Молния как образуется

Содержание

Виды

Молния ударяет в Эйфелеву башню, фотография 1902 г.

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 4 июля 2018 года.

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — молния облако-земля. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1—0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Молнии облако-земля

Молнии в г. ЕссентукиМолнии в Бостоне.

Процесс развития такой молнии состоит из нескольких стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения — частиц с энергиями 1012—1015 эВ, формирующих широкий атмосферный ливень с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях.

Запуск молнии происходит от высокоэнергетических частиц, вызывающих пробой на убегающих электронах («спусковым крючком» процесса при этом являются космические лучи). Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

Анимация молнии облако-земля

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 20000—30000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженной, поэтому принято считать, что разряд молнии происходит от облака по направлению к земле (сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растёт по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Полёт из Калькутты в Мумбаи.

Вероятность поражения молнией наземного объекта растёт по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

В верхней атмосфере

Молнии и электрические разряды в верхних слоях атмосферы

В верхней атмосфере наблюдаются особые виды молний: эльфы, джеты и спрайты.

«Эльфы»

Эльфы (англ. Elves; Emissions of Light and Very Low Frequency Perturbations from Electromagnetic Pulse Sources) представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облака. Высота эльфов может достигать 100 км, длительность вспышек — до 5 мс (в среднем 3 мс).

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), продолжительность джетов больше, чем у эльфов.

Спрайты

Основная статья: Спрайт (молния)

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний — не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало.

Взаимодействие с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год. 75 % этих молний ударяет между облаками или внутри облаков, а 25 % — в землю.

Самые мощные молнии вызывают рождение фульгуритов.

Зачастую молния, попадая в деревья и трансформаторные установки на железной дороге, вызывает их возгорание. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

Ударная волна

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны:

  • на расстоянии от центра 5 см (граница светящегося канала молнии) — 0,93 МПа, что сопоставимо с ударной волной, создаваемой тактическим ядерным оружием,
  • на расстоянии 0,5 м — 0,025 МПа, что сопоставимо с ударной волной, вызванной взрывом артиллерийской мины и вызывает разрушение непрочных строительных конструкций и травмы человека,
  • на расстоянии 5 м — 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну — гром.

Люди, животные и молния

Молнии — серьёзная угроза для жизни людей и животных. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по каналу наименьшего электрического сопротивления, что в общем случае соответствует кратчайшему пути «грозовое облако — земля».

Поражение обычной линейной молнией внутри здания невозможно. Однако бытует мнение, что так называемая шаровая молния может проникать внутрь здания через щели и открытые окна.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электрическим током. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1—2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом.

Пострадавший от удара молнией нуждается в госпитализации, так как подвержен риску расстройств электрической активности сердца. До приезда квалифицированного медика ему может быть оказана первая помощь. В случае остановки дыхания показано проведение реанимации, в более лёгких случаях помощь зависит от состояния и симптомов.

По одним данным, каждый год в мире от удара молнии погибают 24 000 человек и около 240 000 получают травмы. По другим оценкам, в год в мире от удара молнии погибает 6000 человек.

В США из тех, кто получил удар молнией, погибают 9—10 %,что приводит к 40—50 смертям в год в стране.

Вероятность, что житель США получит удар молнией в текущем году, оценивается как 1 из 960 000, вероятность того, что он когда-либо в жизни (при продолжительности жизни 80 лет) получит удар молнией, составляет 1 из 12 000.

Американец Рой Салливан, сотрудник национального парка, известен тем, что на протяжении 35 лет был семь раз поражён молнией и остался в живых.

Жертвы

  • Российский академик Г. В. Рихман — в 1753 году погиб, вероятно, от удара шаровой молнии во время проведения научного эксперимента.
  • Артемий Веркольский — 13-летний крестьянин, погибший от удара молнии и канонизированный Русской православной церковью.
  • Казанский губернатор Сергей Голицын — 1 (12) июля 1738 года погиб во время охоты от удара молнии.
  • Советник министра здравоохранения РФ Ланской Игорь Львович — 18 августа 2017 года погиб во время грозы возле Девичьей башни в Судаке (Крым) от удара молнии.

16 июля 2016 года в деревне Красатинка Монастырщинского района Смоленской области открыли памятник погибшим от удара молнии жителям. В 1960 году они заготавливали сено для колхоза «Восход». Молния ударила в стог сена, 13 человек погибло: самому младшему было 16, старшему — 69 лет. В тот день выжил только один человек  —  13-летний Володя Кузьмин.

Деревья и молния

Тополь, пораженный молнией во время летней грозы. Макеевка, Украина, фотография 2008 г. Расщеплённое дерево в Уэльсе, Великобритания.

Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний — громобоины. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах громобоины можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего — в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большее или меньшее сопротивление проведению электричества.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине опасно прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Молния и электрооборудование

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. В связи с этим аварии и пожары на сложном технологическом оборудовании могут возникать не мгновенно, а в период до восьми часов после попадания молнии. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования такими как разрядники, нелинейные ограничители перенапряжения, длинноискровые разрядники. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс, создаваемый молнией, который может повреждать оборудование на расстоянии до нескольких километров от места удара молнии. Достаточно уязвимыми к электромагнитному импульсу молнии являются локальные вычислительные сети.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая ёмкость самолёта, находящегося в воздухе, невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Известные авиационные катастрофы, вызванные молнией:

  • Катастрофа Ил-12 под Зугдиди (1953 год) — 18 погибших, в том числе Народная артистка Грузинской ССР и Заслуженная артистка РСФСР Нато Вачнадзе
  • Катастрофа L-1649 под Миланом (1959 год) — 69 погибших (официально — 68)
  • Катастрофа Boeing 707 в Элктоне (1963 год) — 81 погибший. Занесена в книгу рекордов Гиннесса, как наибольшее число погибших из-за удара молнии. После неё в правила по созданию новых самолётов внесли пункт об испытаниях на попадания молний.

Молния и корабли

Молния также представляет очень большую угрозу для надводных кораблей ввиду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии, а молниеотводы гарантируют защиту людей, находящихся на палубах. Поэтому для современных надводных кораблей молния не опасна.

Растущая огненная полусфера наземного взрыва Иви Майк мощностью 10,4 Мт и молнии вокруг неё

Деятельность человека, вызывающая молнию

При мощных наземных ядерных взрывах недалеко от эпицентра под действием электромагнитного импульса могут появиться молнии. Только в отличие от грозовых разрядов эти молнии начинаются от земли и уходят вверх.

Примечания

  1. Кошкин Н. И., Ширкевич М. Г. Справочник по элементарной физике. 5-е изд. М: Наука, 1972 г. С. 138
  2. Ученые назвали самую протяженную и самую продолжительную молнии
  3. B. Hariharan, A. Chandra, S. R. Dugad, S. K. Gupta, P. Jagadeesan, A. Jain, P. K. Mohanty, S. D. Morris, P. K. Nayak, P. S. Rakshe, K. Ramesh, B. S. Rao, L. V. Reddy, M. Zuberi, Y. Hayashi, S. Kawakami, S. Ahmad, H. Kojima, A. Oshima, S. Shibata, Y. Muraki, and K. Tanaka (GRAPES-3 Collaboration) Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment // Phys. Rev. Lett., 122, 105101 — Published 15 March 2019
  4. 1 2 3 4 Красные Эльфы и Синие Джеты
  5. Гуревич А. В., Зыбин К. П. «Пробой на убегающих электронах и электрические разряды во время грозы» // УФН, 171, 1177—1199, (2001)
  6. Иудин Д. И., Давыденко С. С., Готлиб В. М., Долгоносов М. С., Зелёный Л. М. «Физика молнии: новые подходы к моделированию и перспективы спутниковых наблюдений» // УФН, 188, 850—864, (2018)
  7. Ермаков В. И., Стожков Ю. И. Физика грозовых облаков // Физический институт им. П. Н. Лебедева, РАН, М., 2004 г. :37
  8. В возникновении молний обвинили космические лучи // Lenta.Ru, 09.02.2009
  9. Александр Костинский. «Молниеносная жизнь эльфов и гномов» Вокруг света, № 12, 2009.
  10. ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
  11. Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
  12. V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) «Electrical discharge from a thundercloud top to the lower ionosphere, » Nature, vol. 416, pages 152—154.
  13. Появление НЛО объяснили спрайтами. lenta.ru (24.02.2009). Дата обращения 16 января 2010. Архивировано 23 августа 2011 года.
  14. Kifuka – place where lightning strikes most often. Wondermondo. Дата обращения 21 ноября 2010.
  15. Annual Lightning Flash Rate. National Oceanic and Atmospheric Administration. Дата обращения 8 февраля 2009. Архивировано 30 марта 2008 года.
  16. Lightning Activity in Singapore. National Environmental Agency (2002). Дата обращения 24 сентября 2007. Архивировано 27 сентября 2007 года.
  17. Teresina: Vacations and Tourism. Paesi Online. Дата обращения 24 сентября 2007. Архивировано 5 сентября 2008 года.
  18. Staying Safe in Lightning Alley. NASA (January 3, 2007). Дата обращения 24 сентября 2007.
  19. Pierce, Kevin. Summer Lightning Ahead (недоступная ссылка). Florida Environment.com (2000). Дата обращения 24 сентября 2007. Архивировано 12 октября 2007 года.
  20. John E. Oliver. Encyclopedia of World Climatology. — National Oceanic and Atmospheric Administration, 2005. — ISBN 978-1-4020-3264-6.
  21. Annual Lightning Flash Rate (недоступная ссылка). National Oceanic and Atmospheric Administration. Дата обращения 15 апреля 2011. Архивировано 23 августа 2011 года.
  22. Where LightningStrikes. NASA Science. Science News. (December 5, 2001). Дата обращения 15 апреля 2011. Архивировано 23 августа 2011 года.
  23. К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
  24. Живлюк Ю. Н., Мандельштам С. Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483—487.
  25. Ronald L. Holle Annual rates of lightning fatalities by country (PDF). 0th International Lightning Detection Conference. 21-23 April 2008. Tucson, Arizona, USA. Retrieved on 2011-11-08.
  26. A new approach to estimate the annual number of global lightning fatalities. Дата обращения 20 июля 2014. Архивировано 27 июля 2014 года.
  27. Cherington, J. et al. 1999: Closing the Gap on the Actual Numbers of Lightning Casualties and Deaths. Preprints, 11th Conf. on Applied Climatology, 379-80..
  28. 2008 Lightning Fatalities (PDF). light08.pdf. NOAA (22 апреля 2009). Дата обращения 7 октября 2009.
  29. Lightning – Frequently Asked Questions. National Weather Service. Дата обращения 17 июня 2015.
  30. Знакомые советника главы Минздрава рассказали, что его убило молнией, РЕН ТВ (19 августа 2017). Дата обращения 9 октября 2017.
  31. Молния // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  32. Правила поведения во время грозы. VLBoat.ru. Дата обращения 17 марта 2010. Архивировано 23 августа 2011 года.
  33. Ирина Лукьянчик. Как вести себя во время грозы?. Ежедневный познавательный журнал «ШколаЖизни.ру». Дата обращения 17 марта 2010. Архивировано 23 августа 2011 года.
  34. Михайло Михайлович Нечай
  35. Р. Г. Рахимов. Башкирский кубыз. Маультроммель. Прошлое, настоящее, будущее. Фольклорное исследование
  36. Ядерный взрыв в космосе, на земле и под землёй. (Электромагнитный импульс ядерного взрыва). Сб. статей / Пер. с англ. Ю. Петренко под ред. С. Давыдова. — М.: Воениздат, 1974. — 235 с., С. 5, 7, 11
  37. Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005—538,с. ISBN 5-17-005305-3 Стр.35-36.

Что такое молния?

Молния – это электрический разряд. Но откуда же он берется? А все начинается с облаков. С поверхности земли испаряется влага, которая поднимается вверх в виде капелек. “Стая” таких капелек собирается на определенной высоте и становится видна с земли в виде облака (в одном облаке просто невероятное количество капель). К облакам постоянно присоединяются новые капли, а старые могут отрываться от них. Если их присоединяется больше, чем отрывается, то облако растет. Размер облака по вертикали может достигать нескольких километров (расстояние от земли до нижней части облака примерно 0.5 – 2 км). В облаках температура может быть ниже нуля градусов по Цельсию, поэтому капельки замерзают и становятся льдинками. Эти льдинки находятся в постоянном движении, поэтому очень часто сталкиваются друг с другом. В результате этих столкновений одни капли/льдинки заряжаются положительно (они более легкие, поэтому поднимаются вверх), а другие отрицательно (они более тяжелые, поэтому скапливаются в нижней части облака).

При этом процессе нижняя часть облака заряжается отрицательно, а верхняя – положительно. При этом такое облако уже имеет большие размеры и становится грозовым. Нужно понимать, что не каждое облако становиться грозовым, так как этот процесс занимает длительное время, и нужно, чтобы сложились благоприятные условия (чтобы облако не распалось раньше, чем оно накопит достаточный заряд и наберет достаточную массу).

Теперь вернемся к молнии. Если два таких грозовых облака подходят на достаточно близкое расстояние (да еще одно подходит отрицательной стороной, а другое – положительной), заряженные частицы (электроны и ионы) начинают проскакивать через воздушную прослойку между двумя облаками (ведь плюс и минус, как мы знаем, должны притягиваться). Даже воздушная прослойка не может их остановить, настолько большие заряды у облаков!

Обычно первые частицы являются “полководцами”, так как они прокладывают канал между облаками, по которому сразу же устремляются миллиарды других заряженных частиц.

В этот момент мы и видим молнию!

Часто случается такое, что молния бьет прямо в землю. В этом случае сама земля выступает в качестве скопления положительного заряда, а остальное происходит как описано выше.

Почему мы слышим гром?

Гром – это звуковое сопровождение молнии, без которого невозможно достигнуть необходимого порога страха. Именно грома человек боится больше, чем светящейся полоски на небе.

При прохождении электрического разряда (молнии) происходит резкое повышение температуры окружающего воздуха до нескольких тысяч или даже миллионов градусов. Этот температурный скачок приводит к локальному расширению нагретого воздуха (взрыв), которое вызывает ударную волну (раскат грома). Если молния имеет много изломов, то мы слышим несколько раскатов грома при каждой резкой смене направления возникает новый “взрыв“.

Так как скорость звука в воздухе меньше скорости света, мы слышим гром немного позже самой вспышки. По времени задержки грома можно примерно посчитать расстояние до того места, где появилась молния. Для этого нужно посчитать: через сколько секунд слышится гром после вспышки. Каждая секунда равна расстоянию в 1 километр. То есть, если после вспышки прошло 10 секунд до того как прогремел гром, то молния сверкнула на расстоянии 10 км.

Какие бывают молнии?

Виды молний бывают разные. И знать об этом нужно. Это не только «ленточка» на небе. Все эти «ленточки» отличаются друг от друга.

Молния – это всегда удар, это всегда разряд между чем-то. Их насчитывают более десяти! Назовем пока только самые основные, прилагая к ним картинки молнии:

  • Между грозовой тучей и землей. Это те самые «ленточки», к которым мы привыкли.

Между высоким деревом и тучей. Та же самая «ленточка», но удар направлен в другую сторону.

Ленточная молния – когда не одна «ленточка», а несколько параллельно.

  • Между облаком и облаком, или просто «разыграется» в одном облаке. Такой вид молнии часто можно увидеть во время грозы. Просто нужно быть внимательным.

  • Бывают и горизонтальные молнии, которые земли вообще не касаются. Они наделены колоссальной силой и считаются самыми опасными

  • А о шаровых молниях слышали все! Мало только, кто их видел. Еще меньше тех, кто желал бы их увидеть. А есть и такие люди, которые в их существование не верят. Но шаровые молнии существуют! Сфотографировать такую молнию сложно. Взрывается она быстро, хотя может и «погулять», а вот человеку рядом с ней лучше не двигаться – опасно. Так что – не до фотоаппарата тут.

  • Вид молнии с очень красивым названием – «Огни Святого Эльма». Но это не совсем молния. Это сияние, которое появляется в конце грозы на остроконечных зданиях, фонарях, корабельных мачтах. Тоже искра, только не затухающая и не опасная. Огни Святого Эльма – это очень красиво.

  • Вулканические молнии возникают при извержении вулкана. Сам вулкан уже имеет заряд. Это, вероятно, и является причиной возникновения молнии.
  • Спрайтовые молнии – это такие, которые с Земли не увидишь. Они возникают над облаками и их изучением пока мало кто занимается. Молнии эти похожи на медуз.
  • Пунктирная молния почти не изучена. Наблюдать ее можно крайне редко. Визуально она действительно похожа на пунктир – будто молния-ленточка тает.

Вот такие вот бывают молнии разные. Только закон для них один – электрический разряд.

Взаимодействие молнии с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год. 75 % этих молний ударяет между облаками или внутри облаков, а 25 % — в землю.

Самые мощные молнии вызывают рождение фульгуритов.

Ударная волна от молнии

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию. Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны:

  • на расстоянии от центра 5 см (граница светящегося канала молнии) — 0,93 МПа,
  • на расстоянии 0,5 м — 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека),
  • на расстоянии 5 м — 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну — гром.

Люди и молния

Молнии — серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 — 2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжёлых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 — 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

  1. В мифологии и литературе:
    1. Асклепий, Эскулап — сын Аполлона — бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией.
    2. Фаэтон — сын бога Солнца Гелиоса — однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями. Общий список см. Молния Зевса.
  2. Исторические личности:
    1. Казанский губернатор Сергей Голицын — 1 (12) июля 1738 года погиб во время охоты от удара молнии.
    2. Российский академик Г. В. Рихман — в 1753 году погиб от удара молнии во время проведения научного эксперимента.
    3. Народный депутат Украины, экс-губернатор Ровненской области В. Червоний 4 июля 2009 года погиб от удара молнии.

Интересные факты

  • Рой Салливан остался живым после семи ударов молнией.
  • Американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище.
  • У индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации.

Тополь, пораженный молнией во время летней грозы. Макеевка,Украина, фотография 2008 г. Ствол пораженного молнией тополя

Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний — громобоины. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах громобоины можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего — в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Молния и электроустановки

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования таким как разрядниками, нелинейными ограничителями перенапряжения, длинноискровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс, создаваемый молнией.

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса, летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Молния и надводные корабли

Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.

При наземном ядерном взрыве за доли секунды до прихода границы огненной полусферы в нескольких сотнях метров (~400—700 м при сравнении со взрывом 10,4 Мт) от центра дошедшее гамма-излучение продуцирует электромагнитный импульс с напряжённостью на уровне ~100—1000 кВ/м, вызвающий разряды молний, бьющих от земли вверх перед приходом границы огненной полусферы.

  • Огненная полусфера наземного взрыва Иви Майк 10,4 Мт и молнии


См. также

молния в Викисловаре

Category:Lightning на Викискладе

  • Атмосферное электричество
  • Шаровая молния
  • Молнии Кататумбо
  • Молниезащита
  • Спрайт (молния)
  • Грозовая энергетика
  • Молния Зевса
  1. Ермаков В.И., Стожков Ю.И. Физика грозовых облаков // Физический институт им. П.Н. Лебедева, РАН, М.2004 г. :37
  2. В возникновении молний обвинили космические лучи Lenta.Ru, 09.02.2009
  3. 1 2 3 4 Красные Эльфы и Синие Джеты
  4. ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
  5. Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
  6. V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) «Electrical discharge from a thundercloud top to the lower ionosphere, » Nature, vol. 416, pages 152—154.
  7. Появление НЛО объяснили спрайтами. lenta.ru (24.02.2009). Архивировано из первоисточника 23 августа 2011. Проверено 16 января 2010.
  8. John E. Oliver Encyclopedia of World Climatology. — National Oceanic and Atmospheric Administration, 2005. — ISBN 978-1-4020-3264-6
  9. Annual Lightning Flash Rate. National Oceanic and Atmospheric Administration. Архивировано из первоисточника 23 августа 2011. Проверено 15 апреля 2011.
  10. Where LightningStrikes. NASA Science. Science News. (December 5, 2001). Архивировано из первоисточника 23 августа 2011. Проверено 15 апреля 2011.
  11. К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
  12. Живлюк Ю.Н., Мандельштам С.Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483—487.
  13. Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005—538,с. ISBN 5-17-005305-3 Стр.35-36.
  14. Editors: Mariko Namba Walter,Eva Jane Neumann Fridman Shamanism: an encyclopedia of world beliefs, practices, and culture. — ABC-CLIO, 2004. — Т. 2. — С. 442. — ISBN 1-57607-645-8
  15. Молния // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  16. Правила поведения во время грозы (рус.). VLBoat.ru. Архивировано из первоисточника 23 августа 2011. Проверено 17 марта 2010.
  17. Ирина Лукьянчик Как вести себя во время грозы? (рус.). Ежедневный познавательный журнал «ШколаЖизни.ру». Архивировано из первоисточника 23 августа 2011. Проверено 17 марта 2010.
  18. Михайло Михайлович Нечай
  19. Р. Г. Рахимов. Башкирский кубыз. Маультроммель. Прошлое, настоящее, будущее. Фольклорное исследование
  • Фотографии природы — Фотографии молний и пейзажи
  • Видео грозы — видео грозы в Киеве
  • Молния: больше вопросов, чем ответов — статья о современной точке зрения на молнии в журнале «Наука и жизнь».
  • Молнии на видео: уникальные кадры замедленной съемки
  • О молниях, и в частности о разряде из тропосферы в стратосферу
  • Красные Эльфы и Синие Джеты

  1. Стекольников И. К., Физика молнии и грозозащита, М. — Л., 1943;
  2. Разевиг Д. В., Атмосферные перенапряжения на линиях электропередачи, М. — Л., 1959;
  3. Юман М. А., Молния, пер. с англ., М., 1972;
  4. Имянитов И. М., Чубарина Е. В., Шварц Я. М., Электричество облаков, Л., 1971;
  5. Подборка статей по теме на сервере «Наука и Техника» (http://n-t.ru/) — см. здесь:

Русский

Морфологические и синтаксические свойства

падеж ед. ч. мн. ч.
Им. мо́лния мо́лнии
Р. мо́лнии мо́лний
Д. мо́лнии мо́лниям
В. мо́лнию мо́лнии
Тв. мо́лнией
мо́лниею
мо́лниями
Пр. мо́лнии мо́лниях

мо́л-ни·я

Существительное, неодушевлённое, женский род, 1-е склонение (тип склонения 7a по классификации А. А. Зализняка).

Корень: -молниj-; окончание: -я .

Произношение

  • МФА: ед. ч. (файл)

    мн. ч.

Семантические свойства

МолнияМолния

Значение

  1. атмосферное явление, вспышка света от электрического разряда во время грозы ◆ Кривая молния разрезала тучу и словно провалилась в океан. В. Г. Губарев, «Трое на острове», 1950–1960 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ Но только что мы трогаемся, ослепительная молния, мгновенно наполняя огненным светом всю лощину, заставляет лошадей остановиться и, без малейшего промежутка, сопровождается таким оглушительным треском грома, что, кажется, весь свод небес рушится над нами. Л. Н. Толстой, «Отрочество», 1854 г. (цитата из Национального корпуса русского языка, см. Список литературы)
  2. застёжка в виде двух полос ткани с рядами попарно сцепляемых зубцов, предназначенная для быстрого соединения или разъединения двух частей материала ◆ Только молния на комбинезоне опять спустилась. С. Е. Каледин, «Записки гробокопателя» (цитата из Национального корпуса русского языка, см. Список литературы)
  3. то же, что срочная телеграмма ◆ Сегодня на линейный пришла молния на этот счёт.
  4. спец. срочное сообщение, срочный выпуск газеты ◆ Каждую операцию планируется освещать пресс-центром в листовках-молниях и информационных бюллетенях.

Синонимы

  1. срочная телеграмма
  2. газета-молния

Антонимы

  1. обычная телеграмма
  2. обычный выпуск

Гиперонимы

  1. атмосферное явление
  2. застёжка, механизм
  3. телеграмма
  4. газета

Гипонимы

Холонимы

  1. одежда

Меронимы

  1. гром
  2. зубец, замок, замочек

Родственные слова

Ближайшее родство

  • прилагательные: молниевый; молнийный, молненный; молниеносный
  • глаголы: молнировать

Этимология

Происходит от праслав. *mъlni, от кот. в числе прочего произошли: др.-русск. мълнии, мълниıа, ст.-слав. млънии (др.-греч. ἀστραπή), укр. молоння́, белор. мо́лоння, болг. мъ́лния, сербохорв. му́ња, словенск. móɫnja, полабск. mä́uńa. Праслав. *mъlni — образование аналогично слав. *sǫdi; см. судья́; родственно др.-прусск. mealde «молния», др.-исл. Мjollnir «молот Тора, молния», myln «огонь», кимр. mellt «молния». Связь с др.-инд. mr̥ṇā́ti «дробит» оспаривается. Следует также отделять это слово от лат. malleus «молот». Использованы данные словаря М. Фасмера. См. Список литературы.

Фразеологизмы и устойчивые сочетания

  • линейная молния
  • с быстротой молнии
  • сухая молния
  • чёточная молния
  • шаровая молния

Перевод

атмосферное явление

  • Абхазскийab: афы
  • Албанскийsq: rrufe, vetëtimë
  • Английскийen: lightning, thunderbolt
  • Арабскийar: برق
  • Армянскийhy: կայծակ (kaycak)
  • Белорусскийbe: маланка ж., бліскавіца ж.
  • Болгарскийbg: светкавица ж.; мълния ж.
  • Греческийel: κεραυνός м.; αστραπή ж.
  • Грузинскийka: ელვა, მეხი
  • Датскийda: lyn
  • Ивритhe: ברק ,בזק
  • Испанскийes: relámpago м.; rayo м.
  • Итальянскийit: lampo, fulmine м.
  • Казахскийkk: нажағай
  • Каталанскийca: llamp м.
  • Корейскийko: 번개
  • Латинскийla: fulgur ср.; fulmen ср.
  • Латышскийlv: zibens
  • Литовскийlt: žaibas
  • Люксембургскийlb: Blëtz
  • Македонскийmk: молскавица ж.
  • Немецкийde: Blitz
  • Нидерландскийnl: bliksem, bliksemstraal
  • Норвежскийno: lyn
  • Палиpi: vijju
  • Польскийpl: błyskawica ж., piorun м.
  • Португальскийpt: relâmpago м.
  • Румынскийro: fulger
  • Санскритsa: वज्र
  • Словацкийsk: blesk м.
  • Таджикскийtg: барқ
  • Турецкийtr: yıldırım; şimşek
  • Узбекскийuz: chaqmoq
  • Украинскийuk: блискавка ж.
  • Финскийfi: salama
  • Французскийfr: éclair м.; (с громом) foudre ж.
  • Хорватскийhr: munja ж.
  • Чешскийcs: blesk м.
  • Чувашскийcv: ҫиҫӗм
  • Шведскийsv: blixt
  • Эсперантоиeo: fulmo
  • Японскийja: 稲光 (いなびかり)

застёжка

  • Албанскийsq: zinxhir
  • Английскийen: zipper; zip
  • Болгарскийbg: цип м.
  • Греческийel: φερμουάρ ср.
  • Испанскийes: cremallera ж.
  • Казахскийkk: сыдырма ілгек
  • Корейскийko: 지퍼
  • Немецкийde: Reißverschluß м. -sses, -schlüsse
  • Нидерландскийnl: ritssluiting
  • Польскийpl: zamek błyskawiczny; suwak м.
  • Португальскийpt: fecho ecler, ziper м.
  • Словацкийsk: zips м.
  • Турецкийtr: fermuar
  • Украинскийuk: змійка ж.
  • Финскийfi: vetoketju; vetolukko
  • Французскийfr: fermeture éclair ж., fermeture Éclair ж.
  • Чешскийcs: zip м.; zdrhovadlo ср.
  • Шведскийsv: dragkedja, blixtlås
  • Эсперантоиeo: zipo, fulmofermilo

телеграмма

  • Английскийen: express-telegram
  • Казахскийkk: шұғыл жеделхат
  • Немецкийde: Eiltelegramm ср. -s, -e
  • Португальскийpt: telegrama expresso
  • Турецкийtr: yıldırım telgrafı
  • Украинскийuk: телеграма-молнія
  • Французскийfr: télégramme urgent м.

срочное сообщение, срочный выпуск газеты

  • Английскийen: flash (сообщение), breaking news; express issue (выпуск газеты)
  • Казахскийkk: тығыз хабар
  • Французскийfr: flash м., message urgent м.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *