Нелинейные электрические цепи

НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

Нелинейные элементы электрических цепей, их вольт-амперные характеристики и сопротивления.

Нелинейным элементом электрической цепи считается элемент, значения параметров которого зависят от значения тока данного элемента или напряжения на его выводах.

К нелинейным элементам электрических целей относятся разнообразные электронные, полупроводниковые и ионные приборы, устройства, содержащие намагничивающие обмотки с ферромагнитными магнитопроводами (при переменном токе), лампы накаливания, электрическая дуга и др.

Рис. 1.21. Примеры вольт-амперных характеристик:

а — линейного элемента; б — лампы накаливания; в — полупроводнико- вого диода; г — транзистора (при различных токах базы), д — терморезистора, е – стабилитрона

Нелинейные элементы получают в настоящее время все более широкое распространение, так как они дают возможность решать многие технические задачи. Так, с помощью нелинейных элементов можно осуществить преобразование переменного тока в постоянный, усиление электрических сигналов, генерирование электрических сигналов различной формы, стабилизацию тока и напряжения, изменение формы анналов, вычислительные операции и т д. Нелинейные элементы широко используются в радиотехнических устройствах, в устройствах промышленной электроники, автоматики, измерительной и вычислительной техники.

Важнейшей характеристикой нелинейных элементов является вольт-амперная характеристика (в. а. х.), представляющая собой зависимость между током нелинейного элемента и напряжением на его выводах: I(U) или U(I).

Зависимость между током I и напряжением U любого пассивного элемента электрической цепи подчиняется закону Ома, согласно которому I = U/r. Поскольку у линейных элементов с изменением тока или напряжения сопротивление остается постоянным, их в. а. х. не отличаются от прямой (рис. 1.21, а).

Рис. 1.22 — К расчету электрической цепи с нелинейным элементом графо-аналитическим методом

У нелинейных элементов в. а. х. весьма разнообразны и для некоторых из них даны на рис. 1.21,б — е. Там же приведены условные графические обозначения соответствующих элементов. Общее условное обозначение любого нелинейного резистивного элемента показано на рис. 1.22, а.

Имея в. а. х. нелинейного элемента, можно определить его сопротивления при любых значениях тока или напряжения. Различают два вида сопротивлений нелинейных элементов: статическое и дифференциальное.

Статическое сопротивление дает представление о соотношении конечных значений напряжения и тока нелинейного элемента и определяется в соответствии с законом Ома. Например, для точки А в. а. х. (рис. 1.21,б) статическое сопротивление

,

где mu и mi — масштабы напряжения и тока.

Дифференциальное сопротивление позволяет судить о соотношении приращений напряжения и тока и определяется следующим образом:

,

К нелинейным электрическим цепям применимы основные законы электрических цепей, т. е. закон Ома и законы Кирхгофа. Однако расчет нелинейных цепей значительно труднее, чем линейных, Объясняется это тем, что кроме токов и напряжений, подлежащих обычно определению, неизвестными являются также зависящие от них сопротивления нелинейных элементов.

Для расчета нелинейных электрических цепей применяется с большинстве случаев графоаналитический метод. Однако если в предполагаемом диапазоне изменения тока или напряжения нелинейного элемента его в. а. х. можно заменить прямой линией, то расчет можно производить и аналитическим методом.

Следует отметить, что к той части электрической цепи, которая содержит линейные элементы, применимы все методы расчета и преобразования электрических цепей, рассмотренные ранее.

Аналитический метод расчета нелинейных электрических цепей. Предположим, что имеется некоторый нелинейный элемент, в. а. х. которого приведена на рис. 1.26, а. Если данный элемент должен работать на линейном участке cd в.а.х., то для расчета и анализа можно использовать аналитический метод.

Чтобы выяснить зависимость между напряжением и током участка cd и построить схему замещения нелинейного элемента, работающего на данном участке, продлим его до пересечения в точке а с осью абсцисс и будем считать, что в точке пересечения напряжение U равно некоторой ЭДС Е.

Рис. 1.26. К расчету электрической цепи с нелинейным элементом аналитическим методом

Для рис. 1.26, а справедливо следующее очевидное соотношение:

Ob = Oa + ab = Oa + bx tgβ. (1.44)

Выразив в (1.44) отрезки через соответствующие электротехнические величины и масштабы напряжения и тока, получим

Ux /mu = E/mu + Ix /mi tgβ.

После умножения на масштаб напряжения будем иметь

(1.45)

где rd — дифференциальное сопротивление нелинейного элемента на участке cd его в. а. х.

Полученному уравнению (1.45) согласно второму закону Кирхгофа соответствует схема замещения amb (рис. 1.26,б) нелинейного элемента, работающего на линейном участке cd.

Допустим, что нелинейный элемент получает питание от эквивалентного генератора с параметрами Eэ и r0э (рис. 1.26,б), заменяющего некоторый активный двухполюсник. Тогда по второму закону Кирхгофа можно написать

Eэ — E = Ix (r0э + rd ),

откуда

(1.46)

Используя (1.45) и (1.46), нетрудно решать многие задачи, связанные с расчетом и анализом нелинейной электрической цепи. Например, по (1.46) можно определить ток Ix , а по (1.45) — напряжение Ux при заданных Eэ, r0э и rd.

Если графическое определение ЭДС E вызывает затруднение, можно найти ее, воспользовавшись выражением (1.45) и подставив в него известные координаты одной из точек участка cd.

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент.

Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.

Нелинейные элементы можно разделить на двух – и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных.

По другому признаку классификации нелинейные элементы можно разделить на инерционные и безынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.

Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.

В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат: . Для несимметричной характеристики это условие не выполняется, т.е. . Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта.

По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика , у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, для которого , а у нелинейных индуктивных и емкостных элементов – с гистерезисом.

Наконец, все нелинейные элементы можно разделить на управляемые и неуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.

Нелинейные электрические цепи постоянного тока

Нелинейные свойства таких цепей определяет наличие в них нелинейных резисторов.

В связи с отсутствием у нелинейных резисторов прямой пропорциональности между напряжением и током их нельзя охарактеризовать одним параметром (одним значением ). Соотношение между этими величинами в общем случае зависит не только от их мгновенных значений, но и от производных и интегралов по времени.

Параметры нелинейных резисторов

В зависимости от условий работы нелинейного резистора и характера задачи различают статическое, дифференциальное и динамическое сопротивления.

Если нелинейный элемент является безынерционным, то он характеризуется первыми двумя из перечисленных параметров.

Статическое сопротивление равно отношению напряжения на резистивном элементе к протекающему через него току. В частности для точки 1 ВАХ на рис. 1

.

Под дифференциальным сопротивлением понимается отношение бесконечно малого приращения напряжения к соответствующему приращению тока

.

Следует отметить, что у неуправляемого нелинейного резистора всегда, а может принимать и отрицательные значения (участок 2-3 ВАХ на рис. 1).

В случае инерционного нелинейного резистора вводится понятие динамического сопротивления

,

определяемого по динамической ВАХ. В зависимости от скорости изменения переменной, например тока, может меняться не только величина, но и знак .

Методы расчета нелинейных электрических цепей постоянного тока

Электрическое состояние нелинейных цепей описывается на основании законов Кирхгофа, которые имеют общий характер. При этом следует помнить, что для нелинейных цепей принцип наложения неприменим. В этой связи методы расчета, разработанные для линейных схем на основе законов Кирхгофа и принципа наложения, в общем случае не распространяются на нелинейные цепи.

Общих методов расчета нелинейных цепей не существует. Известные приемы и способы имеют различные возможности и области применения. В общем случае при анализе нелинейной цепи описывающая ее система нелинейных уравнений может быть решена следующими методами:

  • графическими;
  • аналитическими;
  • графо-аналитическими;
  • итерационными.

Графические методы расчета

При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями.

а) Цепи с последовательным соединением резистивных элементов.

При последовательном соединении нелинейных резисторов в качестве общего аргумента принимается ток, протекающий через последовательно соединенные элементы. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси напряжений откладывается точка, соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось токов – полученная точка соответствует искомому току в цепи, по найденному значению которого с использованием зависимостей определяются напряжения на отдельных резистивных элементах.

Применение указанной методики иллюстрируют графические построения на рис. 2,б, соответствующие цепи на рис. 2,а.

Графическое решение для последовательной нелинейной цепи с двумя резистивными элементами может быть проведено и другим методом – методом пересечений. В этом случае один из нелинейных резисторов, например, с ВАХ на рис.2,а, считается внутренним сопротивлением источника с ЭДС Е, а другой – нагрузкой. Тогда на основании соотношения точка а (см. рис. 3) пересечения кривых и определяет режим работы цепи. Кривая строится путем вычитания абсцисс ВАХ из ЭДС Е для различных значений тока.

Использование данного метода наиболее рационально при последовательном соединении линейного и нелинейного резисторов. В этом случае линейный резистор принимается за внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум точкам.

б) Цепи с параллельным соединением резистивных элементов.

При параллельном соединении нелинейных резисторов в качестве общего аргумента принимается напряжение, приложенное к параллельно соединенным элементам. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси токов откладывается точка, соответствующая в выбранном масштабе заданной величине тока источника на входе цепи (при наличии на входе цепи источника напряжения задача решается сразу путем восстановления перпендикуляра из точки, соответствующей заданному напряжению источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось напряжений – полученная точка соответствует напряжению на нелинейных резисторах, по найденному значению которого с использованием зависимостей определяются токи в ветвях с отдельными резистивными элементами.

Использование данной методики иллюстрируют графические построения на рис. 4,б, соответствующие цепи на рис. 4,а.

в) Цепи с последовательно-параллельным (смешанным) соединением резистивных элементов.

1. Расчет таких цепей производится в следующей последовательности:

Исходная схема сводится к цепи с последовательным соединением резисторов, для чего строится результирующая ВАХ параллельно соединенных элементов, как это показано в пункте б).

2. Проводится расчет полученной схемы с последовательным соединением резистивных элементов (см. пункт а), на основании которого затем определяются токи в исходных параллельных ветвях.

Метод двух узлов

Для цепей, содержащих два узла или сводящихся к таковым, можно применять метод двух узлов. При полностью графическом способе реализации метода он заключается в следующем:

Строятся графики зависимостей токов во всех i-х ветвях в функции общей величины – напряжения между узлами m и n, для чего каждая из исходных кривых смещается вдоль оси напряжений параллельно самой себе, чтобы ее начало находилось в точке, соответствующей ЭДС в i-й ветви, а затем зеркально отражается относительно перпендикуляра, восстановленного в этой точке.

Определяется, в какой точке графически реализуется первый закон Кирхгофа . Соответствующие данной точке токи являются решением задачи.

Метод двух узлов может быть реализован и в другом варианте, отличающемся от изложенного выше меньшим числом графических построений.

В качестве примера рассмотрим цепь на рис. 5. Для нее выражаем напряжения на резистивных элементах в функции :

; (1)
; (2)
. (3)

Далее задаемся током, протекающим через один из резисторов, например во второй ветви , и рассчитываем , а затем по с использованием (1) и (3) находим и и по зависимостям и — соответствующие им токи и и т.д. Результаты вычислений сводим в табл. 1, в последней колонке которой определяем сумму токов

Таблица 1. Таблица результатов расчета методом двух узлов

Алгебраическая сумма токов в соответствии с первым законом Кирхгофа должна равнять нулю, поэтому получающаяся в последней колонке табл. 1 величина указывает, каким значением следует задаваться на следующем шаге.

В осях строим кривую зависимости и по точке ее пересечения с осью напряжений определяем напряжение между точками m и n. Для найденного значения по (1)…(3) рассчитываем напряжения на резисторах, после чего по заданным зависимостям определяем токи в ветвях схемы.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.: Энергия- 1972. –200с.

Контрольные вопросы и задачи

  1. Почему метод наложения неприменим к нелинейным цепям?
  2. Какие параметры характеризуют нелинейный резистор?
  3. Почему статическое сопротивление всегда больше нуля, а дифференциальное и динамическое могут иметь любой знак?
  4. Какие методы используют для анализа нелинейных резистивных цепей постоянного тока?
  5. Какая последовательность расчета графическим методом нелинейной цепи с последовательным соединением резисторов?
  6. Какая последовательность расчета графическим методом нелинейной цепи с параллельным соединением резисторов?
  7. Какой алгоритм анализа цепи со смешанным соединением нелинейных резисторов?
  8. В чем сущность метода двух узлов?
  9. В цепи на рис. 2,а ВАХ нелинейных резисторов и , где напряжение – в вольтах, а ток – в амперах; . Графическим методом определить напряжения на резисторах.
  10. Ответ: .

  11. В цепи на рис. 4,а ВАХ нелинейных резисторов и , где ток – в амперах, а напряжение – в вольтах; . Графическим методом определить токи и .
  12. Ответ: .

  13. В цепи на рис. 5 , где ток – в амперах, а напряжение – в вольтах; третий резистор линейный с . Определить токи в ветвях методом двух узлов, если .
  14. Ответ: .

Лекция 12. Основные понятия о нелинейных цепях, методы анализа нелинейных электрических цепей постоянного тока

Нелинейные электрические цепи постоянного тока

Цель лекции: Рассмотреть основные понятия о нелинейных цепях и методах их расчета.

12.1 Классификация нелинейных элементов

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент. Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока ). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками. Нелинейные элементы можно разделить на инерционныеи безынерционные.Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают. В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат: . Для несимметричной характеристики это условие не выполняется. Все нелинейные элементы можно разделить на управляемые и неуправляемые.В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы,

изменяя напряжение, ток, световой поток в которых, изменяют их основные характеристики.

12.2 Параметры нелинейных резисторов

В зависимости от условий работы нелинейного резистора и характера задачи различают статическое, дифференциальное и динамическое сопротивления. Если нелинейный элемент является безынерционным, то он характеризуется первыми двумя из перечисленных параметров.

Статическое сопротивлениеравно отношению напряжения на резистивном элементе к протекающему через него току. В частности для точки 1 ВАХ на рисунке 12.1

.

Поддифференциальным сопротивлением понимается отношение бесконечно малого приращения напряжения к соответствующему приращению тока .

Следует отметить, что у неуправляемого нелинейного резистора всегда , а может принимать и отрицательные значения (участок 2-3 ВАХ на рисунке 12.1).В случае инерционного нелинейного резистора вводится понятие динамического сопротивления,

определяемого по динамической ВАХ. В зависимости от скорости изменения переменной может меняться не только величина, но и знак .

12.3 Методы анализа нелинейных электрических цепей постоянного тока

Электрическое состояние нелинейных цепей описывается на основании законов Кирхгофа, которые имеют общий характер. При этом следует помнить, что длянелинейных цепей принцип наложения неприменим.В этой связи методы расчета, разработанные для линейных схем на основе законов Кирхгофа и принципа наложения, в общем случае не распространяются на нелинейные цепи. Общих методов расчета нелинейных цепей не существует. Известные приемы и способы имеют различные возможности и области применения. В общем случае при анализе нелинейной цепи описывающая ее система нелинейных уравнений может быть решена следующими методами: графическими, аналитическими, численными.

Графические методы расчета.При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями.

Аналитические методы расчета.Исследования общих свойств нелинейных цепей удобно осуществлять на основе математического анализа, базирующегося на аналитическом выражении характеристик нелинейных элементов, то есть их аппроксимации. На выбор аналитического метода влияют условия поставленной задачи, а также характер возможного перемещения рабочей точки по характеристике нелинейного элемента: по всей характеристике или в ее относительно небольшой области. К наиболее распространённым аналитическим методам относятся: метод аналитической аппроксимации, метод кусочно-линейной аппроксимации, метод линеаризации.

Численные итерационные методы расчета.Решение нелинейного уравнения, описывающего состояние электрической цепи, может быть реализовано приближенными численными методами. Решение находится следующим образом: на основе первой, достаточно грубой, оценки определяется начальное значение корня, после чего производится уточнение по выбранному алгоритму до вхождения в область заданной погрешности. Наиболее широкое применение в электротехнике для численного расчета нелинейных резистивных цепей получили метод простой итерации и метод Ньютона-Рафсона.

12.4 Графический расчет цепи с последовательным соединением нелинейных элементов.

При последовательном соединении нелинейных резисторов в качестве общего аргумента принимается ток, протекающий через последовательно соединенные элементы. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси напряжений откладывается точка, соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается вертикаль на ось токов – полученная точка соответствует искомому току в цепи, по найденному значению которого с использованием зависимостей определяются напряжения на отдельных резистивных элементах.

Применение указанной методики иллюстрируют графические построения на рисунке 12.2,б, соответствующие цепи на рисунке 12.2,а.

Графическое решение для последовательной нелинейной цепи с двумя резистивными элементами может быть проведено и другим методом – методом пересечений.В этом случае один из нелинейных резисторов, например, с ВАХ на рисунке12.2,а, считается внутренним сопротивлением источника с ЭДС Е, а другой – нагрузкой. Тогда на основании соотношения точка а ( рисунок 12. 3) пересечения кривых и определяет режим работы цепи. Кривая строится путем вычитания абсцисс ВАХ из ЭДС Е для различных значений тока.

12.5 Цепь с параллельным соединением резистивных элементов.

При параллельном соединении нелинейных резисторов в качестве общего аргумента принимается напряжение, приложенное к параллельно соединенным элементам. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси токов откладывается точка, соответствующая в выбранном масштабе заданной величине тока источника на входе цепи (при наличии на входе цепи источника напряжения задача решается сразу путем восстановления перпендикуляра из точки, соответствующей заданному напряжению источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается вертикаль на ось напряжений – полученная точка соответствует напряжению на нелинейных резисторах, по найденному значению которого с использованием зависимостей определяются токи в ветвях с отдельными резистивными элементами. Использование данной методики иллюстрируют графические построения на рисунке 12.4,б, соответствующая цепь на рисунке 12.4,а.

Рисунок 12.4

Нелинейные ограничители перенапряжений.

Основным элементом конструкции нелинейного ограничителя перенапряжений (ОПН) является резистор из металлооксидной керамики на основе окиси цинка (ZnO). Такие резисторы обладают значительно большей нелинейностью, чем резисторы на основе карборунда. Характерной их особенностью является экстремально нелинейная вольт-амперная характеристика (рис. 7.28), независящая от полярности напряжения. В области малых значений тока, соответствующих воздействующим напряжениям ниже уровня длительного допустимого рабочего напряжения, значение сопротивления резистора превышает 109 Ом. В области значений тока, превышающих предельные нормируемые для данного резистора значения импульсных токов, сопротивление резистора составляет десятые доли Ома. В связи с этим при рабочем напряжении или резонансных перенапряжениях через ОПН проходит ток порядка долей миллиампера. Это позволяет исключить искровой промежуток и подключать резистор ОПН непосредственно к сети.

Металлооксидная керамика резистора получается в результате высокотемпературного обжига (до 1300 °С) порошка с размером зерен порядка 10-3 мм, состоящего из окиси цинка и некоторого количества оксидов других металлов: висмута, сурьмы, кобальта, марганца и т.п. Масса оксида цинка составляет более 90 % массы керамики. Следует отметить, что нелинейность и стабильность характеристик металлооксидного резистора зависит от наличия и состава оксидов других металлов в керамике, режима обжига материала, температуры варистора и окружающей среды, длительности и формы протекающего через варистор тока. Отсюда следует, что на характеристики ОПН влияют технология изготовления и конструктивные особенности аппарата, условия его выбора и особенности его эксплуатации.

Рис. 7.29. Металлооксидные резисторы

Резисторы ОПН выпускаются в виде дисков диаметром от нескольких миллиметров до ста миллиметров и толщиной от единиц до нескольких десятков миллиметров (рис. 7.29). Диски большего диаметра используют для ОПН на большие разрядные токи, а большая высота (толщина) дисков, как правило, определяет большие значения остающегося напряжения на диске. Торцы дисков металлизированы и обеспечивают контакт между собой.

Рис. 7.30. Металлооксидный ОПН с фарфоровым корпусом

Диски нелинейных резисторов располагаются внутри изоляционного корпуса ОПН (рис. 7.30). Для корпуса применяют различные материалы: электротехнический фарфор, керамика, стеклопластик для остова корпуса и внешней оболочкой с ребрами из силиконовой резины и т.п.

Общая вольт-амперная характеристика группы резисторов, элемента ОПН и ОПН в целом, определяется совокупностью вольт-амперных характеристик отдельных резисторов в зависимости от условий соединения. Ограничители высокого напряжения, как правило, состоят из большого количества отдельных резисторов, соединенных параллельно и последовательно, обеспечивая необходимую пропускную способность (по току) и защитный уровень (по напряжению). Оптимальным условием конструктивного исполнения ОПН является равномерное распределение по напряжению и по току для всех резисторов и элементов (из групп соответствующим образом соединенных резисторов) ОПН.

Преимуществами ОПН являются возможность глубокого ограничения грозовых и внутренних перенапряжений, в том числе междуфазных, малые габариты, позволяющие использовать их в качестве опорных изоляционных колонн, большая пропускная способность. ОПН применяются в настоящее время в диапазоне напряжений от 0,2 до 750 кВ.

Уровень ограничения коммутационных перенапряжений с помощью ОПН составляет (1,65–1,8)Uф. Уровень ограничения грозовых перенапряжений составляет (2,2–2,4)Uф в сетях 110 кВ и снижается до 2Uф для линий электропередачи 750 кВ.

Рис. 7.31. Схема включения ОПН для ограничения перенапряжений междуфаз-ных и относительно земли

Применительно к ОПН отсутствует понятие напряжения гашения. Однако длительное воздействие резонансных перенапряжений, связанных с прохождением через ОПН больших токов, может нарушить тепловую устойчивость аппарата и привести к аварии. В связи с этим для ОПН установлены допустимые длительности приложения повышенных напряжений, которые должны быть скоординированы с действием релейных защит.

Применение ОПН позволяет глубоко ограничивать также и междуфазные перенапряжения. Для этого может быть использована схема с искровыми промежутками (рис. 7.31). В нормальном режиме каждый резистор НР1 – НР2 включен на фазное напряжение. При коммутационных перенапряжениях, которые всегда несимметричны, пробиваются искровые промежутки ИП. Вследствие этого резисторы НР2соединяются параллельно, а резисторы НР1включаются попарно на междуфазные напряжения. С восстановлением нормального режима ток в искровых промежутках снижается до миллиампер и дуга в них гаснет.

Перечисленные явные технические и эксплуатационные преимущества ОПН приводят к тому, что в последнее время они постепенно заменяют РТ и РВ во всех областях их применения.

Вопросы для самопроверки:

1. Для чего в электроэнергетических системах применяют защитные аппараты?

2. Какие характеристики защитного промежутка и защищаемой изоляции должны быть согласованы?

3. Что называется сопровождающим током искрового промежутка?

4. Как называются защитные аппараты, обеспечивающие не только защиту изоляции от перенапряжений, но и гашение дуги сопровождающего тока?

5. Как осуществляется гашение дуги в трубчатых разрядниках?

6. Что составляет основу нелинейного резистора вентильного разрядника?

7. Что такое «остающееся напряжение» РВ?

8. На каких физических принципах основана работа длинно-искровых разрядников?

9. Что составляет основу нелинейного резистора ОПН?

10. В чем заключается главная особенность нелинейного резистора ОПН?

11. Какие преимущества имеют ОПН перед РТ и РВ?

12. Для каких целей применяют ОПН?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *