Определение межвиткового замыкания

Способы определения межвиткового замыкания двигателя

Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата. Мы предлагаем следующие варианты:

  • Токовые клещи. Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.
  • Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются. Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т.к. в этом случае расхождение будет небольшим.
  • Измерения мегомметром. Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.
  • Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.
  • Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа. Этот способ считается самым надежным. Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.

Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.

Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.

Как определить витковое замыкание в обмотках?

Вам понадобится

    – омметр;- амперметр;- вольтметр;- портативный дефектоскоп.

Инструкция

Замыкание витков в катушкеобмотки возбуждения определите, измерив сопротивление катушкиомметром или сняв показания амперметра (вольтметра) при питании обмотки от аккумулятора. Запишите показания измерительного прибора. Разделите величину напряжения на силу тока и вычислите сопротивление. Если сопротивление катушки стало меньше (по сравнению с номинальным), имеет место замыкание витков. Устраняют неисправность перемоткой катушки или ее заменой.

Для проверки катушки на наличие замыкания используйте также другой способ. Подключите ее через амперметр к аккумулятору.

Измерьте силу тока в цепи обмотки. Теперь замерьте силу тока в цепи обмотки другой аналогичной катушки, заведомо исправной. Если замыкание отсутствует, оба измерения покажут примерно одинаковую силу тока.

Для выявления межвиткового замыкания в обмотках электрических машиниспользуйте портативный дефектоскоп. Подключите приборк источнику питанияи поместите его в расточку статора, чтобы паз секции проверяемой обмотки располагался между воздушными зазорами стальных пакетов дефектоскопа. О межвитковом замыкании будет свидетельствовать загоревшаяся на приборе лампа.Для изготовления простейшего дефектоскопа соберите из электротехнической стали сердечник. Стяните пластины сердечника болтами, изолировав от стали прокладками. Намотайте на сердечник 800 витков провода маркиПЭВ сечением 0,8 мм.Для проверки обмотки уложите ее на «плечи» сердечника прибора. Положите на пластины стальную пластину из жести. Подключите катушкуприбора к сети. Теперь медленновращайте обмотку, придерживая пластину. Если в одной из пар витков изоляция повреждена, стальная пластина притягивается.При визуальном осмотре наличие межвиткового замыкания без специальной аппаратуры определите по локальному разрушению обмоток. Обратите внимание также на такой признаккак «закоксовывание» масла и внутренних поверхностей устройства. Нередко при межвитковом замыкании срабатывают автоматы защиты при пуске агрегата.

До 40 процентов случаев проблем с электродвигателем связано с межвитковым замыканием. Как правило, оно возникает в катушке обмотки возбуждения. Основные причины:

    Перегрузка двигателя из-за неправильной его эксплуатации либо механических повреждений. Вследствие этого происходит перегрев обмоток статора и повреждение или разрушение их изоляционного слоя. В результате уменьшается сопротивление цепи, и контакт витков катушки ведет к замыканию и выходу двигателя из строя.»Сухие» или заклинившие подшипники.Заводской брак обмоток (либо их неудачная перемотка).Попадание влаги внутрь агрегата из-за несоблюдения условий его хранения (например, во влажном месте).

Итак, причины более или менее понятны, теперь мы попытаемся разобраться: как определить межвитковое замыкание электродвигателя?

Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата. Мы предлагаем следующие варианты:

Токовые клещи.

Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются.

Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т. к. в этом случае расхождение будет небольшим.Измерения мегомметром.

Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа. Этот способ считается самым надежным.

Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии.

Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.

Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.

Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.

Изобретение относится к электротехнике, а именно к устройствам защиты силовых трансформаторов, и может быть использовано для определения витковых замыканий в обмотках силовых трансформаторов напряжением 10/0,4 кВ и 6/0,4 кВ с переключением без возбуждения.

Технический результат состоит в повышении чувствительности к межвитковым замыканиям и исключении влияния высших гармоник. Устройство содержит включенные в рассечку фаз силовой цепи трехфазной сети, подключенной к электроустановке, трансформаторы тока, соединенные между собой по схеме треугольника по числу сторон электроустановки, образующие дифференциальную схему защиты, токовые цепи и дифференциальное реле с первой и второй уравнительными и дифференциальной обмотками, расположенными на одном стержне магнитопровода и соединенными между собой. Полярные выводы трансформаторов тока разных фаз и сторон электроустановки подключены к одному дифференциальному реле.

Для определения межвиткового замыкания в обмотках на автотрансформаторе предусмотрены выводы обмотки, имеющие соответствующую цифровую маркировку по числу ступеней переключателя без возбуждения силового трансформатора и позволяющие увеличивать или уменьшать коэффициент трансформации автотрансформатора в зависимости от ступени переключателя без возбуждения силового трансформатора. На выводах по числу фаз трансформатора установлены накладки переключения витков регулируемой обмотки, каждая из которых представляет собой металлическую пластину сечением не менее 2,5 мм, прикрепленную одним концом к клемме диэлектрической пластины, а другим концом – к одному из выводов регулируемой обмотки автотрансформатора, расположенного на той же диэлектрической пластине. Фиксация накладки осуществляется на выводах автотрансформатора.

1 з. п. ф-лы, 1 ил.

Настоящее техническое решение относится к области электротехники, а именно к устройствам защиты силовых трансформаторов, и может быть использовано для определения витковых замыканий в обмотках силовых трансформаторов напряжением 10/0,4 кВ и 6/0,4 кВ с переключением без возбуждения (ПБВ).

Областью применения является защита силовых трансформаторов напряжением 10/0,4 и 6/0,4 кВ, эксплуатируемых в электрических сетях.

В качестве аналога, с точки зрения конструктивного исполнения, рассматривается электромагнитное реле дифференциальной защиты РНТ-565 .

Реле дифференциальное без торможения, серии РНТ-565, состоящее из трехстержневого с глубоким насыщением трансформатора и исполнительного органа (реле типа РТ-40/0,2). Трансформатор имеет три первичные обмотки (рабочую и две уравнительные обмотки), одну вторичную и одну короткозамкнутую обмотку. Первичные обмотки включаются в токовые цепи релейной защиты, а вторичная обмотка питает исполнительный орган.

Короткозамкнутая обмотка уменьшает трансформацию периодической составляющей тока в исполнительный орган. Ток срабатывания реле РНТ-565 регулируется изменением числа витков первичных обмоток. Токи, поступающие в первичные обмотки реле, трансформируются во вторичную обмотку, и при достижении уставки исполнительный орган срабатывает.

Основными недостатками аналога являются его узкое предназначение для дифференциальной защиты только одной фазы трансформатора; нечувствительность к межвитковым замыканиям в обмотках; при изменении коэффициента трансформации силового трансформатора (после переключения ступени ПБВ) отсутствие возможности осуществлять подстройку реле в процессе эксплуатации трансформатора.

Также из существующего уровня техники известно устройство – блок реле ДЗ-2, включающее в себя три реле сопротивления .

Реле сопротивления, состоящее из исполнительного органа, тормозного и рабочего контуров, трансформатора напряжения, трансреактора тормозного и рабочего контуров, трансреактора подпитки и контура подпитки. Трансреактор тормозного и рабочего контура имеет две первичные и две вторичные обмотки. Первичные обмотки подключаются к вторичным цепям трансформаторов тока.

Первичные обмотки имеют три отвода. Регулировка тока точной работы осуществляется ступенчато изменением числа витков первичных обмоток трансреактора тормозного и рабочего контура. Регулировка осуществляется путем соединения вторичной обмотки трансформаторов тока с одним из отводов с помощью металлической накладки.

Недостатком таких реле является их узкое предназначение для дистанционной защиты ВЛ-110-220 кВ и невозможность использования в схемах дифференциальных защит трансформаторов.

Наиболее близким к заявленному техническому решению является устройство для дифференциального фильтра токов обратной последовательности трехфазной электрической установки (патент RU 2137277 МПК H02H 3/347, H02H 3/34). Дифференциальный фильтр токов обратной последовательности трехфазной электрической установки содержит включенные в рассечку фаз силовой цепи трехфазной сети, подключенной к электроустановке, трансформаторы тока, соединенные между собой по схеме треугольника по числу сторон электроустановки, образующие дифференциальную схему защиты, токовые цепи и дифференциальное реле с первой и второй уравнительными и дифференциальной обмотками, расположенными на одном стержне магнитопровода и соединенными между собой, при этом полярные выводы трансформаторов тока разных фаз и сторон электроустановки подключены к одному дифференциальному реле, причем дифференциальная токовая цепь первой фазы соединена с первым выводом первой уравнительной обмотки дифференциального реле, второй фазы – с третьим выводом второй уравнительной обмотки дифференциального реле, третьей фазы – с шестым выводом дифференциальной (рабочей) обмотки дифференциального реле.

Недостатком данного технического решения является отсутствие возможности выполнения оперативной подстройки реле при изменении коэффициента трансформации силового трансформатора (после переключения ступени ПБВ). Также недостатком является отсутствие отстройки устройства от тока небаланса, вызванного наличием высших гармоник тока, приводящих к ложному срабатыванию реле.

Задачами, на решение которых направлено заявляемое изобретение, являются:

1. Повышение чувствительности устройства к межвитковым замыканиям в силовых трансформаторах путем оперативной подстройки устройства после переключения ступени ПБВ и определение межвитковых замыканий в обмотках силового трансформатора на ранней стадии возникновения дефекта.

2. Исключение влияния высших гармоник на работу устройства при определении межвитковых замыканий.

Данная задача решается за счет того, что в заявляемом техническом решении, содержащем включенные в рассечку фаз силовой цепи трехфазной сети, подключенной к электроустановке, трансформаторы тока, соединенные между собой по схеме треугольника по числу сторон электроустановки, образующие дифференциальную схему защиты, токовые цепи и дифференциальное реле с первой и второй уравнительными и дифференциальной обмотками, расположенными на одном стержне магнитопровода и соединенными между собой, причем полярные выводы трансформаторов тока разных фаз и сторон электроустановки подключены к одному дифференциальному реле, в отличие от прототипа для определения межвиткового замыкания в обмотках силового трансформатора на автотрансформаторе предусмотрены выводы обмотки, имеющие соответствующую цифровую маркировку по числу ступеней ПБВ и позволяющие увеличивать или уменьшать коэффициент трансформации автотрансформатора в зависимости от ступени переключателя без возбуждения силового трансформатора, на которых по числу фаз трансформатора установлены накладки переключения витков регулируемой обмотки, каждая из которых представляет собой металлическую пластину сечением не менее 2,5 мм, прикрепленную одним концом к клемме диэлектрической пластины, а другим концом подключенную к одному из выводов регулируемой обмотки автотрансформатора, расположенного на той же диэлектрической пластине.

Фиксация накладки осуществляется на выводах автотрансформатора винтовым соединением. Для исключения возникновения токов небаланса, обусловленного воздействием высших гармоник, в цепи исполнительного органа может быть использован фильтр высших гармоник. Подключение фильтра высших гармоник выполняется параллельно исполнительному органу.

Новая совокупность признаков, с наличием накладок, на выводах обмоток автотрансформаторов, позволяющих осуществлять оперативную подстройку устройства после переключения ступени ПБВ, обеспечивает достижение нового технического результата – повышение чувствительности устройства к межвитковым замыканиям в обмотках трансформатора с ПБВ по току обратной последовательности и обнаружение их на ранних стадиях возникновения. Наличие фильтра высших гармоник позволяет также повысить чувствительность работы устройства за счет исключения ложного срабатывания устройства при появлении высших гармонических составляющих тока.

Сущность изобретения поясняется фигурой, на которой изображено устройство определения витковых замыканий в обмотках силового трансформатора с ПБВ.

Устройство (фигура) содержит: фильтр высших гармоник 1, установленный параллельно в цепи исполнительного органа 3; магнитопровод 2, на котором расположен исполнительный орган 3, передающий сигнал через контакт 12 о возникновении виткового замыкания; трансформаторы тока 4 на стороне высшего напряжения (ВН) трансформатора, соединенные с накладками 6 переключения витков регулируемых обмоток автотрансформаторов 7, имеющих соответствующую цифровую маркировку по числу ступеней переключателя и позволяющих увеличивать или уменьшать коэффициент трансформации автотрансформатора в зависимости от ступени переключателя без возбуждения силового трансформатора; трансформаторы тока 5 на стороне низшего напряжения (НН) трансформатора, соединенные с автотрансформаторами 8; первая уравнительная обмотка 9, вторая уравнительная обмотка 10 и дифференциальная обмотка 11, соединенные с автотрансформаторами 7 и 8. Каждая из накладок 6, установленных по числу фаз трансформатора (фазы А, В, С), на выводах обмоток автотрансформатора, представляет собой металлическую пластину сечением 2,5 мм, прикрепленную одним концом к клемме диэлектрической пластины, другим концом подключенную к одному из выводов регулируемой обмотки автотрансформатора, расположенного на той же диэлектрической пластине. Фиксация накладки на выводах автотрансформатора осуществляется винтовым соединением.

Устройство определения витковых замыканий в обмотках силового трансформатора переключением без возбуждения (фигура) работает следующим образом: токи, протекающие по вторичным обмоткам трансформаторов тока 5 стороны НН, соединенных в треугольник, поступают на автотрансформаторы 8.

Токи, протекающие по вторичным обмоткам трансформаторов тока 4 стороны ВН, соединенных в треугольник, поступают на накладки 6. Положение накладок выбирается в зависимости от ступени ПБВ силового трансформатора (на фигуре представлено пять ступеней с соответствующей маркировкой -+5; +2,5; 0; -2,5; -5). Затем токи поступают на регулируемые обмотки автотрансформаторов 7, где происходит компенсация токов, вносимых изменением ступени ПБВ, и выравнивание со вторичными токами трансформаторов тока стороны НН.

Вторичные токи на выходе с обмоток автотрансформаторов 7 и 8 равны между собой по амплитуде и направлены во встречном направлении. При этом токи основной частоты 50 Гц и часть высших гармоник тока, направленных встречно, подавляются, и результирующий ток небаланса каждой цепи поступает на уравнительные 9, 10 и дифференциальную 11 обмотки реле. Поскольку уравнительные 9, 10 и дифференциальная 11 обмотки расположены на одном среднем стержне магнитопровода 2 дифференциального реле, то суммарные токи в обмотках 9, 10, 11 и магнитные потоки от них в магнитопроводе реле при любых (симметричных и несимметричных) режимах равны нулю, при этом устройство не работает.

При возникновении межвиткового замыкания (замыкания двух и более витков) в одной из фаз обмоток ВН или НН силового трансформатора со стороны питаемой обмотки ВН возрастет ток обратной последовательности, в то время как на стороне НН ток останется без изменений.

Появившийся ток обратной последовательности будет трансформироваться во вторичные цепи трансформаторов тока 4 стороны ВН, последовательно поступая на регулируемые обмотки автотрансформаторов 7, через накладки переключения витков 6. Поступив на уравнительные обмотки 9, 10 и дифференциальную обмотку 11, ток будет трансформироваться в цепи исполнительного органа 3. Появившийся в исполнительном органе 3 ток будет являться током небаланса и, достигнув порога уставки, приведет к срабатыванию контакта 12 исполнительного органа 3, который передает сигнал о возникновении виткового замыкания в обмотке силового трансформатора.

В процессе эксплуатации в цепи измерения могут появиться токи высших гармоник, обусловленные работой силового трансформатора в режиме насыщения или возникающие от воздействия нелинейной нагрузки потребителей, которые могут иметь в одноименных обмотках ВН и НН силового трансформатора различную амплитуду и разное направление, что обуславливает появление тока небаланса и ложное срабатывание устройства. Для подавления токов высших гармоник параллельно исполнительному органу установлен фильтр высших гармоник 1. При изменении коэффициента трансформации силового трансформатора персонал, производящий переключения, должен накладки 6 подключить на выводы автотрансформатора 7, соответствующие положению ступени ПБВ трансформатора.

Использование устройства позволяет повысить чувствительность и выявлять витковые замыкания на ранней стадии развития дефекта, что, в свою очередь, повышает надежность электроснабжения потребителей и существенно снижает трудозатраты и затраты на материал при ремонте поврежденных обмоток.

1. Устройство определения витковых замыканий в обмотках силового трансформатора с переключением без возбуждения содержит включенные в рассечку фаз силовой цепи трехфазной сети, подключенной к электроустановке, трансформаторы тока, соединенные между собой по схеме треугольника по числу сторон электроустановки, образующие дифференциальную схему защиты, токовые цепи и дифференциальное реле с первой и второй уравнительными и дифференциальной обмотками, расположенными на одном стержне магнитопровода и соединенными между собой, причем полярные выводы трансформаторов тока разных фаз и сторон электроустановки подключены к одному дифференциальному реле, отличающееся тем, что для определения межвиткового замыкания в обмотках силового трансформатора на автотрансформаторе предусмотрены выводы обмотки, имеющие соответствующую цифровую маркировку по числу ступеней переключателя без возбуждения силового трансформатора и позволяющие увеличивать или уменьшать коэффициент трансформации автотрансформатора в зависимости от ступени переключателя без возбуждения силового трансформатора, на которых, по числу фаз трансформатора, установлены накладки переключения витков регулируемой обмотки, каждая из которых представляет собой металлическую пластину сечением не менее 2,5 мм, прикрепленную одним концом к клемме диэлектрической пластины, а другим концом подключенную к одному из выводов регулируемой обмотки автотрансформатора, расположенного на той же диэлектрической пластине.

2. Устройство по п. 1, отличающееся тем, что для исключения возникновения токов небаланса, обусловленного воздействием высших гармоник, в цепи исполнительного органа параллельно ему установлен фильтр высших гармоник.

Межвитковое замыкание электродвигателя

Причины межвиткового замыкания

Если вы читали предыдущие статьи, то знаете что межвитковое замыкание электродвигателя составляет 40% неисправностей электродвигателей. Причин для межвиткового замыкания может быть несколько.

Перегруз электродвигателя – нагрузка на электроустановку превышает норму вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию. Нагрузка может возникнуть из за неправильной эксплуатации оборудования.

Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя. Также перегруз может возникнуть из за механических повреждений самого электродвигателя. Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».

Не исключена возможность заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.

Также неправильная эксплуатация и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя отсыревшие обмотки тоже весьма распространенная причина межвиткового замыкания.

Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время. Я думаю хватит разбирать причины давайте перейдем к вопросу » как определить межвитковое замыкание».

Поиск межвиткового замыкания.

Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.

Если при работе электромотора какая то часть статора нагрелась больше чем весь двигатель, то вам стоит подумать об остановке и точной диагностике.

Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки. Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.

Можно прозвонить обмотки тестером. Для этого прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления.

Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.Не будет лишним брякнуть электродвигатель мегомметром в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя, а второй к по очереди к выходу обмоток в борно.Если у вас остались еще сомнения, то вам придется разобрать электромотор. Сняв крышки и ротор, визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть.Ну и самый точный способ проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.

На стартер разобранного электродвигателя подаем три фазы с понижающего трансформатора. С маленьким разгоном кидаем туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов прилип к одному месту, то значит там межвитковое замыкание.

Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.

Обязательно используйте все выше перечисленные способы с заземленным электродвигателем и строго при помощи понижающего трансформатора.

Проверка шариком и пластинкой при напряжении в 380 вольт запрещена и очень опасна для вашей жизни.

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.


Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.


Намотаны эти катушки как раз на П-образном трансформаторном железе.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см2. Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см2.

13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Межвитковое замыкание и ремонт

2 года назад

Всем хорошо известно, что такое короткое замыкание, которое часто возникает, например, из-за того, что неизолированные элементы где-то соприкоснулись. А в результате в квартире даже лампочка не горит. Но короткие замыкания бывают и в электрических устройствах.
Бывает замыкание обмотки на металлический корпус. Бывает и так называемое межвитковое замыкание. Так называется замыкание между собой обмоток ротора или статора. Либо витков обмоток трансформаторов. Например, вы работаете с пылесосом в руках, и вдруг – искрение коллектора. Это и означает, что произошло межвитковое замыкание.

Опытный мастер по ремонту оборудования, конечно, еще проверит, нет ли повышенной нагрузки на двигатель. Она бывает тогда, когда засорилась воздушная система или заедает двигатель. Если все в порядке – значит, произошло межвитковое замыкание.
Межвитковое замыкание в обмотке якоря или статора обычно сопровождается не только сильным круговым искрением, но и неприятным запахом горящей изоляции. Работать с таким пылесосом нельзя. Нужно его ремонтировать. А ремонт следует начать с того, что нужно определить, где произошло межвитковое замыкание.
Для начала следует осмотреть якорь. На обмотках не должно быть вспучиваний изоляции и почернений. Не должно быть и запаха паленой изоляции. Чтобы определить это, не нужно никаких приборов. Достаточно просто понюхать.
Осмотрите коллектор. Иногда замыкания бывают замыкания между пластинами. Их нетрудно обнаружить даже после поверхностного осмотра.
Если хотя бы один признак подтвердился, то «диагноз» для техники плачевный. Якорь для пылесоса, например, найти не так-то просто. И если якорь не удалось найти, то остается только перемотать якоря. Такая поломка связана со многими проблемами. Ведь перемотать якорь может только очень квалифицированный обмотчик. Ко всему, как ни печально, но срок службы перемотанных якорей обычно короткий.
Определить, есть ли замыкание в обмотке статора, – дело достаточно простое. Необходимо вынуть щетки и произвести измерение сопротивления обмотки статора, а также сопротивления между корпусом и обмотками. Разница между сопротивлениями обмоток должна быть крайне незначительной. На корпус они звонится не должны. Если разница превышает 10%, тогда ту обмотку, которая с меньшим сопротивлением, меняем. Ее можно намотать и самостоятельно.

Проверка электродвигателя внешним осмотром

Полноценный осмотр можно провести только после разборки электродвигателя, но сразу не спешите разбирать.

Все работы выполняются только после отключения электропитания, проверки его отсутствия на электродвигателе и принятия мер по предотвращению его самопроизвольного или ошибочного включения. Если устройство включается в розетку, тогда просто достаточно достать вилку из нее.

Если в схеме есть конденсаторы. тогда их выводы необходимо разрядить.

Проверьте перед началом разборки:

  1. Люфт в подшипниках. Как проверить и заменить подшипники читайте в этой статье.
  2. Проверьте покрытие краски на корпусе. Выгоревшая или отлущиваяся местами краска свидетельствует о нагревании двигателя в этих местах. Особенно обратите внимание на места расположения подшипников.
  3. Проверьте лапы крепления электродвигателя и вал вместе его соединения с механизмом. Трещины или отломанные лапы необходимо приварить.

После разборки по этой инструкции необходимо проверить:

  1. Смазку в подшипниках. Или заменить их при износе.
  2. Отсутствие касаний при вращении ротора в статоре. Если есть потертости, значит изношены подшипники. Если сильно стерт ротор или есть значительные сколы (чаще всего в районе крыльчатки), его необходимо будет заменить, потому что будет нарушена балансировка вала.
  3. Осматриваем короткозамкнутый рото р на отсутствие повреждений, как правило это оплавления или почернения в местах расположения стержней, соединенных с контактными кольцами. Поврежденный ротор ремонту не подлежит и его необходимо заменить.
  4. Далее необходимо осмотреть обмотки статора электродвигателя в первую очередь на целостность, т. е. не должно быть оторванных или торчащих проводов. Затем внимательно смотрим и ищем места почернения проводов. Исправные провода темно-красного цвета. Если же выгорает электроизоляционный лак, то провода в этих местах чернеют.

Может выгореть как часть обмотки и возникнет межвитковое замыкание (на картинке слева), так и вся обмотка (на правой картинке). Несмотря на то, что в первом случае двигатель будет работать и перегреваться, все равно необходимо в любом случае перемотать заново обмотки.

Как прозвонить асинхронный электродвигатель

Если при внешнем осмотре ничего не выявлено, тогда необходимо продолжить проверку при помощи электротехнический измерений.

Как прозвонить электродвигатель мультиметром

Самым распространенным в домашнем хозяйстве электроизмерительным прибором является мультиметр. При его помощи можно прозвонить на целостность обмотки и на отсутствия пробоя на корпус.

В двигателях на 220 Вольт. Необходимо прозвонить пусковую и рабочую обмотки. При чем у пусковой сопротивление будет 1.5 раза больше, чем у рабочей. У некоторых электромоторов пусковая и рабочая обмотка будет иметь общий третий вывод. Подробнее об этом читайте здесь.

Например. у мотора от старой стиральной машины есть три вывода. Самое большое сопротивление будет между двумя точками, включающей в себя 2 обмотки, например 50 Ом. Если взять оставшейся третий конец, то это и будет общий конец. Если замерить между ним и 2 концом пусковой обмотки- получите величину около 30-35 Ом, а если между ним и 2 концом рабочей- около 15 Ом.

В двигателях на 380 Вольт, подключенных по схеме звезда или треугольник необходимо будет разобрать схему и прозвонить отдельно каждую из трех обмоток. У них сопротивление должно быть одинаковым от 2 до 15 Ом с отклонениями не более 5 процентов.

Обязательно необходимо прозвонить все обмотки между собой и на корпус. Если сопротивление не велико до бесконечности, значит есть пробой обмоток между собой или на корпус. Такие двигатели необходимо сдать в перемотку обмоток.

Как проверить сопротивление изоляции обмоток электродвигателя

К сожалению, мультиметром не проверить величину сопротивления изоляции обмоток электромотора для этого необходим мегомметр на 1000 Вольт с отдельным источником питания. Прибор дорогой, но он есть у каждого электрика на работе, которому приходится подключать или ремонтировать электродвигатели.

При измерении один провод от мегомметра присоединяют к корпусу в неокрашенном месте, а второй по очереди к каждому выводу обмотки. После этого измерьте сопротивление изоляции между всеми обмотками. При величине менее 0.5 Мегома- двигатель необходимо просушить.

Будьте внимательны. во избежание поражения электрическим током не прикасайтесь к измерительным зажимам во время проведения измерений.

Все измерения проводятся только на обесточенном оборудовании и по продолжительности не менее 2-3 минут.

Наиболее сложным является поиск межвиткового замыкания. при котором замыкается между собой лишь часть витков одной обмотки. Не всегда выявляется при внешнем осмотре, поэтому для этих целей применяется для двигателей на 380 Вольт- измеритель индуктивности. У всех трех обмоток должно быть одинаковое значение. При межвитковом замыкании у поврежденной обмотки индуктивность будет минимальной.

Когда Я был на практике 16 лет назад на заводе, электрики для поиска межвитковых замыканий у асинхронного мотора мощностью 10 Киловатт использовали шарик из подшипника диаметром около 10 миллиметров. Они вынимали ротор и подключали 3 фазы через 3 понижающих трансформатора на обмотки статора. Если все в порядке шарик движется по кругу статора, а при наличии межвиткового замыкания он примагничивается к месту его возникновения. Проверка должна быть кратковременной и будьте аккуратны шарик может вылететь!

Я уже давно работаю электриком и проверяю на межвитковое замыкание, если только двигатель на 380 В начинает сильно греться после 15-30 минут работы. Но перед разборкой, на включенном моторе проверяю величину потребляемого им тока на всех трех фазах. Она должна быть одинаковой с небольшой поправкой на погрешности измерений.

Related Posts

  • Как проверить и сделать коллекторный электродвигатель
  • Как сделать ремонт светодиодных ламп, светильников или люстр
  • Закон ома для замкнутой цепи
  • Перемычки для оконных и дверных проемов: виды, размеры, особенности монтажа
  • Чудо-прибор для экономии воды – насадка на кран
  • Нормы расхода электроэнергии — что это такое?

Межвитковое замыкание электродвигателя

Причины межвиткового замыкания

Если вы читали предыдущие статьи, то знаете что межвитковое замыкание электродвигателя составляет 40% неисправностей электродвигателей. Причин для межвиткового замыкания может быть несколько.

Перегруз электродвигателя – нагрузка на электроустановку превышает норму вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию. Нагрузка может возникнуть из за неправильной эксплуатации оборудования. Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя. Также перегруз может возникнуть из за механических повреждений самого электродвигателя. Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».

Не исключена возможность заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.

Также неправильная эксплуатация и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя отсыревшие обмотки тоже весьма распространенная причина межвиткового замыкания.

Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время. Я думаю хватит разбирать причины давайте перейдем к вопросу » как определить межвитковое замыкание».

Поиск межвиткового замыкания.

Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.

Если при работе электромотора какая то часть статора нагрелась больше чем весь двигатель, то вам стоит подумать об остановке и точной диагностике.

Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки. Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.

Можно прозвонить обмотки тестером. Для этого прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления. Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.

Не будет лишним брякнуть электродвигатель мегомметром в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя, а второй к по очереди к выходу обмоток в борно.

Если у вас остались еще сомнения, то вам придется разобрать электромотор. Сняв крышки и ротор, визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть.

Ну и самый точный способ проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.

На стартер разобранного электродвигателя подаем три фазы с понижающего трансформатора. С маленьким разгоном кидаем туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов прилип к одному месту, то значит там межвитковое замыкание.

Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.

Обязательно используйте все выше перечисленные способы с заземленным электродвигателем и строго при помощи понижающего трансформатора.

Проверка шариком и пластинкой при напряжении в 380 вольт запрещена и очень опасна для вашей жизни.

Измерение сопротивления изоляции обмоток

Для проверки двигателя на сопротивление изоляции, электрики используют мегомметр с испытательным напряжением 500 В или 1000 В. Этим прибором измеряют сопротивление изоляции обмоток двигателей рассчитанных на рабочее напряжение 220 В или 380 В.

Для электродвигателей с номинальным напряжением 12В, 24в используют тестер, так как изоляция этих обмоток не рассчитана на испытание под высоким напряжением 500 В мегомметра. Обычно в паспорте на электродвигатель указывается испытательное напряжение при измерении сопротивлений изоляции катушек.

Сопротивление изоляции обычно проверяется мегомметром

Перед измерением сопротивления изоляции нужно ознакомиться со схемой подключения электродвигателя, так как некоторые соединения звездой обмоток бывают подключены средней точкой к корпусу двигателя. Если обмотки имеет одну или несколько точек соединений, “треугольник”, “звезда”, однофазный двигатель с пусковой и рабочей обмоткой, тогда изоляция проверяется между любой точкой соединения обмоток и корпусом.

Если сопротивление изоляции значительно меньше 20 Мом, обмотки разъединяют и проверяют каждую отдельно. Для целого двигателя сопротивление изоляции между катушками и металлическим корпусом должно быть не ниже 20 Мом. Если электродвигатель работал или хранился в сырых условиях, тогда сопротивление изоляции может быть ниже 20 Мом.

Тогда электродвигатель разбирают и просушивают несколько часов накальной лампой 60 Вт, помещенной в корпус статора. При измерении сопротивления изоляции мультиметром, выставляют предел измерений на максимальное сопротивление, на мегомы.

Как прозвонить электродвигатель на обрыв обмоток и межвитковое замыкание

Межвитковое замыкание в обмотках можно проверить мультиметром на омах. Если имеется три обмотки, тогда достаточно сравнить их сопротивление. Отличие в сопротивлении одной обмотки указывает на межвитковое замыкание. Межвитковое замыкание однофазных двигателей определить труднее, так как имеются только разные обмотки — это пусковая и рабочая обмотка, которая имеет меньшее сопротивление.

Сравнивать их нет возможности. Выявить межвитковое замыкание обмоток трехфазных и однофазных двигателей можно измерительными клещами, сравнивая токи обмоток с их паспортными данными. При межвитковом замыкании в обмотках, их номинальный ток возрастает, а величина пускового момента уменьшается, двигатель с трудом запускается или совсем не запускается, а только гудит.

Проверка электродвигателя на обрыв и межвитковое замыкание обмоток

Измерять сопротивление обмоток мощных электродвигателей мультиметром не получится, потому что сечение проводов велико и сопротивление обмоток находится в пределах десятых долей ома. Определить разницу сопротивлений, при таких значениях мультиметром, не представляется возможным. В этом случае исправность электродвигателя лучше проверять токоизмерительными клещами.

Если нет возможности подключить электродвигатель к сети, сопротивление обмоток можно найти косвенным методом. Собирают последовательную цепь из аккумулятора на напряжение 12В с реостатом на 20 ом. С помощью мультиметра (амперметра) выставляют реостатом ток 0,5 — 1 А. Собранное приспособление подключают к проверяемой обмотке и замеряют падение напряжения.

Прозвонка электродвигателя на обрыв и сопротивление изоляции

Меньшее падение напряжения на катушке укажет на межвитковое замыкание. Если требуется знать сопротивление обмотки, его рассчитывают по формуле R = U/I. Неисправность электродвигателя можно также определить визуально, на разобранном статоре или по запаху горелой изоляции. Если визуально обнаружено место обрыва, его можно устранить, припаять перемычку, хорошо изолировать и уложить.

Замер сопротивлений обмоток трехфазных двигателей проводят без снятия перемычек на схемах соединений обмоток “звезда” и “треугольник”. Сопротивление катушек коллекторных электродвигаталей постоянного и переменного напряжения также проверяют мультиметром. А при большой их мощности проверка ведется с помощью приспособления аккумулятор — реостат, как указано выше.

Сопротивление обмоток этих двигателей проверяют отдельно на статоре и роторе. На роторе лучше проверять сопротивление непосредственно на щетках, прокручивая ротор. В этом случае можно определить неплотное прилегание щеток к ламелям ротора. Устраняют нагар и неровности на ламелях коллектора, их шлифовкой на токарном станке.

Вручную эту операцию сделать трудно, можно не устранить эту неисправность, а искрение щеток только увеличится. Пазы между ламелями также прочищают. В обмотках электродвигателей может быть установлен плавкий предохранитель, тепловое реле. При наличии теплового реле проверяют его контакты и при необходимости чистят их.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *