Мощность цепи переменного тока

2.2. Виды мощности. Треугольник мощностей

В цепях переменного тока различают три понятия мощности: активная Р, реактивная Q, полная S.

Соотношения между мощностями могут быть получены из треугольника мощностей, который образуется путем умножения всех сторон треугольника напряжений на значение тока I.

Рис.2.3. Треугольник мощностей

Здесь:

QL — реактивная индуктивная мощность,

QC — реактивная емкостная мощность.

Активная мощность — характеризует необратимый процесс преобразования электромагнитной энергии источника в другие виды энергии: механическую, тепловую, световую и т.д.

Реактивная мощность (вольт-ампер реактивный) — характеризует обратимый процесс преобразования электромагнитной энергии источника в энергию магнитного поля катушки и энергию электрического поля конденсатора.

Полная мощность (вольт-ампер) — характеризует наибольшее значение активной мощности при заданных действующих значениях тока и напряжения.

Как видно из выражения активной мощности, если мощность, потребляемая приемником в данной цепи, является вполне определенной величиной, то при неизменном напряжении на зажимах цепи и с уменьшением ток нагрузки источника будет увеличиваться при одной и той же отдаваемой мощности.

.

(2.11.)

Поэтому даже при полной загрузке током источника, но при низком источник по мощности будет недогружен. Значениехарактеризует использование полной или установленной мощности источника и называется коэффициентом мощности.

Наибольшего значения активная мощность достигает при = 1, т.е. когда = 0, или, как следует из выражения (2.10), когда . Такой режим работы называется резонансом напряжений. Явление резонанса напряжений как положительный эффект используется в технике слабых токов (в радиотехнике). В технике сильных токов резонанс напряжений является аварийным режимом, т.к. в этом случае напряжения на реактивных элементах могут достигать значений, намного превышающих приложенное напряжение, что может привести к пробою изоляции конденсаторов и катушек индуктивности.

2.3. Параметры цепи и характер нагрузки

Работа электрической цепи может быть описана, по крайней мере, тремя основными параметрами: напряжением (U), током (I) и активной мощностью (P). Произведение напряжения и тока в цепи дает нам полную мощность цепи (S = UI), а реактивную мощность (Q) можно найти из треугольника мощностей, зная полную и активную мощности.

Если активная мощность равна полной (P = S), то реактивная мощность обращается в ноль (Q = 0), тогда характер нагрузки является активным, а схема замещения цепи содержит только активное сопротивление.

Если активная мощность в цепи равна нулю (P = 0), то полная мощность равна реактивной (Q = S), тогда характер нагрузки становится реактивным: или индуктивным (если в цепи содержится реактивное индуктивное сопротивление), или емкостным (если в цепи содержится реактивное емкостное сопротивление), а схема замещения содержит или индуктивность, или емкость.

Если активная мощность имеет значение отличное от нуля, но при этом меньше полной (0 < P < S), то мы имеем случай, когда характер нагрузки смешанный. Какой конкретно характер нагрузки будет, — зависит от разницы между реактивными сопротивлениями ХL — ХC. Если разница положительная (XL > XC ), то характер нагрузки активно-индуктивный, если отрицательная (XL < XC ) – активно-емкостной.

Таким образом характер нагрузки может быть определен, если известна структура цепи. Это легко сделать для простых электрических цепей. Для более сложных электрических цепей, содержащих большое количество электротехнических устройств, обычно используют фазометр, позволяющий определить угол сдвига фаз между напряжением и током и его характер: емкостной или индуктивный.

Мощность в цепях переменного тока

В цепях переменного тока различают три вида мощностей: активную Р, реактивную Q и полную S.

Активная мощность вычисляется по формуле:

(2.20)

Активную мощность потребляет резистивный элемент. Единица измерения активной мощности называется Ватт (Вт), производная единица – килоВатт (кВт), равная 103 Вт.

Реактивная мощность вычисляется по формуле:

(2.21)

Реактивная мощность потребляется идеальным индуктивным и

емкостным элементами. Единица измерения реактивной мощности называется Вольт-Ампер реактивный (Вар), производная единица – килоВАр (кВАр), равная 103 ВАр.

Полная мощность потребляется полным сопротивлением и обозначается буквой S:

S= (2.22)

Единица измерения полной мощности называется ВА (Вольт-Ампер), производная единица – килоВольт-Ампер (кВА), равная 103 ВА.

По сути, размерность у всех выше перечисленных единиц измерения одинакова – . Разные название этих единиц нужны, чтобы различать эти виды мощности.

Проявляются различные виды мощности по-разному. Активная мощность необратимо преобразуется в другие виды мощности (например, тепловую, механическую). Реактивная мощность обратимо циркулирует в электрических цепях: энергия электрического поля конденсатора преобразуется в энергию магнитного поля, и наоборот. «Извлечь» реактивную мощность с «пользой для дела» невозможно.

Из формул (2.19) – (2.21) следует, что между активной, реактивной и полной мощностью имеет место соотношение:

(2.23)

Соотношение между P, Q и S можно интерпретировать как соотношение сторон прямоугольного треугольника (вспомните треугольник сопротивлений, треугольник напряжений – все эти треугольники подобны).

Рис. 2.10

Из рис. 2.10 видно, что cosφ = (2.24)

Отсюда вытекает определение одной из основных характеристик цепей переменного тока – коэффициента мощности. Специального обозначения он не получил.

Коэффициент мощности показывает, какую долю полной мощности составляет активная мощность.

Желательно, чтобы коэффициент мощности цепи был как можно больше, т.е. приближался к 1. Реально предприятия электрических сетей устанавливают такое ограничение для промышленных предприятий : соs φ = (0,92-0,95). Достигать значений соs φ >0,95 рискованно, так как разность фаз φ при этом может скачком перейти от положительных значений к отрицательным, что вредно для электрооборудования. Если соsφ < 0,92, предприятия подвергаются штрафу.

Если коэффициент мощности оказывается мал, его необходимо повышать. График функции соs φ имеет вид монотонно убывающей функции в интервале от 00 до 900. Следовательно, увеличить соsφ – значит уменьшить разность фаз , то есть уменьшить (ХL-ХС).

Если влиять на (ХL-ХС), меняя С и L, то это приведет к увеличению тока в последовательной цепи и изменению режима работы оборудования, поэтому такой способ практически не применяется. В следующем разделе рассмотрен другой способ повышения коэффициента мощности.

Цепь переменного тока с параллельным соединением ветвей.

Рассмотрим электрическую цепь с двумя параллельными ветвями (рис. 2.11). Полученные выводы распространим на цепь с любым количеством ветвей. К цепи, содержащей две параллельные ветви, включающие активные, индуктивные и емкостные элементы (R1, L1, C1 и R2, L2, C2 cоответственно), подводится переменное напряжение U частоты f.

Прямая задача: Заданы все Обратная задача: Заданы свойства входящие в цепь элементы. цепи. Найти неизвестные элементы Найти все токи и разности цепи (эта задача решена в лаборафаз. торной работе Ц-5)

Решим прямую задачу, то есть найдем токи I1, I2 и общий ток I .

Рис. 2.11. Электрическая цепь с двумя параллельными ветвями

Из второго закона Кирхгофа следует, что напряжения на параллельных участках цепи одинаковы:

U1 = U2 = U (2.25)

На основании закона Ома найдем токи I1 и I2 :

; (2.26)

Найдем также разности фаз тока и напряжения для каждой ветви:

(2.27)

На основании первого закона Кирхгофа применительно к узлу А можно записать:

= + (2.28)

Таким образом, для определения тока I необходимо векторно сложить токи I1 и I2. В качестве опорного вектора удобно выбрать вектор напряжения .

Предположим, что при расчете разностей фаз тока и напряжения в ветвях цепи оказалось, что φ1>0, а φ2 под углом φ1 к вектору , и вектор под углом φ2 к вектору . Графически складываем эти векторы (см. рис.2.12). Величина тока определяется длиной полученного вектора с учетом выбранного масштаба. Разность фаз неразветвленного участка цепи определяется углом между векторами и

Определение потерь мощности и электроэнергии в линии и в трансформаторе

При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.

При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.

В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.

Потери мощности в линии.

Потери активной мощности (кВт) и потери реактивной мощности (кВАр) можно найти по следующим формулам:

Формулы для расчета потери мощности в линии

где Iрасч – расчетный ток данного участка линии, А;

Rл – активное сопротивление линии, Ом.

Потери мощности в трансформаторах.

Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:

Потери активной мощности в трансформаторе

где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают ?Рх;

?Рх— потери холостого хода трансформатора;

?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают ?Рк.

?Рк– потери короткого замыкания;

?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;

Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:

Потери реактивной мощности в трансформаторе

где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?Qх.

?Qх – намагничивающая мощность холостого хода трансформатора;

?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.

Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас определяют по данным каталогов из следующих выражений:

Формулы для расчета потери реактивной мощности

где Iх – ток холостого хода трансформатора, %;

Uк – напряжение короткого замыкания, %;

Iном – номинальный ток трансформатора, А;

Xтр – реактивное сопротивление трансформатора;

Sном – номинальная мощность трансформатора, кВА.

Потери электроэнергии.

На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.

Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.

Время максимальных потерь ? – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.

Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия переданная по линии за некоторый промежуток времени, Рмах(кВт) -максимальная нагрузка, тогда время использования максимальной нагрузки:

Тмах=W/Рмах

На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:

  • Для внутреннего освещения – 1500—2000 ч;
  • Наружного освещения – 2000—3000 ч;
  • Промышленного предприятия односменного – 2000—2500 ч;
  • Двухсменного – 3000—4500 ч;
  • Трехсменного – 3000—7000 ч;

Время потерь ? можно найти по графику, зная Тмах и коэффициент мощности.

Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки

Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.

Потери энергии в линии:

Потери энергии в линии

Потери энергии в трансформаторе:

Потери энергии в трансформаторе

где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;

?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *