Обратный пьезоэлектрический эффект

Что такое пьезоэлектрический эффект, принцип его работы, как и где это применяется

Пьезоэлектрический эффект (пьезоэффект) наблюдается в кристаллах некоторых веществ, обладающих определенной симметрией. К наиболее распространенным в природе минералам-пьезоэлектрикам относятся кварц, турмалин, сфалерит, нефелин. Пьезоэффектом обладают некоторые поликристаллические диэлектрики с упорядоченной структурой (керамические материалы и полимеры).

Диэлектрики, обладающие пьезоэффектом, называются пьезоэлектриками. Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механическую деформацию (как во всяком твердом теле), но и электрическую поляризацию, т.е появление на его поверхностях электрических зарядов разных знаков (рис.1а, F — действующие силы, Р — вектор электрической поляризации).

При противоположном направлении механических сил меняются знаки зарядов (рис.16). Это явление называют прямым пьезоэффектом (рис.2а).

Рис. 1. Как работает пьезоэлемент.

Рис. 2. Прямой пьезоэффект.

Эффект электрического поля соответствующего направления в нем возникают механические деформации (рис.1в). При изменении направления электрического поля соответственно изменяются деформации (рис.1 г). Это явление получило название обратного пьезоэффекта (рис.2б).

Пьезоэлектрический эффект объясняется следующим образом. В кристаллической решетке вследствие несовпадения центров положительных и отрицательных ионов имеется объемный электрический заряд.

В отсутствие внешнего электрического поля эта поляризация не проявляется,так как она компенсируется зарядами на поверхности. При деформации кристалла положительные и отрицательные ионы решетки смещаются друг относительно друга, и соответственно изменяется электрический момент кристалла, который вызывает появление потенциалов на поверхности.

Именно это изменение электрического момента и проявляется в пьезоэлектрическом эффекте. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и от характера и направления сил относительно кристаллографических осей кристалла.

Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 0,23 мкм. Незначительность деформаций пьезоэлектриков объясняется их очень высокой жесткостью.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением д:

Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности а называется пьезоэлектрическим модулем (пьезомодулем). Он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью

где:

  • г — деформация;
  • Е — напряженность электрического поля.

Пьезомодуль а для прямого и обратного эффектов имеет одно и то же значение. Пьезоэлектрические излучатели не имеют механических контактов и состоят из керамического пьезоэлемента, закрепленного на металлическом диске (рис.З).

Вибрация диска вызвана приложенным к нему напряжением. Переменное напряжение определенной частоты создает звуковой сигнал.

Пьезоэлектрические излучатели не подвержены механическому износу элементов конструкции, имеют малое энергопотребление, у них отсутствуют электрические шумы.

С помощью пьезокерамики удается получать значительную громкость звука. Отдельные образцы пьезокерамических преобразователей могут развивать звуковое давление на расстоянии 1 м до 130 дБ (уровень болевого порога).

Рис. 3. Конструкция пьезоэлектрического излучателя.

Пьезоэлектрические излучатели выпускаются в двух модификациях:

  • “чистые” преобразователи (без схемы управления) — пьезозвонки;
  • излучатели со схемой управления (с встроенным генератором) — оповещатели.

Чтобы преобразователи первого типа генерировали звуки, необходимы сформированные управляющие сигналы (синусоида или меандр определенной частоты, указанной для конкретной модели преобразователя).

Излучатели со встроенным генератором требуют подачи только определенного уровня напряжения. Такие устройства выпускаются на номинальные напряжения от 1 до 250 В (постоянного и переменного тока).

Рис. 4. Пьезозуммер ЗП-1.

Например, пьезокерамический звонок (пьезозуммер) ЗП-1 (рис.4) состоит из двух пьезоблоков, мембрана каждого из которых выполнена в форме неглубокой тарелки с внешним диаметром 32 мм.

Тарелки сложены встречно и пропаяны по внешней границе. Пьезоэлементы в звонке скоммутированы таким образом, что при подаче переменного напряжения поверхности тарелок либо сходятся, либо расходятся, т.е. с обеих сторон звонка образуются зоны сжатия и разрежения.

Резонансная частота звонка-2 кГц. Он создает звуковое давление 75 дБ на расстоянии 1 м при напряжении на резонансной частоте 10 В.

Табл. 1. Характеристики и размеры пьезозуммеров.

Примечание: * — предназначен для работы в автоколебательном режиме.

Рис. 5. Внешний вид пьезозвонков.

Рис. 6. Типовые амплитудно-частотные характеристики пьезозвонков: ПВА-1 и ЗП-5.

Этот звонок излучает звуковые волны одинаково в оба полупространства. В табл.1 приведены параметры других пьезозвонков, внешний вид которых показан на рис.5. На рис.6 представлены типовые амплитудно-частотные характеристики пьезозвонков: ПВА-1 — рис.ба и ЗП-5 — рис.66.

Широкое распространение получили пьезокерамические звонки с акустической камерой. Их основное преимущество- большая громкость звучания при малых габаритах.

Конструкция пьезокерамического звонка с акустической камерой проста. Это — полый цилиндр, одно основание которого — пьезоблок, другое — крышка с отверстием.

Соотношение объемавнутренней полости и размера отверстия рассчитывают так, чтобы акустический резонанс камеры и механический резонанс пьезоблока были близки по частоте. Звонок излучает звук благодаря отверстию, в котором частицы воздуха имеют большую амплитуду колебаний. Внешний вид звонков такого типа показан на рис.7.

Рис. 7. Примеры звонков.

Пьезокерамические оповещатели (пьезосирены) — это звукоизлучающие устройства, предназначенные для привлечения внимания на сравнительно большом расстоянии или в условиях шумового фона.

Они представляют собой электроакустические преобразователи с встроенными генераторами звуковой частоты и питанием от источника постоянного напряжения.

Оповещатели по сравнению со звонками должны развивать большее звуковое давление. Это достигается двумя путями. Во-первых, используются повышенные напряжения питания.

Во-вторых, принимаются конструктивные меры для увеличения излучающей поверхности.

Так, чтобы превратить в оповещатель звонок с акустической камерой, нужно снабдить его рупором. Рупор — это труба с увеличивающейся площадью поперечного сечения.

В узком начале трубы находится источник звука, а широкий конец — излучающий. В оповещателях для уменьшения габаритов используются свернутые рупоры.

На рис.8 схематично изображен разрез по вертикали оповещателя со свернутым рупором. Звуковая волна от отверстия акустической камеры радиально распространяется по лабиринту, меняя направление (вверх-вниз). С каждой сменой направления поперечное сечение становится все больше.

Рис. 8. Разрез по вертикали оповещателя со свернутым рупором.

Табл. 2. Параметры распространенных оповещателей разных производителей.

В итоге, площадь излучающего кольцевого отверстия многократно превышает площадь первоначального источника звука. Пример оповещателей с рупором — ОСА-100 и ОСА-110 (рис.9). Иной способ увеличения излучающей поверхности — использование диффузора или диафрагмы.

Рис. 9. Пример оповещателей с рупором ОСА-100 и ОСА-110.

Например так, как схематично показано на рис.10. Воронкообразный диффузор своим основанием приклеивается к центру пьезоблока в точке максимальной амплитуды колебаний.

Параметры распространенных оповещателей разных производителей приведены в табл.2, а их конструктивное исполнение — на рис.11.

Рис. 10. Способ увеличения излучающей поверхности.

Рис. 11. Конструктивное исполнение распространенных оповещателей разных производителей.

Поскольку пьезоэлектрический эффект обратим, пьезоизлучатели можно использовать в качестве тензодатчиков, т.е. элементов, преобразующих толчки, удары и другие механические воздействия на них в электрические сигналы. На основе пьезоэлектрического капсюля ЗП-1 (рис.4) можно создать простое и надежное устройство охранной сигнализации.

Я применил его для контроля “состояния” входной двери в квартире, и оно автоматически включает звуковую сигнализации при любом механическом воздействии на дверь, в том числе, при ее открывании и закрывании.

Схема устройства представлена на рис. 12. Пьезодатчик фиксируется каплей клея “Супер-момент” на дверь с внутренней стороны квартиры (рис.13).

Рис. 12. Простое и надежное устройство охранной сигнализации.

Капсюль ЗП-1, служащий тензодатчиком, включается в разрыв шлейфа, подключенного к разъему Х2 (рис.12). Триггер Шмитта на элементе DD1 микросхемы К561ТЛ1 (зарубежный аналог — CD4093B) переключается пропорционально силе механического воздействия на ЗП-1. Эта микросхема имеет в своем составе 4 однотипных элемента с функцией 2И-НЕ и триггерами Шмитта.

Незадействованные входы остальных элементов (выводы 5, 6, 8, 9, 12 и 13), по правилам эксплуатации КМОП-микросхем, нужно соединить с общим проводом или питанием.

При механическом воздействии на пьезокапсюль, когда дверь открылась или закрылась, после стука по ней, задвигания щеколды или любого иного механического воздействия раздается акустический сигнал длительностью 1…5 с в зависимости от силы механического воздействия и положения движка резистора R1.

В исходном состоянии (после включения питания) на входах элемента DD1 за счет резисторов R1 и R2 присутствует высокий уровень (логическая “1”), на выходе — низкий (“0”).

Транзистор VТ1 закрыт, и звуковой капсюль НА1 не активен. Сотрясение, вибрация и удары влияют на капсюль ЗП-1 и преобразуются с его помощью в электрический сигнал.

Триггер Шмитта реагирует на изменение входного уровня и перебрасывается в другое состояние. Транзистор VТ1 открывается, почти все напряжение питания прикладывается к звуковому капсюлю НА1, и он громко звучит с частотой примерно 1000 Гц.

А. Кашкаров, г. С.-Петербург. РМ-07-12, 08-12.

Физика явления

Пьезоэлектрические вещества всегда обладают одновременно и прямым, и обратным пьезоэффектом. Не обязательно, чтобы вещество было монокристаллом, эффект наблюдается и в поликристаллических веществах, предварительно поляризованных сильным электрическим полем во время кристаллизации, или при фазовом переходе в точке температуры Кюри при охлаждении для сегнетоэлектриков (например, керамические пьезоэлектрические материалы на основе цирконата-титаната свинца) при наложенном внешнем электрическом поле.

Полная энергия, сообщенная пьезоэлементу внешней механической силой, равна сумме энергии упругой деформации и энергии заряда ёмкости пьезоэлемента. Вследствие обратимости пьезоэффекта возникает пьезоэлектрическая реакция: возникшее вследствие прямого пьезоэффекта электрическое напряжение создаёт (в результате обратного пьезоэффекта) механические напряжения и деформации, противодействующие внешним силам. Это проявляется в увеличении жесткости пьезоэлемента. Если электрическое напряжение, возникающее вследствие пьезоэффекта, исключить, например, закоротив электроды пьезоэлемента, то обратного пьезоэлектрического действия наблюдаться не будет и произойдёт уменьшение жесткости пьезоэлемента.

Исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. Так как элементарная ячейка является наименьшей симметричной единицей материала, путём её многократного повторения можно получить микроскопический кристалл. Необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейке.

Не следует путать с другими явлениями

  • Пьезоэффект нельзя путать с электрострикцией. В отличие от электрострикции прямой пьезоэффект наблюдается только в кристаллах без центра симметрии. Хотя в классе 432 кубической сингонии нет центра симметрии, пьезоэлектричество в нём также невозможно. Следовательно, пьезоэффект может наблюдаться у диэлектрических кристаллов, принадлежащих только к одному из 20 классов точечных групп.
  • Пьезоэлектрический эффект нельзя путать с пьезорезистивным эффектом (англ.)русск..

Использование пьезоэффекта в технике

Прямой пьезоэффект используется:

  • в пьезогенераторах электроэнергии разнообразного назначения:
    • в пьезозажигалках, для получения высокого напряжения на разряднике от движения пальца;
    • в контактном пьезоэлектрическом взрывателе (например, к выстрелам РПГ-7);
  • в датчиках:
    • в качестве чувствительного к силе элемента (чем больше сила, тем выше напряжение на контактах), например, в силоизмерительных датчиках, датчиках давления жидкостей и газов;
    • в качестве чувствительного элемента в микрофонах, гидрофонах, головках звукоснимателя электрофонов, приёмных элементов сонаров;

Обратный пьезоэлектрический эффект используется:

  • в акустических излучателях:
    • в пьезокерамических излучателях звука (эффективны на высоких частотах и имеют небольшие габариты; такие например встраиваются в музыкальные открытки, различные оповещатели, применяемые во всевозможных бытовых устройствах от наручных часов до кухонной техники);
    • в ультразвуковых излучателях для увлажнителей воздуха, ультразвуковой гидроочистки (в частности, ультразвуковых стиральных машин и промышленных ультразвуковых ванн);
    • в излучателях гидролокаторов (сонарах);
  • в системах механических перемещений (активаторах):
    • в системах сверхточного позиционирования, например, в системе позиционирования иглы в сканирующем туннельном микроскопе или в позиционере перемещения головки жёсткого диска;
    • в адаптивной оптике, для изгиба отражающей поверхности деформируемого зеркала.
  • в пьезоэлектрических двигателях;
  • для подачи чернил в струйных принтерах.

Прямой и обратный эффект одновременно используются:

  • в кварцевых резонаторах, используемых как эталон частоты;
  • в пьезотрансформаторах для изменения напряжения высокой частоты.
  • в приборах на эффекте поверхностных акустических волн:
    • в ультразвуковых линиях задержки электронной аппаратуры;
    • в датчиках на поверхностных акустических волнах.

Ссылки

  1. Иоффе АФ (1956). “Пьер Кюри”. УФН. 58 (4): 572–9.
  2. Д . А . Негров , Е . Н . Еремин , А . А . Новиков Л . А . Шестель. УЛЬТРАЗВУКОВЫЕ КОЛЕБАТЕЛЬНЫЕ СИСТЕМЫ ДЛЯ СИНТЕЗА ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ Монография (рус.) // Омск Издательство ОмГТУ. — 2012.
  3. Пьезоэлектрический эффект, пьезоэлектрические материалы и их свойства.. Инженерные решения. Дата обращения 24 февраля 2014.
  4. Development of Piezoelectric Microactuator for HDD Head (англ.). Дата обращения 12 февраля 2012. Архивировано 2 июня 2012 года.
  5. Научное открытие «Пьезоэлектрические свойства горных пород». Дата обращения 12 февраля 2012. Архивировано 2 июня 2012 года.

Пьезоэлектрический эффект (сокращенно пьезоэффект) наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Пьезоэффектом могут обладать кристаллы, не имеющие центра симметрии, а имеющие так называемые полярные направления (оси). Пьезоэффектом могут обладать также некоторые поликристаллические диэлектрики с упорядоченной структурой (текстурой), например керамические материалы и полимеры. Диэлектрики, обладающие пьезоэффектом, называют пьезоэлектриками.

Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и электрическую поляризацию и, следовательно, появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными направление поляризации и знаки зарядов. Это явление называют прямым пьезоэффектом. Пьезоэффект обратим. При воздействии на пьезоэлектрик, например кристалл, электрического поля соответствующего направления в нем возникают механические напряжения и деформации. При изменении направления электрического поля на противоположное соответственно изменяются на противоположное направления напряжений и деформаций. Это явление получило название обратного пьезоэффекта.


Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками Р и Е изображены внешние воздействия — механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями — контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р — вектор поляризации.

В некоторых источниках для обратного пьезоэффекта неуместно используют термин электрострикция, относящийся к сходному, но другому физическому явлению, характерному для всех диэлектриков, деформации их под действием электрического поля. Электрострикция — четный эффект, означающий, что деформация не зависит от направления электрического поля, а ее величина пропорциональна квадрату напряженности электрического поля. Порядок деформаций при электрострикции намного меньше, чем при пьезоэффекте (примерно на два порядка). Электрострикция всегда возникает и при пьезоэффекте, но вследствие малости в расчет не принимается. Электрострикция — эффект необратимый.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением t: P = dt

Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности d называется пьезоэлектрическим модулем (пьезомодулем), и он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью: r = dE
где r — деформация; Е — напряженность электрического поля. Пьезомодуль d для прямого и обратного эффектов имеет одно и то же значение.

Приведенные выражения даны в элементарной форме только для уяснения качественной стороны пьезоэлектрических явлений. В действительности пьезоэлектрические явления в кристаллах более сложны, что обусловлено анизотропией их упругих и электрических свойств. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и их характера и направления сил относительно кристаллофических осей кристалла. Пьезоэффект может возникать в результате действия как нормальных, так и касательных напряжений. Существуют направления, для которых пьезоэффект равен нулю. Пьезоэффект описывается несколькими пьезомодулями, число которых зависит от симметрии кристалла. Направления поляризации может совпадать с направлением механического напряжения или составлять с ним некоторый угол. При совпадении направлений поляризации и механического напряжения пьезоэффект называют продольным, а при их взаимно перпендикулярном расположении — поперечным. За направление касательных напряжений принимают нормаль к плоскости, в которой действуют напряжения.


Схематичные изображения, поясняющие продольный (а) и поперечный (б) пьезоэффекты

Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, весьма незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 2,3 х 10-7мм. Незначительность величин деформаций пьезоэлектриков объясняется их очень высокой жесткостью.

Физические свойства пьезоэффекта

В ходе исследований было установлено, что пьезоэлектрический эффект присущ кварцу, турмалину и другим кристаллам естественного и искусственного происхождения. Перечень таких материалов постоянно растет. Если любой из этих кристаллов сжать или растянуть в определенном направлении, на отдельных гранях появятся электрические заряды с положительным и отрицательным значением. Разность потенциалов таких зарядов будет незначительной.

Для того чтобы понять природу пьезоэффекта, необходимо соединить электроды между собой и разместить их на гранях кристалла. При кратковременном сжатии или растяжении в цепи, образованной электродами, можно заметить образование короткого электрического импульса. Именно он является электрическим и физическим проявлением пьезоэффекта. Если же кристалл испытывает постоянное давление, в этом случае импульс не появится. Данное свойство кристаллических материалов широко используется при изготовлении точных чувствительных приборов.

Одним из качеств пьезоэлектрических кристаллов является их высокая упругость. По окончании действия деформирующего усилия, эти материалы без всякой инерции принимают свою изначальную форму и объем. Если же прикладывается новое усилие или изменяется приложенное ранее, в этом случае мгновенно образуется еще один токовый импульс. Данное свойство, известное как прямой и обратный пьезоэффект, успешно используется в устройствах, регистрирующих совсем слабые механические колебания.

В самом начале открытия пьезоэффекта решение такой задачи было невозможно из-за слишком незначительной силы тока в колеблющейся кристаллической цепи. В современных условиях ток может быть усилен многократно, а некоторые виды кристаллов имеют довольно высокий пьезоэффект. Ток, полученный от них, не требует дополнительного усиления и свободно передается по проводам на значительные расстояния.

Прямой и обратный пьезоэффект

Все кристаллы, рассмотренные выше, обладают качествами прямого и обратного пьезоэффекта. Данное свойство одновременно присутствует во всех подобных материалах – с моно- и поликристаллической структурой. Обязательным условием является их предварительная поляризация в процессе кристаллизации воздействием сильного электрического поля.

Для того чтобы понять, как действует прямой пьезоэффект, необходимо кристалл или керамический материал расположить между металлическими пластинами. Генерация электрического заряда происходит в результате приложенного механического усилия – сжатия или растяжения.

Величина полной энергии, полученной от внешней механической силы, составит сумму энергий упругой деформации и заряда емкости элемента. Поскольку пьезоэлектрический эффект носит обратимый характер, возникает специфическая реакция. Прямой пьезоэффект приводит к возникновению электрического напряжения, которое в свою очередь, под влиянием обратного эффекта вызывает деформацию и механические напряжения, оказывающие противодействие внешним силам. За счет этого жесткость элемента будет увеличиваться. В случае отсутствия электрического напряжения, обратный пьезоэффект тоже будет отсутствовать, а жесткость пьезоэлемента уменьшится.

Таким образом, обратный пьезоэлектрический эффект заключается в механической деформации материала – расширении или сжатии под действием приложенного к нему напряжения. Данные элементы выполняют функцию своеобразного мини-аккумулятора и применяются в гидролокаторах, микрофонах, датчиках давления, других чувствительных приборах и устройствах. Свойства обратного эффекта широко используются в миниатюрных акустических устройствах мобильных телефонов, в гидроакустических и медицинских ультразвуковых датчиках.

Виды пьезоэлектрических материалов

Основным свойством таких материалов является возможность получения электроэнергии за счет сжатия или растяжения, то есть, деформации.

Все материалы, используемые на практике, классифицируются следующим образом:

  • Кристаллы. Включают в себя кварц и другие виды природных образований.
  • Керамические изделия. Представляют собой группу искусственных материалов. Типичными представителями являются цирконат-титанат свинца – ЦТС, а также титанат бария и ниобат лития. Они обладают более ярким пьезоэлектрическим эффектом по сравнению с природными материалами.

Если сравнивать ЦТС и кварц, становится заметно, что при одной и той же деформации, искусственный элемент вырабатывает более высокое напряжение. Когда на него влияет обратный пьезоэлектрический эффект он соответственно сильнее деформируется, когда к нему приложено такое же напряжение, как и к кварцу. Благодаря своим качествам, искусственные материалы получили широкое распространение в конструкциях керамических конденсаторов, ультразвуковых преобразователей и прочих электронных устройств.

Использование пьезоэффекта на практике

Пьезоэлектрические свойства кристаллов и материалов искусственного происхождения успешно применяются в различных областях. В качестве примеров можно привести ультразвуковую дефектоскопию, позволяющую выявлять дефекты внутри металлических конструкций, электромеханические преобразователи, стабилизирующие радиочастоты, различные датчики и другие приборы.

В электротехнике широко используется обратный пьезоэлектрический эффект, связанный с деформацией кристалла под действием приложенного напряжения. В случае наложения на кристалл электрических колебаний с частотой звука, в нем возникнут колебания такой же частоты с выделением в окружающее пространство звуковых волн. Таким образом, один и тот же кристалл может быть использован не только как микрофон, но и как динамик.

Все пьезоэлектрики имеют собственную частоту механических колебаний. Они проявляются с наибольшей силой, когда совпадают с частотой подведенного напряжения. Подобное наложение колебаний известно, как электромеханический резонанс. Данное свойство позволило создать различные виды пьезоэлектрических стабилизаторов, поддерживающих постоянную частоту в генераторах незатухающих колебаний.

Точно такая же реакция наблюдается при действии механических колебаний с частотой, совпадающей с собственными колебаниями кристалла. Подобный эффект и его применение позволил создать акустические приборы, способные выделять из всей массы звуков лишь необходимые для конкретных целей.

При изготовлении приборов и устройств цельные кристаллы не используются. Они распиливаются на пластинки, имеющие строгую ориентацию с их кристаллографическими осями. Пластинки изготавливаются определенной толщины, в зависимости от того, какую резонансную частоту колебаний нужно получить. Они соединяются с металлическими слоями, и в результате происходит рождение готового пьезоэлемента.

ПЬЕЗОЭЛЕКТРИЧЕСКИЙ МЕТОД

Пьезоэлектрический метод измерения основан на использовании пьезоэлектрического эффекта. Известно, что если некоторые кристаллы (кварц, турмалин, сегнетову соль) подвергать деформации, то на определенных поверхностях кристалла выделяются равные и противоположные по знаку электрические заряды, пропорциональные упругим механическим деформациям. Наоборот, если к тем же поверхностям кристалла приложить переменное электрическое напряжение, то кристалл будет деформироваться в соответствии с изменением напряжения. Первое явление (появление заряда при деформации) называется прямым пьезоэффектом, а второе — обратным.

Среди отмеченных выше кристаллов наибольшей чувствительностью обладает сегнетова соль. Однако применение ее ограничено, так как пьезоэлектрические свойства сегнетовой соли в большей степени зависят от температуры, а при температуре 38°С почти полностью пропадают. Пьезоэлектрические свойства кварца в меньшей степени зависят от температуры и сохраняются еще при температурах 350—400°С.

Для удобства оценки свойств кристалла вводят понятия оптической z, электрической х и механической у осей (рис.2.35). Для устройства пьезоэлектрических датчиков из кристалла вырезают симметричные пластинки круглой или прямоугольной формы, ориентированные относительно осей так, как это показано на рис.2.35 (заштрихованная площадка).

При действии усилий Fx и Fy вдоль электрической или механической оси (рис.2.35) электрические заряды появляются только на гранях кристалла, перпендикулярных к электрической оси х (рис.2.36). Количество возникшего электричества пропорционально действующей на кристалл силе, причем

,

где Q – заряд в к;

Fx и Fy – силы в кГ;

k — пьезоэлектрическая постоянная, равная для кварца к/кГ;

Sx и Sy — площади поверхностей, перпендикулярных соответствующим осям.

Для снятия зарядов на плоскости пластинки 1, перпендикулярной электрической оси (рис.2.37), накладываются металлические электроды 2, от которых заряды отводятся на усилительное устройство 3. Применение усилителей в пьезоэлектрических датчиках почти всегда неизбежно, так как возникающие при деформации заряды незначительны по величине. Например, если действующая на кристалл кварца сила равна 1 кГ, то за ряд будет равен к. Зажатая между металлическими электродами пластинка кристалла образует конденсатор, напряжение и на котором определяется по формуле

, (2.48)

где С — емкость конденсатора, равная ;

— диэлектрическая постоянная кварца;

d — толщина пластинки.

Подставляя в формулу (2.48) значение заряда из (2.47), найдем

. (2.49)

Для примера определим напряжение при следующих данных: . При подстановке этих данных в формулу (2.49) получим

Несмотря на то, что это напряжение является значительным, измерение его при помощи прибора, потребляющего мощность, невозможно, так как прибор будет разряжать пьезодатчик. Обычно напряжение с пьезодатчика подается на специальную электронную лампу с малой входной емкостью и чрезвычайно большим входным сопротивлением. Такая лампа называется электрометрической. Провода, соединяющие датчик с лампой, должны иметь высококачественную изоляцию и малую собственную емкость.

Пьезоэлектрический метод целесообразно применять для измерения переменных давлений, ускорений и деформаций. Измерение медленно изменяющихся величин этим методом практически неосуществимо.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *