки.

Для окончательной проверки к трансформатору подключается номинальная нагрузка, проверяются напряжения на всех обмотках. Если все в норме, трансформатор выдерживается под нагрузкой 3-4 часа. Если гудения, запаха гари нет, а трансформатор не нагревается более чем на 70°C, испытание можно считать успешно завершенным.

Не всегда в продаже можно найти трансформатор с необходимыми параметрами.

Но можно с полной уверенностью утверждать, что требуемое устройство не является чрезмерно сложным, и его можно рассчитать и изготовить самостоятельно.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *