Напряжения короткого замыкания трансформатора

Трансформаторы. Основные определения и принцип

Силовые трансформаторы предназначены для преобразования электроэнергии переменного тока с одного напряжения на другое. Наибольшее распространение получили трехфазные трансформаторы, так как потери в них на 12—15 % ниже, а расход активных материалов и стоимость на 20 — 25 % меньше, чем в группе трех однофазных трансформаторов такой же суммарной мощности.

Предельная единичная мощность трансформаторов ограничивается массой, размерами, условиями транспортировки.

Трехфазные трансформаторы на напряжение 220 кВ изготовляют мощностью до 1000 МВА, на 330 кВ — 1250 МВА, на 500 кВ — 1000 МВА.

Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка. Наибольшая мощность группы однофазных трансформаторов напряжением 500 кВ составляет 3×533 МВА, напряжением 750 кВ — 3×417 МВА, напряжением 1150 кВ — 3×667 МВА.

По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные. Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, изолированных друг от друга и от заземленных частей. Такие трансформаторы называют трансформаторами с расщепленными обмотками. Обмотки высшего, среднего и низшего напряжения принято сокращенно обозначать соответственно ВН, СН, НН.

Трансформаторы с расщепленными обмотками НН обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору. Такие укрупненные энергоблоки позволяют упростить схему распределительного устройства (РУ) 330—500 кВ. Трансформаторы с расщепленной обмоткой НН получили широкое распространение в схемах питания собственных нужд крупных ТЭС с блоками 200—1200 МВт, а также на понижающих подстанциях с целью ограничения токов КЗ.

К основным параметрам трансформатора относятся: номинальные мощность, напряжение, ток; напряжение КЗ: ток холостого хода; потери холостого хода и КЗ.

Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Для трансформаторов общего назначения, установленных на открытом воздухе и имеющих естественное масляное охлаждение без обдува и с обдувом, за номинальные условия охлаждения принимают естественно меняющуюся температуру наружного воздуха (для климатического исполнения У: среднесуточная не более 30°С, среднегодовая не более 20°С), а для трансформаторов с масляно-водяным охлаждением температура воды у входа в охладитель принимается не более 25°С (ГОСТ 11677—85).

Номинальная мощность для двухобмоточного трансформатора — это мощность каждой из его обмоток.

Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора.

За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон, имеющих между собой автотрансформаторную связь («проходная мощность»).

Трансформаторы устанавливают не только на открытом воздухе, но и в закрытых неотапливаемых помещениях с естественной вентиляцией. В этом случае трансформаторы могут быть непрерывно нагружены на номинальную мощность, но при этом срок службы трансформатора несколько снижается из-за худших условий охлаждения.

Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора.

Для трехфазного трансформатора — это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трехфазную группу, соединенную в звезду, — это

.

При работе трансформатора под нагрузкой и подведении к зажимам его первичной обмотки номинального напряжения на вторичной обмотке напряжение меньше номинального на величину потери напряжения в трансформаторе. Коэффициент трансформации трансформатора n определяется отношением номинальных напряжений обмоток высшего и низшего напряжений

.

В трехобмоточных трансформаторах определяется коэффициент трансформации каждой пары обмоток: ВН и НН; ВН и СН; СН и НН.

Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора.

Номинальный ток любой обмотки трансформатора определяют по его номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания uк — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному.

Напряжение КЗ определяют по падению напряжения в трансформаторе, оно характеризует полное сопротивление обмоток трансформатора.

В трехобмоточных трансформаторах и автотрансформаторах напряжение КЗ определяется для любой пары его обмоток при разомкнутой третьей обмотке. Таким образом, в каталогах приводятся три значения напряжения КЗ: uк ВН-НН, uк ВН-СН, uк СН-НН.

Поскольку индуктивное сопротивление обмоток значительно выше активного (у небольших трансформаторов в 2—3 раза, а у крупных в 15 — 20 раз), то uк в основном зависит от реактивного сопротивления, т.е. взаимного расположения обмоток, ширины канала между ними, высоты обмоток.

Величина uк регламентируется ГОСТ в зависимости от напряжения и мощности трансформаторов. Чем больше высшее напряжение и мощность трансформатора, тем больше напряжение КЗ. Так, трансформатор мощностью 630 кВА с высшим напряжением 10 кВ имеет uк = 5,5%, с высшим напряжением 35 кВ — uк = 6,5%; трансформатор мощностью 80000 кВА с высшим напряжением 35 кВ имеет uк = 9%, а с высшим напряжением 110 кВ — uк = 10,5%.

Увеличивая значение uк, можно уменьшить токи КЗ на вторичной стороне трансформатора, но при этом значительно увеличивается потребляемая реактивная мощность и увеличивается стоимость трансформаторов. Если трансформатор 110 кВ мощностью 25 MBА выполнить с uк = 20% вместо 10%, то расчетные затраты на него возрастут на 15,7%, а потребляемая реактивная мощность возрастет вдвое (с 2,5 до 5,0 Мвар).

Трехобмоточные трансформаторы могут иметь два исполнения по значению uк в зависимости от взаимного расположения обмоток.

Если обмотка НН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка СН — между ними, то наибольшее значение имеет uк ВН-НН, а меньшее значение — uк ВН-СН. В этом случае потери напряжения по отношению к выводам СН уменьшатся, а ток КЗ в сети НН будет ограничен благодаря повышенному значению uк ВН-НН

Если обмотка СН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка НН — между ними, то наибольшее значение имеет uк ВН-СН, а меньшее — uк ВН-НН.

Значение uк СН-НН останется одинаковым в обоих исполнениях.

Ток холостого хода Iх характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора. В современных трансформаторах с холоднокатаной сталью токи холостого хода имеют небольшие значения.

Потери холостого хода Pх и короткого замыкания Pк определяют экономичность работы трансформатора.

Потери холостого хода состоят из потерь стали на перемагничивание и вихревые токи. Для их уменьшения применяются электротехническая сталь с малым содержанием углерода и специальными присадками, холоднокатаная сталь толщиной 0,3 мм марок 3405, 3406 и других с жаростойким изоляционным покрытием. В справочниках и каталогах приводятся значения Pх для уровней А и Б. Уровень А относится к трансформаторам, изготовленным из электротехнической стали с удельными потерями не более 0,9 Вт/кг, уровень Б — с удельными потерями не более 1,1 Вт/кг (при B = 1,5 Тл, f = 50 Гц).

Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.). Для их снижения обмотки выполняются многожильным транспонированным проводом, а стенки бака экранируются магнитными шунтами.

В современных конструкциях трансформаторов потери значительно снижены. Например, в трансформаторе мощностью 250000 кВА при U = 110 кВ
(Pх = 200 кВт, Pк = 790 кВт), работающем круглый год (Tmax = 6300 ч), потери электроэнергии составят 0,43% электроэнергии, пропущенной через трансформатор. Чем меньше мощность трансформатора, тем больше относительные потери в нем.

В сетях энергосистем установлено большое количество трансформаторов малой и средней мощности, поэтому общие потери электроэнергии во всех трансформаторах страны значительны и очень важно для экономии электроэнергии совершенствовать конструкции трансформаторов с целью дальнейшего уменьшения значений Pх и Pк.

Источник: Л. Д. Рожкова, Л. К. Карнеева, Т. В. Чиркова. Электрооборудование электрических станций и подстанций

Силовые трансформаторы ТМ-СЭЩ, ТМН-СЭЩ Электрощит-Самара

Помощь студентам
    Формулы, правила, законы, теоремы, уравнения, решение примеров

  • ТОЭ
  • Электрические машины
  • Теоретическая механика
  • Высшая математика

Обновлено: Июнь 18, 2016 автором: admin Поделитесь с друзьями:

    • Режим короткого замыкания трансформатора

      Режим короткого замыкания — такой предельный режим работы трансформатора, когда к первичной обмотке подводится определенное напряжение, а вторичная обмотка замкнута накоротко.

      Различают два вида короткого замыкания — аварийное и испытательное.

      Аварийное короткое замыкание происходит в условиях эксплуатации трансформатора, когда он включен на номинальное первичное напряжение. Это опасный аварийный режим, при котором токи в обмотках трансформатора во много раз превышают их номинальные значения. Такие токи приводят обычно к выходу трансформатора из строя (обмотки обугливаются, разрываются). От такого режима трансформатор защищает специальная аппаратура (предохранители, автоматические выключатели, реле), которая в возможно короткий срок должна отключить питание с первичной стороны и предохранить трансформатор от разрушения.

      Испытательный режим короткого замыкания или опыт короткого замыкания, создается искусственно путем подведения к первичной обмотке трансформатора специально пониженного напряжения U1к = Uк, при котором токи в обеих обмотках не превышают номинальных значений. По данным опыта короткого замыкания определяют ряд важных параметров и характеристик трансформатора.

      Напряжением короткого замыкания двухобмоточного трансформатора называется напряжение, которое при номинальной частоте следует подвести к зажимам одной из обмоток при замкнутой накоротко другой обмотке, чтобы в них установились номинальные токи. Обычно напряжение короткого замыкания выражается в процентах от номинального напряжения

      (8.9)

      Обычно uк= 5,5 — 10% от U1Н и не зависит от того, которая из двух обмоток трансформатора замыкается накоротко. Это важный эксплуатационный параметр, указываемый на щитке трансформатора или в его технической документации.

      Поскольку в опыте uк мало, то и поток в магнитопроводе тоже мал, следовательно, потерями в стали, пропорциональными квадрату магнитной индукции, можно пренебречь, считая, что вся потребляемая мощность идет на покрытие тепловых потерь (потерь в меди) в обмотках, т.е.

      (8.10)

      Режим короткого замыкания трансформатора обычно исследуют опытным путем, когда вторичная обмотка трансформатора закорачивается на амперметр, а к первичной обмотке подводится пониженное напряжение, измеряемое вольтметром, при котором токи в первичной и вторичной цепях не превосходят их номинальных значений. Величина мощности, потребляемой трансформатором из сети в режиме короткого замыкания, измеряется ваттметром.

      В опыте короткого замыкания определяются:

      а) напряжение короткого замыкания (по показаниям вольтметра U1кн и показаниям амперметров I1н и I2н)

      б) активные потери при коротком замыкании трансформатора, которые примерно равны потерям в меди обмоток (по показаниям ваттметра)

      в) коэффициент мощности cosjк (по показаниям ваттметра), вольтметра и амперметра в первичной цепи);

      г) параметры схемы замещения трансформатора при коротком замыкании:

      § 8.4. Режим короткого замыкания трансформатора

      В режиме короткого замыкания сопротивление внешней цепи равно нулю, т. е. вторичная обмотка трансформатора замкнута накоротко. Этот режим следует рас­сматривать как аварийный. При нем во вторичной обмотке транс­форматора протекает ток, во много раз превышающий номинальный. Такой ток безусловно опасен для трансформатора и допустим толь­ко на очень короткое время.

      Так как при режиме короткого замыкания можно получить ряд данных для характеристики рабо­ты трансформатора и определитьпотери короткого замыкания, равные электрическим потерям в обмотках, этот режим создают искусственно при проведении опы­та короткого замыкания. Для это­го к первичной обмотке подводят пониженное напряжение UK.З., при котором токи в обмотках I1 и I2 имеют номинальные значения.

      Это пониженное напряжение,выраженное в процентах от номинального, называется напряжением короткого замыкания:

      Напряжение короткого замыкания является очень важным параметром трансформатора и обычно указывается на его щитке-паспорте. Для силовых трансформаторов оно составляет от 5,5 до 10,5%, причем чем больше мощность трансформатора, тем выше зна­чение u KЗ

      Величиной напряжения короткого замыкания определяется и кратность тока короткого замыкания

      На рис. 8.10 дана векторная диаграмма для режима короткого замыкания. Эта диаграмма строится так же, как и векторная диа­грамма работы трансформатора под нагрузкой. Векторы E1 и E2′ отстают от вектора магнитного потока Ф на 900. Вектор тока I2

      отстает от вектора э. д. с. Ё2′ на угол Ψ2. Так как напряжение UK.З, приложенное к первичной обмотке трансформатора, невелико и ток холостого хода I0 будет мал, то им можно пренебречь. Тогда вектор тока I1 будет сдвинут относительно вектора тока I2 на 180° и равен ему по величине, что видно из следующего. Если прене­бречь током Iо, то

      В приведенном трансформаторе , тогда

      Вектор падения напряжения I2′ r2′ на активном сопротивлении г2′ совпадает по фазе с вектором тока I2′, а вектор падения напря­жения jI2’x2′ на реактивном сопротивлении x2′ сдвинут по фазе на 900 относительно вектора тока I2′, он откладывается от конца вектора I2’r2′. Вектор напряжения короткого замыкания U1К.З оп­ределится в результате сложения векторов I1r1 и jI1x1. Для этого отложим вверх составляющую напряжения – E1 геометрически сложим с ней векторы I1r1 и jI1x1. Этому режиму соответствует упрощенная схема замеще­ния, приведенная на рис. 8.11, так как при коротком замыкании трансформатор может быть представлен в виде цепи, состоящей из пос­ледовательно соединенных активных и индуктивных соп­ротивлений первичной и вто­ричной обмоток. Из вектор­ной диаграммы для режима короткого замыкания получа­ют треугольник короткого замыкания ОВГ (рис. 8.12). Для этого век­торы напряжения и э. д. с. вторичной обмотки поворачивают на 180° так, чтобы вектор E2′ совпал по направлению с вектором —E1. При этом векторы токов первичной и вторичной обмоток I2′ и I1 также совпадают.

      Складывая между собой векторы активного падения напряжения I1r1 и I2′ r2′ и индуктивные падения напряжения jI1x1 и jI2’x2′ получаем треугольник короткого замыкания, в котором

      Рис. 8.12. Треугольник короткого замыка­ния

      Сопротивления и xК,З=x1+ x2′ называются актив­ным и индуктивным сопротивлениями короткого замыкания или параметрами короткого замыкания.

      Активная UK,3.а и реактивная Uк.з.х составляющие напряжения короткого замыкания UK.3 также выражаются в процентах от но­минального напряжения:

      Опыт короткого замыкания производят по схеме, данной на рис. 8.13. Чтобы иметь в цепи меньшие токи, выгоднее подводить напряжение к обмотке высшего напряжения, а обмотку низшего напряжения замыкать накоротко. Постепенно повышая напряже­ние, подводимое к первичной обмотке трансформатора, от 0,3 UH доводят его до величины, при которой токи в обмотках будут равны номинальным. При этом по приборам измеряют мощность и напря­жение. Если в трехфазном трансформаторе токи и напряжения в фазах отличаются друг от друга, то ток короткого замыкания определяют из отношений:

      Мощность короткого замыкания определя­ется как алгебраическая сумма показаний двух ваттметров:

      По данным опыта короткого замыкания нахо­дят полное сопротивление короткого замыкания трансформатора

      Активное и реактивное сопротивления ко­роткого замыкания определяются по формулам:

      Коэффициент мощности при коротком замыкании

      Опыт короткого замыкания позволяет определить потери в меди. Так как напряжение, приложенное к трансформатору, не­значительно и магнитный поток мал, потерями в стали можно пре­небречь. Тогда показания ваттметра в опыте короткого замыкания соответствуют потерям мощности в меди.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *