Мембрана гидроаккумулятора 50 л

КофеКит

Правильное подключение кофемашины к электросети залог успешной работы обслуживающего персонала.

Внимание: все работы связанные с электрическими работами должен проводить человек прошедший обучение и имеющий соответствующие навыки в данной области.

Такого человека в народе зовут электриком. Для электрика важны такие качества, как ответственность, осторожность, аккуратность и уверенность, так как работа электрика подразумевает работу с высоким напряжением или электрическими приборами. Так же понадобятся кропотливость, тщательность и организованность.

Подключение кофемашины проводится строго по инструкции прилагаемой к кофемашине. Поскольку мы досконально знаем внутренее устройство и электрические цепи кофемашины мы можем дать некоторые рекомендации по подключению.

Первая рекомендация. Пожалуй самая главная. Кофемашина равно как и все электрические приборы, должна быть заземлена. В электрокабеле выходящем из кофемашины это провод желтого или желто-зеленого цвета. Подключение кофемашины может быть однофазным или трехфазным, мы не будем вдаваться в объяснения про фазы, постараемся объяснить на примерах. Поскольку главной нагрузкой в кофемашине является тэн то мы намеренно опустили цепи управления и именно на таком примере рассмотрим подключение кофемашины.

Если из аппарата выходит кабель с проводами черного, синего, желто-зеленого цвета — это кабель для однофазного подключения, подключать его стоит так. Такую схему еще называют двухпроводная + земля.

Кофемашины двухгрупные и трехгрупные имеют большую мощность потребления, поэтому подключать их нужно к трех фазной сети. Кабель такой кофемашины имеет провода черного, синего, коричневого и желто-зеленого цвета это кабель для трехфазного подключения такую схему можно назвать четырехпроводная + земля. подключать его стоит так.

Если возникает необходимость подключения трехфазной кофемашины в однофазную цепь, то следует провода черного и коричневого цвета соединить вместе. Хочу предостеречь вас, это можно делать только в крайних и безвыходных случаях. И обязательным условием такого подключения, должен быть расчет мощности электрического автомата и провода подводящего к нему электричество.

А теперь расскажу о том куда нужно подключаться. Подключение должно быть непосредственно на защитный автомат. Электрический автомат, это средство защиты от перегрузок сети и короткого замыкания. При возникновении подобных ситуаций, срабатывает автоматическая защита и сеть питания оборудования обесточивается. Идеальный вариант защиты от коротких замыканий и прочих неприятностей, – установка УЗО совместно с установкой электрического автомата. Как выбрать автомат. Итак, посмотрите мощность кофемашины к примеру это 3000 Вт (может быть написано 3кВт), напряжение в сети-220В это знают все. Делим мощьность3000 ват на напряжение-220 В, получаем 13,6 эта цифра означает величину тока в амперах. Теперь смотрим на автомат ближайший номинал -16 А. Заметьте что мы выбрали номинал больше а не меньше. Теперь ваша электропроводка защищена от короткого замыкания.

Вот здесь есть очень интересная статья, о том какой опасности вы себя подвергаете не выполняя правила подключения электроприборов.

>Установка и настройка кофемашины

Описание Установка и настройка кофемашины

Подключение кофемашин должно выполняться в соответствии с рекомендациями производителя. Такой технике нужна отдельная розетка с заземлением, если требуется – подключение к системе водопровода. Наши специалисты знают все тонкости установки и настройки вашей кофемашины.
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ ОБ УСЛУГЕ
Для выполнения подключения Заказчик должен предоставить прибор в распакованном виде и находящимся в месте предполагаемой эксплуатации (не встроенным в мебель в случае встроенного прибора).
Стоимость услуги рассчитана исходя из подключения к коммуникациям, подготовленным в соответствии с ниже приведенными требованиями, с помощью соединительных элементов, входящих в комплект поставки прибора:
1. Помещение соответствует условиям эксплуатации прибора;
2. Точки подключения прибора к электросети должны быть
защищены устройством дифференциального тока. Сечение электропроводки должно соответствовать техническим параметрам подключаемого прибора.
3. Прибор распакован и находится в непосредственной близости от места установки;
4. Обеспечен свободный доступ к месту установки и коммуникациям;
5. Расстояние до точек подключения не превышает длины соединительных элементов, входящих в комплект прибора;
6. Разъемные соединения точек подключения соответствуют типу и размеру материалов, входящих в комплект прибора.
В стоимость установки входят материалы для герметизации соединений и изоляционный материал. Работы и материалы необходимые для доработки или модернизации коммуникаций являются дополнительными.
В услугу установки не входит демонтаж и вывоз старой техники, мусора.

Основные характеристики

Общее
Тип установка и настройка
Вид техники кофемашина
Вид работ
Выезд технического специалиста в черте города 1 шт
Консультация мастера 1 шт
Настройка и регулировка рабочих параметров 1 шт
Подключение к электрической сети 1 шт
Проверка работы на различных режимах 1 шт
Проверка точек подключения 1 шт
Установка товара в подготовленное место 1 шт

Все характеристики

Нашли ошибку в описании?

Выделите текст с ошибкой и нажмите Ctrl+Enter или напишите нам.

мембранные процессы разделения

МЕМБРАННЫЕ ПРОЦЕССЫ РАЗДЕЛЕНИЯ

основаны на преим. проницаемости одного или неск. компонентов жидкой либо газовой смеси, а также коллоидной системы через разделительную перегородку-мембрану. Фаза, прошедшая через нее, наз. пермеатом (иногда — фильтратом), задержанная — концентратом. Движущая сила М.п. р. — разность хим. или электрохим. потенциалов по обе стороны перегородки. Мембранные процессы м. б. обусловлены градиентами давления (баромембранные процессы), электрич. потенциала (электромембранные процессы), концентрации (диффузионно-мембранные процессы) или комбинацией неск. факторов.

Разделение с помощью мембран — результат конкурирующих взаимод. компонентов смеси с поверхностью перегородки. Эффективность разделения оценивают след. показателями: селективностью j = 1 — c2/c1, где с1 и с2 — концентрации компонентов исходной смеси и пермеата; коэф. разделения Kp= (сА,1/сА,2)/(сВ,1/сВ,2), где сА,1, сВ,1 и сA,2, сВ,2-концентрации компонентов А и В в начальной смеси и пер-меате; проницаемостью (уд. производительностью) мембран G = V/Ft, где К-количество смеси, прошедшей за время t через мембрану, и определяемое по уравнению V2 + 2VC = Kt, в котором С и К-эмпирич. константы, F- площадь поверхности перегородки.

Вследствие различной скорости прохождения компонентов смеси через мембрану происходит т. наз. концентрационная «поляризация», при которой в пограничном слое около поверхности перегородки накапливается вещество, имеющее наименьшую скорость проницания. В результате при разделении жидких смесей снижаются движущая сила процесса и соотв. селективность, производительность и срок службы мембран. Кроме того, возможно осаждение на мембране труднорастворимых солей, а также гелеобразование высокомол. соединений, что приводит к необходимости очистки мембран (см. ниже). Для уменьшения влияния концентрационной поляризации и улучшения работы мембран разделяемую систему перемешивают, что способствует выравниванию концентраций компонентов у поверхности перегородки и в ядре потока. Перемешивание осуществляют путем увеличения скорости потока (до 3–5 м/с); турбулизацией раствора путем применения спец. вставок в виде сеток, перфорированных или гофрированных листов, спиралей, шариков; использованием ультразвука и т. д. При разделении газовых смесей благодаря высоким коэф. диффузии компонентов через мембраны концентрационная поляризация мала и ее можно не учитывать.

Др. фактор, оказывающий влияние на М.п.р.,-продольное (обратное) перемешивание системы. По мере распределения компонентов между исходным потоком и перме-атом возникает соответствующий концентрационный профиль, который приводит к продольному выравниванию концентраций из-за молекулярной диффузии. При использовании турбулизирующих вставок наиб. воздействие на продольный перенос оказывает конвективная диффузия.

М. п. р. могут быть осложнены также рядом др. факторов, напр. недостаточной стойкостью мембран к агрессивным средам и действию микроорганизмов. Хим. стойкость мембран, напр., к гидролизу обеспечивается тщательным подбором материала, характеристик рабочей среды и условий проведения процесса. Для предотвращения биол. обрастания, а иногда и разрушения мембран некоторыми видами микроорганизмов исходную смесь хлорируют, напр. Cl2 или гипохлоритами, обрабатывают раствором CuSO4 либо формальдегидом, а также подвергают озонированию и УФ облучению.

Основные типы мембран и их очистка. Различают мембраны монолитные (сплошные), пористые, асимметричные (двухслойные), составные (композиционные) и др., а также мембраны жидкие и мембраны ионообменные (о получении мембран и их свойствах см. мембраны разделительные).

В процессе эксплуатации поверхность мембран загрязняется, что приводит к резкому ухудшению показателей М.п. р. Один из способов, снижающих загрязнение мембран,-предварит. очистка системы (см., напр., водоподготовка, жесткость воды). Методы очистки мембран условно подразделяют на механические, гидромеханические, физические и химические. Мех. очистка — обработка поверхности перегородок эластичной губкой (нередко с применением моющих средств), не обладающей абразивными свойствами, полиуретановыми шарами и т. п. Гидродинамич. очистка — воздействие на загрязненную поверхность мембран пульсаций разделяемой смеси или промывной жидкости (обычно воды), турбулизация потока; промывка газожидкостной эмульсией (как правило, смесью воды и воздуха); обратная продувка мембран (особенно микррфильтров) сжатым воздухом; обратный ток смеси, резкое снижение давления в системе (загрязнения отслаиваются от перегородки и вымываются сильным потоком воды). Физ. очистка — воздействие на перегородки электрич., магн. и ультразвуковых полей. Хим. очистка-промывка рабочей поверхности мембран разб. растворами кислот или щелочей, раствором I2 и т. д.

Баромембранные процессы (обратный осмос, ультрафильтрация, микрофильтрация) обусловлены градиентом давления по толщине мембран, в осн. полимерных, и используются для разделения растворов и коллоидных систем при 5–30 °C. Первые два процесса принципиально отличаются от обычного фильтрования. Если при нем продукт откладывается в виде кристаллич. или аморфного осадка на поверхности фильтра, то при обратном осмосе и ультрафильтрации образуются два раствора, один из которых обогащен растворенным веществом. В этих процессах накопление данного вещества у поверхности мембраны недопустимо, т. к. приводит к снижению селективности и проницаемости мембраны (о различии между микрофильтрацией и фильтрованием см. ниже).

Обратный осмос (гиперфильтрация)-разделение растворов низкомол. соединений благодаря различной подвижности компонентов в порах мембран. В случае самопроизвольного перехода растворителя через мембрану в раствор (рис. 1,a) давление, при котором наступает равновесие (рис. 1, б), наз. осмотическим (см. осмос). Если со стороны раствора приложить давление, превышающее осмотическое (рис. 1,в), растворитель будет переноситься в обратном направлении (отсюда назв. процесса). Поскольку мембраны обычно не обладают идеальной проницаемостью, наблюдается некоторое проникание через них растворенного вещества. Поэтому движущая сила обратного осмоса (а также ультра- и микрофильтрации) Dр = р — (p1 — p2) = р — Dp, где р — давление над исходным раствором, p1 и p2-осмотич. давления раствора и пермеата. Рабочее давление процесса 1–10 МПа. Размеры молекул или ионов растворенного вещества, а также растворителя и размеры мембранных пор имеют одинаковый порядок .

Селективность и проницаемость мембран для обратного осмоса определяются рабочими температурой и давлением и, кроме того, pH, концентрацией и природой исходной смеси. С повышением температуры вследствие снижения вязкости раствора величина G возрастает, а j изменяется в зависимости от природы растворенных компонентов: соотв. увеличивается и уменьшается при разделении водных растворов неполярных и полярных соединений. Помимо этого, при высокой температуре происходит постепенное уплотнение (усадка) мембран, что снижает их ресурс. С повышением давления проницаемость перегородок проходит через максимум, а селективность, как правило, возрастает. Под действием рабочего давления мембраны также уплотняются, что способствует уменьшению G, но практически не вызывает изменения j. Скорость уплотнения несколько снижается, если процесс осуществляют при небольших температуре и давлении или при использовании композитных мембран. Наилучшие условия работы полимерных перегородок достигаются в случае разделения смесей в нейтральной среде при комнатной температуре.

Концентрация растворенных веществ в растворе-важный фактор, определяющий не только характеристики мембран, но и возможность применения всех баромембранных процессов, в т. ч. обратного осмоса. Последний эффективно используют обычно при концентрациях электролитов в растворах от 5 до 20% по массе. Для растворов орг. соединений интервал концентраций шире и определяется размерами молекул вещества, их строением и степенью взаимод. с материалом мембраны. От концентрации растворенных веществ зависит также способность мн. из них, напр. ZnCl2 и перхлоратов, к сольватации (в случае водных растворов — к гидратации), которая нарушает структуру мембран вследствие их обезвоживания и приводит к снижению осн. характеристик.

На селективность и в значит. степени на проницаемость мембран оказывает влияние природа исходной смеси. Принципы разделения обратным осмосом растворов веществ различной природы состоят в следующем: неорг. соединения (электролиты) задерживаются мембранами, как правило, лучше, чем орг. вещества той же мол. массы; среди родственных соед. (напр., гомологов) лучше задерживаются вещества с большей мол. массой; соед., которые могут образовывать связь (напр., водородную) с мембраной, задерживаются ею тем лучше, чем менее прочна эта связь. При разделении растворов некоторых орг. соединений, напр. фенола и его производных, селективность мембран отрицательна, т. е. пермеат обогащается растворенным веществом.

Рис. 1. Условия возникновения обратного осмоса: р-давление над исходным раствором; p-осмотич. давление.

У л ь т р а ф и л ь т р а ц и я-разделение растворов низкомол. соединений, а также фракционирование и концентрирование последних под действием разности давлений до и после мембраны. Вследствие малых осмотич. давлений высоко-мол. соединений и низкого гидравлического сопротивления мембран ультрафильтрацию проводят при сравнительно невысоких избыточных давлениях (0,1–1 МПа). В отличие от обратного осмоса ультрафильтрацию используют для разделения систем, в которых молекулярная масса растворенных компонентов намного больше мол. массы растворителя. Условно принимают, что для водных растворов молекулярная масса концентрата должна быть более 500. Процесс осуществляют с помощью, как правило, полимерных мембран, имеющих размер пор (0,01–0,1 мкм); закономерности ультрафильтрации и обратного осмоса в осн. совпадают, расходы энергии соизмеримы.

М и к р о ф и л ь т р а ц и я (мембранная фильтрация)-разделение коллоидных систем и осветление растворов отделением от них взвешенных микрочастиц. Процесс занимает промежуточное положение (без резко выраженных границ) между ультрафильтрацией и фильтрованием, проводится под давлением 0,01–0,1 МПа и отличается от др. баромембранных процессов, осуществляемых без фазовых превращений, возможностью образования на поверхности мембраны твердой фазы (осадка солей). Размеры микрочастиц и пор проницаемых перегородок идентичны (0,1–10 мкм). Наряду с полимерными мембранами для микрофильтрации перспективны также ядерные фильтры.

Баромембранные процессы используются во мн. отраслях народного хозяйства и в лаб. практике: для опреснения соленых и очистки сточных вод, напр. разделения азеотропных и термолабильных смесей, концентрирования растворов и т. п. (обратный осмос); для очистки сточных вод от высокомол. соединений, концентрирования тонких суспензий, напр. латексов, выделения и очистки биологически активных веществ, вакцин, вирусов, очистки крови, концентрирования молока, фруктовых и овощных соков и др. (ультрафильтра-ция); для очистки технол. растворов и воды от тонкодисперсных веществ, разделения эмульсий, предварительной подготовки жидкостей, напр. морской и солоноватых вод перед опреснением, и т. д. (микрофильтрация).

Электромембранные процессы обусловлены градиентом электрич. потенциала по толщине мембран. Наиб. применение нашел э л е к т р о д и а л и з-разделение растворов под действием электродвижущей силы, которая создается по обе стороны полимерных и неорг. перегородок , проницаемых для любых ионов (отделение электролитов от неэлектролитов), или ионообменных мембран, проницаемых лишь для катионов либо только для анионов (обессоливание водных растворов или фракционирование солей). Аппараты с ионообменными перегородками (электродиализаторы), напр. для обессоливания растворов NaCl (рис. 2), состоят из ряда камер (ячеек), по которым перемещаются растворы электролитов. В крайних камерах расположены электроды. Поскольку катионообменные мембраны пропускают лишь катионы, а анионообменные — только анионы, камеры поочередно обогащаются и обедняются электролитом. В результате исходный раствор разделяется на два потока — обессоленный и концентрированный. Разделение ионов с одинаковым знаком заряда происходит вследствие различия между скоростями их переноса через перегородку.

Рис. 2. Многокамерный электродиализатор для обессоливания растворов NaCl: А, К — соотв. анионо- и катионооб-менные мембраны.

Основные характеристики аппаратов, состоящих из n ячеек: уд. производительность G = mIFn/95,24∙103 моль/с, где I — плотность тока (в А/см2), F-площадь поверхности мембраны (в см2), т-число хим. эквивалентов исходного вещества на 1 моль; общий перепад электрич. потенциалов DE= = ED + I(RM + Rp)n (в кВ), причем ED-сумма потенциалов разложения и перенапряжения на электродах, RM и Rp-соотв. электрич. сопротивления мембраны и раствора; потребляемая мощность N= 10−3IFED +1I(RM + Rp)n (в кВт); уд. потребляемая мощность Nyд = 0,02651 (Rм +Rр) (в кВт/моль). Электродиализ широко используют для обессоливания морской и солоноватой вод, сахарных растворов, молочной сыворотки и др., а также для извлечения минерального сырья из соленых вод.

Диффузионно-мембранные процессы (мембранное газоразделение, испарение через мембрану, диализ) обусловлены градиентом концентрации по толщине пористых либо непористых мембран на основе полимеров или с жёсткой структурой. Используются для разделения газовых и жидких смесей.

М е м б р а н н о е г а з о р а з д е л е н и е-разделение на компоненты газовых смесей или их обогащение одним из компонентов. При использовании пористых перегородок с преим. размером пор (5–30)∙10−3 мкм разделение газов происходит вследствие т. наз. кнудсеновской диффузии. Для ее осуществления необходимо, чтобы длина своб. пробега молекул была больше диаметра пор мембраны, т. е. частота столкновений молекул газа со стенками пор превышала частоту взаимных столкновений молекул. Поскольку средние скорости молекул в соответствии с кинетич. теорией газов обратно пропорциональны квадратному корню их масс, компоненты разделяемой смеси проникают через поры мембраны с различными скоростями. В результате пермеат обогащается компонентом с меньшей мол. массой, концентрат — с большей. Коэф. разделения смеси Kр = n1/n2 = =- (М2/М1)0,5, где n1 и n2-числа молей компонентов соотв. с мол. массами М1 и М2. В реальных условиях весьма трудно с помощью пористых мембран обеспечить чисто кнудсе-новский механизм разделения компонентов. Это объясняется адсорбцией или конденсацией их на стенках пор перегородки и возникновением дополнительного т. наз. конденсационного либо поверхностного газового потока, наличие которого приводит к снижению Кр.

При применении непористых мембран разделение газов осуществляется за счет разной скорости диффузии компонентов через перегородки. Для таких мембран проницаемость газов и паров на 2–3 порядка ниже, чем для пористых, но селективность значительно выше. Количество газа, проходящего через единицу площади поверхности сплошной перегородки в единицу времени, определяется по формуле: V= Кr × = Kr, где с1,с2 и p1, p2 — соотв. концентрации и парциальные давления проникающего компонента в газовом потоке по обе стороны мембраны толщиной d; Кr-коэф. газопроницаемости. С повышением температуры величина G для непористых перегородок возрастает, однако, как правило, снижается j, которую в первом приближении можно представить как соотношение коэф. газопроницаемости чистых компонентов разделяемой смеси, напр. для воздуха jO2 = Kr,O2/Kr,N2.

Мембранное газоразделение применяют: с помощью пористых мембран — в производстве обогащенного U, для очистки воздуха от радиоактивного Kr, извлечения Не из прир. газа и т. п.; посредством непористых мембран-для выделения H2 из продувочных газов производства NH3 и др. (преим. металлич. перегородки на основе сплавов Pd), для обогащения воздуха кислородом, регулирования газовой среды в камерах плодоовощехранилиш, извлечения H2, NH3 и Не из прир. и технол. газов, разделения углеводородов и в перспективе для рекуперации оксидов S из газовых выбросов (гл. обр. полимерные мембраны).

И с п а р е н и е ч е р е з м е м б р а н у-разделение жидких смесей, компоненты которых имеют разные коэф. диффузии. Из исходного раствора через мембрану в токе инертного газа или путем вакуумирования отводятся пары пермеата, которые затем конденсируются. При разделении происходят сорбция мембраной растворенного вещества, диффузия его через перегородку и десорбция в паровую фазу; процесс описывается уравнением Фика. Состав паров зависит от температуры процесса (влияние давления на его характеристики незначительно), материала мембраны, состава раствора и др. Для увеличения скорости процесса раствор нагревают до 30–60 °C. Мембраны — обычно непористые полимерные пленки из резины, целлофана, полипропилена или полиэтилена, фторопласта и т. п. Больший эффект разделения достигается при использовании для изготовления мембран лиофильных материалов. Скорость проницания компонентов через перегородки выше для частиц: а) с меньшей мол. массой в ряду гомологов; б) с одинаковыми мол. массой и меньшими размерами; в) с одинаковой мол. массой, но менее сложных по структуре; г) с хорошей растворимостью в материале и высоким коэф. диффузии через него.

Сплошные диффузионные мембраны обладают большим гидродинамич. сопротивлением, поэтому их следует применять в виде закрепленных на пористых подложках ультратонких пленок толщиной 0,02–0,04 мкм. Процесс используют для разделения азеотропных смесей, жидких углеводородов, водных растворов карбоновых кислот, кетонов и аминов, смещения равновесия в химических реакциях путем удаления одного из продуктов (напр., воды при этерификации), очистки сточных вод и др.

Д и а л и з-разделение растворенных веществ, различающихся мол. массами. Процесс основан на неодинаковых скоростях диффузии этих веществ через проницаемую мембрану, разделяющую конц. и разб. растворы. Под действием градиента концентрации растворенные вещества с разными скоростями диффундируют через мембрану в сторону разб. раствора. Скорость переноса веществ снижается вследствие диффузии растворителя (обычно воды) в обратном направлении. Для диализа используют, как правило, нитро- и ацетатцеллюлозные мембраны. Площадь их поверхности рассчитывается из уравнения: F = KдFDc/V, где V — количество пермеата; Dс-разность концентраций вещества по обе стороны мембраны, т. е. движущая сила процесса; Кд = (1/b1 + d/D + l/b2)−1-коэф. массопере-дачи, или диализа, определяемый экспериментально, причем b1 и b2 — соотв. коэф. скорости переноса вещества в конц. растворе к перегородке и от нее в разб. растворе; d-толщина мембраны; D-коэф. диффузии растворенного вещества. Процесс используют в производстве искусственных волокон (отделение отжимной щелочи от гемицеллюлозы), ряда биохим. препаратов, для очистки растворов биологически активных веществ.

Мембранные аппараты подразделяют на плоскокамерные, трубчатые, рулонные, с полыми волокнами, а также электродиализаторы (см. выше). В плоскокамерных аппаратах (рис. 3) разделительный элемент состоит из двух плоских (листовых) мембран, между которыми расположен пористый дренажный материал. Элементы размещены на небольшом расстоянии один от другого (0,5–5 мм), в результате чего между ними образуются мембранные каналы, по которым циркулирует разделяемая смесь. Образовавшийся концентрат выводится из аппарата, а пермеат отводится по дренажному материалу в коллектор. Для турбулизации потока путем поперечного перемешивания и предотвращения соприкосновения проницаемых элементов применяют сетку-сепаратор. В случае необходимости значит. концентрирования исходного раствора в аппарате устанавливают неск. последовательно работающих секций. Поверхность разделительной мембраны, приходящаяся на единицу объема аппарата, т. е. плотность упаковки мембраны, для плоскокамерных аппаратов низка (60–300 м2/м ), поэтому их используют в установках небольшой производительности для разделения жидких и газовых смесей.

Рис. 3. Плоскокамерный многосекционный аппарат типа «фильтр — пресс»: 1 — мембрана; 2 — дренажный материал.

Трубчатые аппараты (рис. 4) состоят из набора пористых дренажных трубок диаметром 5–20 мм, на внутр. или наружной поверхности которых расположены мембраны. В соответствии с этим исходный поток направляют в трубное либо межтрубное пространство. Трубчатые аппараты, в которых плотность упаковки мембран составляет 60–200 м2/м3, используются для очистки жидких сред от загрязнений, опреснения воды с высокой концентрацией солей, а также для разделения газовых смесей.

Рис. 4. Трубчатый аппарат: 1 — мембрана; 2 — дренажный материал; 3 — трубчатый фильтрующий элемент.

В рулонных, или спиральных, аппаратах (рис. 5) мембранный элемент имеет вид пакета; три его кромки герметизированы, а четвертая прикреплена к перфорированной трубке для отвода пермеата, на которую накручивается пакет вместе с сеткой-сепаратором. Разделяемый поток движется в осевом направлении по межмембранным каналам, а пермеат-спиралеобразно по дренажному материалу и поступает в отводящую трубку. Аппараты этого типа отличаются высокой плотностью упаковки мембран (300–800 м2/м3), но сложнее, чем плоскокамерные, в изготовлении. Они используются в установках средней и большой производительности для разделения жидких и газовых смесей.

Рис. 5. Рулонный аппарат: а — корпус, б — фильтрующий элемент; 1 — мембрана; 2 — дренажный материал; 3 — фиксатор; 4 — сепаратор; 5 — отводная трубка.

В аппаратах с волокнистыми мембранами (рис. 6) рабочий элемент обычно представляет собой цилиндр, в который помещен пучок полых волокон с наружным диаметром 80–100 мкм и толщиной стенки 15–30 мкм. Разделяемый раствор, как правило, омывает наружную поверхность волокна, а по его внутр. каналу выводится пермеат. Благодаря высокой плотности упаковки мембран (до 20000 м2/м3) эти аппараты применяют в опреснительных установках большой производительности (десятки тыс. м3/сут).

Для обратного осмоса, как правило, используют плоскокамерные, трубчатые и рулонные аппараты; для ультрафильтрации — плоскокамерные и трубчатые; для микрофильтрации-те же аппараты, а также обычные патронные фильтры; для электродиализа — кроме электродиализаторов, иногда плоскокамерные и с полыми волокнами, снабженные подводкой электропитания; для мембранного газоразделения-рулонные, плоскокамерные и трубчатые; для испарения через мембрану-те же аппараты, что и для баро-мембранных процессов, снабженные системами подогрева, вакуумирования, .подачи инертного газа и конденсаторами паров; для диализа-плоскокамерные и др. мембранные.

М. п. р. осуществляют, как правило, при температуре окружающей среды без фазовых превращений и применения хим. реагентов, что наряду с простотой аппаратурного оформления и его обслуживания определяет их экономичность и широкие перспективы для создания принципиально новых, малоэнергоемких и экологически чистых производств (см. также безотходные производства). Для организации и практич. реализации работ в области мембранных технологий в СССР создан (1986) межотраслевой науч.-техн. комплекс «Мембраны».

Рис. 6. Аппарат с волокнистой мембраной: 1 — трубная решетка с открытыми концами волокон; 2 полое волокно.

Лит.: Дытнерский Ю. И., Мембранные процессы разделения жидких смесей, М., 1975; его же, Обратный осмос и ультрафильтрация, М., 1978; его же, Баромембранные процессы, М., 1986; Технологические процессы с применением мембран, под ред. Р. Лейси и С. Лёба , пер. с англ., М., 1976; Николаев Н. И., Диффузия в мембранах, М., 1980; Хванг С.-Т., Каммермейер К., Мембранные процессы разделения, пер. с англ., М., 1981; Дубяга В. П., Перепечкин Л. П., Каталевский Е. Е., Полимерные мембраны, М., 1981; «Успехи химии», 1988, т. 57, в. 6.

Ю. И. Дытнерский

Источник: Химическая энциклопедия на Gufo.me

МЕМБРАННЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ

К мембранным методам разделения относятся:

1. Диализ и электродиализ.

2. Обратный осмос.

3. Микрофильтрация.

4. Ультрафильтрация.

В основе этих методов лежит явление осмоса — диффузии раство­ренных веществ через полупроницаемую перегородку, представляю­щую собой мембрану с большим количеством (до 10 10 -10 11 на 1 м2) мелких отверстий — пор, диаметр которых не превышает 0,5 мкм.

Под мембраной обычно принято понимать высокопористую или беспористую плоскую или трубчатую перегородку, оформленную из полимерных или неорганических материалов и способную эффективно разделять частицы различных видов (ионы, молекулы, макромолекулы и коллоидные частицы), находящиеся в смеси или растворе. Использо­вание мембран позволяет создавать экономически высокоэффективные и малоотходные технологии.

Среди мембранных процессов особенно интенсивно развиваются баромембранные. Если обратный осмос изучен достаточно полно, то существенно в меньшей мере это касается микрофильтрации и тем бо­лее ультрафильтрации, несмотря на ее очевидную перспективность. Границы баромембранных методов разделения четко не определены, что, по видимому, принципиально невозможно, поскольку микро- и ультрафильтрация и обратный осмос в широких пределах перекрываются как в отношении их физико-химического описания, так и решае­мых задач. Следовательно, приведенная классификация барометриче­ских методов разделения в значительной мере условна. Тем не менее, каждый из указанных методов имеет свои характерные особенности, на основании которых предложено несколько их классификаций.

Микрофильтрация, в основном, является гидродинамическим процессом, близким к обычной фильтрации. Специфическая особен­ность микрофильтрации — использование мембран с диаметром пор от 0,1 до 10 мкм для отделения мелких частиц твердой фазы, в том числе микроорганизмов, в этом случае ее называют стерилизующей фильт­рацией. Поэтому в отличие от процесса фильтрации при микрофильт­рации явления диффузии (особенно при небольших размерах пор от 0,1 до 0,5 мкм) также играют определенную роль.

В основе ультрафильтрации лежит использование мембран с диа­метром пор от 0,001 до 0,1 мкм. Ультрафильтрация применяется для разделения клеток и молекул.

Мембранные методы разделения, применительно к биологическим суспензиям, обладают рядом преимуществ.

1. Концентрирование и очистка осуществляются без изменения аг­регатного состояния и фазовых превращений.

2. Перерабатываемый продукт не подвергается тепловым и хими­ческим воздействиям.

3. Механическое и аэродинамическое воздействие на биологиче­ский материал незначительно.

4. Легко обеспечиваются герметичность и асептические условия.

5. Аппаратурное оформление компактно по конструкции, отсутст­вуют движущиеся детали.

6. Процесс не обладает высокой энергоемкостью, в большинстве случаев энергия затрачивается только на перекачивание растворов.

Механизм переноса атомов, молекул или ионов различных веществ через полупроницаемые мембраны может быть объяснен одной из сле­дующих теорий.

Теория просеивания предполагает, что в полупроницаемой мем­бране существуют поры, размеры которых достаточны для того, чтобы пропускать растворитель, но слишком малы для того, чтобы пропус­кать молекулы или ионы растворенных веществ.

Теория молекулярной диффузии основана на неодинаковой рас­творимости и на различии коэффициента диффузии разделяемых ком­понентов в полимерных мембранах. Теория капиллярно-фильтрационной проницаемости основана на различии физико-химических свойств граничного слоя жидкости на поверхности мембраны и раствора в объеме.

Из предложенных теорий, получила распространение капиллярно-фильтрационная модель.

Основным рабочим органом мембранных аппаратов являются по­лупроницаемые мембраны. Мембраны должны обладать высокой раз­делительной способностью или селективностью, высокой удельной производительностью или проницаемостью, постоянством своих ха­рактеристик в процессе эксплуатации, химической стойкостью в раз­деляющей среде, механической прочностью, невысокой стоимостью. Селективность и проницаемость — это наиболее важные технологиче­ские характеристики мембран и аппарата в целом.

Селективность мембраны зависит от размера и формы молекул растворенного вещества. Следует иметь в виду, что практически во всех случаях существуют молекулы, задерживаемые мембраной лишь частично. Мембраны изготавливают из различных материалов: поли­мерных пленок, стекла, керамики, металлической фольги и т.п. Широ­кое распространение получили мембраны из полимерных пленок.

Полупроницаемые мембраны бывают пористые и непористые. Че­рез непористые мембраны процесс осуществляется за счет молекуляр­ной диффузии. Такие мембраны называются диффузионными и при­меняются для разделения компонентов с близкими свойствами. Порис­тые мембраны изготавливаются в основном из полимерных материалов и могут быть анизотропными и изотропными.

Пористые мембраны получают обычно путем удаления растворите­лей или вымыванием предварительно введенных добавок из растворов полимеров при их формировании. Полученные таким образом мембра­ны имеют тонкий 0,25-0,5 мкм поверхностный слой на микропористой подложке толщиной 100-250 мкм. Процесс мембранного разделения осуществляется в поверхностном активном слое, а подложка обеспечи­вает механическую прочность мембраны.

Широкое распространение получили ядерные мембраны, или нуклеопоры. Эти мембраны образуются облучением тонких полимерных пленок, заряженными альфа-частицами с последующим травлением пор химическими реагентами.

К основным достоинствам ядерных мембран относятся:

— правильная круглая форма пор;

— возможность получить мембраны с заранее заданными разме­рами и числом пор;

— одинаковый размер пор;

— химическая стойкость.

Ядерные мембраны изготавливают на основе покарбонатных пле­нок с диаметром пор от 0,1 до 8 мкм.

Наряду с полимерными известны мембраны с жесткой структурой:

металлические, из пористого стекла, керамики.

Металлические мембраны изготавливают выщелачиванием или возгонкой одного из компонентов сплава фольги. При этом получают высокопористые мембраны с порами одинакового размера — в пределах 5- 0,1 мкм.

Другой способ получения металлических мембран — спекание ме­таллического порошка при высоких температурах методом порошко­вой металлургии.

Недостатки мембранных методов разделения:

1. Некоторые материалы, из которых изготавливаются мембраны, быстро изнашиваются.

2. Возникают определенные трудности при обработке растворов, содержащих твердую фазу.

Тем не менее, следует отметить перспективность применения мем­бранных методов разделения в технологии микробиологического син­теза.

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ СЕЛЕКТИВНОГО РАЗДЕЛЕНИЯ БИОЛОГИЧЕСКИХ РАСТВОРОВ И СУСПЕНЗИЙ НА ПОРИСТЫХ МЕМБРАНАХ

К основным мембранным методам разделения жидких систем отно­сятся обратный осмос, ультра- и микрофильтрация. Эти методы харак­теризуются такими общими чертами, как использование полупрони­цаемых, т.е. по-разному пропускающих разные компоненты растворов и суспензий, мембран, применение в качестве движущей силы процес­са избыточного давления, способы борьбы с концентрационной поля­ризацией.

Деление указанных методов является в значительной степени ус­ловным и базируется, как правило, на размерах фильтруемых объектов и размерах пор соответствующих полупроницаемых мембран.

Более отчетливо следует разграничить методы ультра- и микро­фильтрации по фазовым состояниям разделяемых систем (соответст­венно, растворы и суспензии), а методов ультрафильтрации и обратно­го осмоса по механизму проницаемости (вязкое течение и активиро­ванная диффузия).

Можно приблизительно определить, что обратноосмотические мембраны могут задерживать частицы размером более 1-10-4 мкм, т.е. гидратированные неорганические ионы, а ультрафильтрация наиболее эффективна для частиц размером более 1-10-3 мкм, т.е. ультрафильтра-ционные мембраны могут задерживать органические молекулы и ионы. Соответственно, микрофильтрация позволяет эффективно задерживать частицы от 5-10-2 до 10 мкм, те которые не осаждаются из растворов в поле гравитационных сил.

Тем не менее, четко определить границы применения различных мембранных методов не представляется возможным как из-за общно­сти физических явлений, лежащих в основе данных методов, так и ввиду широкого спектра свойств и природы разделяемых баромембранными процессами веществ.

ФИЗИЧЕСКИЕ ОСНОВЫ МИКРОФИЛЬТРАЦИИ

Разделение растворов и суспензий методом микрофильтрации ос­новано на различии и эффективных гидродинамических размерах раз­деляемых молекул и частиц. Процесс разделения описывается в рамках различных теорий и механизмов полупроницаемости, учитывающих влияние физико-химических, гидродинамических и межмолекулярных факторов на прохождение частиц через мембраны.

Как правило, анализ и расчет процессов ультра- и микрофильтра­ции проводится с единых позиций. Такой подход правомерен, если учесть, что протекание этих процессов обычно сопровождается обра­зованием слоя осадка на мембране, оказывающего основное сопротив­ление массопереносу. Образование этого осадка и его свойства могут быть описаны едиными зависимостями.

Поверхностные явления на границе мембрана-раствор, свойства раствора и растворенного вещества (для микрофильтрации — свойства диспергированных частиц) оказывают существенное влияние на про­цесс ультра- и микрофильтрации.

Объект применения микрофильтрации — как правило, коллоидные (дисперсные) системы, имеющие дисперсную среду («растворитель») и дисперсную фазу (частицы, взвешенные в растворителе). В разделе­нии этих фаз часто и состоит задача проведения микрофильтрации жидкостей.

Важнейшую роль во всех процессах разделения мембранных игра­ют адгезионные и электростатические взаимодействия частиц с по­верхностью мембраны.

Биологические клеточные объекты представляют собой типичные лиофильные системы. Для них, в отличие от лиофобных систем, харак­терно сильное межмолекулярное взаимодействие вещества дисперсной фазы с дисперсной средой. Такое взаимодействие приводит к образо­ванию сольватных гидратных (в случае, если дисперсионной средой является вода) оболочек из молекул дисперсионной среды вокруг час­тиц дисперсной фазы. Кроме этого, клетки микроорганизмов обладают зарядом (электрокинетический потенциал — ЭКП), величина которого различна у разных микроорганизмов. Для одного и того же вида мик­роорганизмов величина заряда меняется в зависимости от условий сре­ды и процессов, происходящих в самой клетке. Наличие у клеток за­ряда позволяет рассматривать биологические суспензии как растворы электролитов.

КОНЦЕНТРАЦИОННАЯ ПОЛЯРИЗАЦИЯ

При разделении растворов и суспензий с помощью полупроницае­мых мембран, через мембрану преимущественно проходит раствори­тель. При этом концентрация растворенного вещества в пограничном слое у поверхности мембраны увеличивается. Повышение концентра­ции происходит до тех пор, пока под действием возникающего гради­ента концентраций растворенного вещества между поверхностью мем­браны и объемом раствора не установится динамическое равновесие.

Явление образования у поверхности мембраны пограничного слоя, в котором концентрация растворенного вещества больше, чем в основ­ном объеме раствора, получило название концентрационной поляриза­ции. Влияние концентрационной поляризации на фильтрацию всегда отрицательно по следующим причинам:

— Снижается эффективное давление вследствие увеличения осмоти­ческого давления раствора, определяемого концентрацией именно в пограничном слое. Это приводит к снижению, как скорости процесса, так и селективности, сокращается срок службы мембран, который в значительной степени зависит от концентрации растворенного вещества.

— Концентрационная поляризация связана с образованием погранич­ного слоя, отделяющего поверхность мембраны от раствора в объеме. Толщина этого слоя в общем случае определяется гидродинамически­ми условиями в установке — интенсивностью перемешивания и скоро­стью движения потока. Профиль концентрации этого слоя зависит от режима движения раствора.

Различают два режима концентрационной поляризации:

— предгелевый, когда концентрация у поверхности мембраны Cw ниже концентрации гелеобразования Cg;

— режим гелевой поляризации, когда Cw==Cg, и на мембране образу­ется слой геля.

Образование геля на поверхности мембраны приводит к резкому падению проницаемости и росту задерживающей способности микрофильтрационных мембран. Однако существует предположение, что снижение проницаемости при концентрационной поляризации мем­браны достигается не полной блокировкой ее пор слоем геля, а их мо­дификацией гелем таким образом, что эффективные размеры всех пор уменьшаются на некоторую постоянную величину R. Образу­ется так называемая динамическая гелевая мембрана. При этом в уменьшенных порах мембраны реализуется классический капиллярно-фильтрационный механизм разделения.

Считается также, что для возникновения концентрационной поля­ризации размеры фильтруемых частиц должны обеспечивать «крити­ческое» отношение размеров частицы и поры, характеризующее пере­ход из предгелевого в гелевый режим концентрационной поляризации вследствие увеличения коэффициента задержания.

Для уменьшения вредного влияния концентрационной поляризации на процесс микрофильтрации используют различные способы: повы­шают температуру (вследствие чего снижается вязкость и увеличива­ется концентрация гелеобразования), применяют электрическое поле, употребляют высокие скорости тангенциального потока и пульсационные режимы фильтрации.

ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА ХАРАКТЕРИСТИКИ РАЗДЕЛЕНИЯ

Выбор рабочего давления зависит от вида процесса, природы и концентрации разделяемого раствора, типа используемой мембраны, конструкции аппарата, гидравлического сопротивления и т. д. Для микрофильтрации рабочее давление составляет 0,03-0,1 МПа, и для каждого раствора определяется экспериментальным путем.

Увеличение рабочего давления приводит к увеличению скорости фильтрации до некоторых пределов, обусловленных тем, что увеличе­ние давления приводит и к увеличению и уплотнению слоя геля на по­верхности мембраны.

В результате воздействия высокого давления на мембраны могут наблюдаться значительные остаточные деформации: при снятии дав­ления структура мембраны не возвращается в исходное состояние. Усадка структуры мембраны снижает проницательность и повышает селективность.

Анализ данных о влиянии температуры на селективность и прони­цаемость мембран при микрофильтрации показывает, что повышение температуры приводит к увеличению и проницаемости, и селективно­сти. Это объясняется тем, что уменьшается вязкость пермеата, а также значительно снижается влияние концентрационной поляризации мем­бран.

При увеличении концентрации растворенных веществ в разделяе­мом растворе ухудшаются рабочие характеристики мембран — удель­ная производительность и селективность. При концентрировании по­вышается осмотическое давление раствора, а следовательно снижается эффективная движущая сила процесса разделения.

ЛЕКЦИЯ 4. ВАКЦИНЫ.

Вакцинация способствует формированию у реципиента иммунитета к патогенным микроорганизмам и тем самым защищает его от инфекции. В ответ на пероральное или парентеральное введение вакцины в организме хозяина вырабатываются антитела к патогенному микроорганизму, которые при последующей инфекции приводят к его инактивации (нейтрализации или гибели), блокируют его пролиферацию и не позволяют развиться заболеванию.

Эффект вакцинации открыл более 200 лет назад — в 1796 г. — врач Эдвард Дженнер. Он доказал экспериментально, что человек, перенесший коровью оспу, не очень тяжелую болезнь крупного рогатого скота, становится невосприимчивым к оспе натуральной. Натуральная оспа — высококонтагиозное заболевание с высокой смертностью: даже если больной не погибает, у него нередко возникают различные уродства, психические расстройства и слепота. Дженнер публично провел прививку коровьей оспы 8-летнему мальчику Джеймсу Фиппсу, использовав для этого экссудат из пустулы больной коровьей оспой, а затем через определенное время дважды инфицировал ребенка гноем из пустулы больного натуральной оспой. Все проявления заболевания ограничились покраснением в месте прививки, исчезнувшим через несколько дней.

Ранее такие инфекционные болезни, как туберкулез, оспа, холера, брюшной тиф, бубонная чума и полиомиелит, были настоящим бичом для человечества. С появлением вакцин, антибиотиков и внедрением мер профилактики эти эпиидемические болезни удалось взять под контроль. Однако защитные меры со временем становились неэффективными, и возникали новые вспышки заболеваний. В 1991 г. эпидемия холеры поразила Перу; в течение трех следующих лет было выявлено примерно 1 млн. заболевших, несколько тысяч из них умерли. К сожалению, против многих болезней человека и животных вакцин не существует. Сегодня во всем мире более 2 млрд. людей страдают заболеваниями, которые можно было бы предотвратить спомощью вакцинации. Вакцины могут оказаться полезными и для профилактики постоянно появляющихся «новых» болезней (например, СПИДа).

Как правило, современные вакцины создают на основе убитых (инактивированных) патогенных микроорганизмов либо живых, но невирулентных (аттенуированных) штаммов. Для этого штамм дикого типа выращивают в культуре, очищают, а затем инактивируют или модифицируют таким образом, чтобы он вызывал иммунный ответ, достаточно эффективный в отношении вирулентного штамма. Несмотря на значительные успехи в создании вакцин против таких заболеваний, как краснуха, дифтерия, коклюш, столбняк, оспа и полиомиелит, производство современных вакцин сталкивается с целым рядом ограничений:

• Не все патогенные микроорганизмы удается культивировать, поэтому для многих заболеваний вакцины не созданы.

• Для получения вирусов животных и человека необходима дорогостоящая культура животных клеток.

• Титр вирусов животных и человека в культуре и скорость их размножения часто бывают очень низкими, что удорожает производство вакцин.

• Необходимо строго соблюдать меры предосторожности, чтобы не допустить инфицирования персонала.

• При нарушении производственного процесса в некоторые партии вакцины могут попасть живые или недостаточно ослабленные вирулентные микроорганизмы, что может привести к неумышленному распространению инфекции.

• Аттенуированные штаммы могут ревертировать к исходному штамму, поэтому необходимо постоянно контролировать вирулентность.

• Некоторые заболевания (например, СПИД) нельзя предупреждать с помощью традиционных вакцин.

• Большинство современных вакцин имеют ограниченный срок годности и сохраняют активность только при пониженной температуре, что затрудняет их использование в развивающихся странах.

В последнее десятилетие, с развитием технологии рекомбинантных ДНК, появилась возможность создать новое поколение вакцин, не обладающих недостатками традиционных вакцин. Для их разработки применяют методы генной инженерии.

• Патогенный микроорганизм модифицируют, делетируя гены, ответственные за вирулентность. Способность вызывать иммунный ответ при этом сохраняется. Такой микроорганизм можно безбоязненно использовать в качестве живой вакцины, поскольку выращивание в чистой культуре исключает возможность спонтанного восстановления целого гена.

• Создают живые непатогенные системы переноса отдельных антигенных детерминант неродственного патогенного организма. Такая система переноса способствует развитию выраженного иммунного ответа на патогенный микроорганизм.

• Если патогенные микроорганизмы не растут в культуре, можно изолировать, клонировать и экспрессировать в альтернативном хозяине (например, в Е. coli или линии клеток млекопитающих) гены тех белков, которые содержат основные антигенные детерминанты, и использовать эти белки как «субъединичные» вакцины (см. следующий раздел).

• Некоторые патогенные микроорганизмы действуют опосредованно, вызывая развитие аутоиммунной реакции на инфицированные клетки организма-хозяина. Для таких заболеваний можно создать систему специфического уничтожения клеток-мишеней, сконструировав ген, кодирующий химерный белок, одна часть которого будет связываться с инфицированной клеткой, а другая — уничтожать ее. Эта система не является истинной вакциной, хотя она и действует только на инфицированные клетки, устраняя саму причину развития аутоиммунной реакции.

К вакцинам для животных предъявляются менее жесткие требования, поэтому первыми вакцинами, полученными с помощью технологии рекомбинантных ДНК, были вакцины против ящура, бешенства, дизентерии и диареи поросят. Создаются и другие вакцины для животных, а в скором времени появятся и рекомбинантные вакцины, предназначенные для человека .

Дата добавления: 2016-05-11; просмотров: 3289;

Магнитоэлектрическая система

Стр 1 из 3

Принцип действия магнитоэлектрических приборов основан на взаимодействии поля постоянного магнита и проводников с током. В воздушном зазоре 1 (рис. 2) между неподвижным стальным цилиндром 2 и полюсными наконечниками NS неподвижного постоянного магнита расположена алюминиевая рамка с катушкой 3, состоящей из w витков изолированной проволоки.

Рисунок 2 — Устройство прибора

магнитоэлектрической системы

Катушка жестко соединена с двумя полуосями О и О’, сидящими в подшипниках. На полуоси О закреплены указательная стрелка 4 и две спиральные пружинки 5 и 5′, через которые к катушке подводится измеряемый ток. Полюсные наконечники NS и стальной цилиндр 2 обеспечивают в зазоре 1 равномерное и радиальное распределение индукции В магнитного поля. В результате взаимодействия магнитного поля с током в проводниках катушки 3 создается вращающий момент. Рамка с катушкой при этом поворачивается, и стрелка отклоняется на угол a. Электромагнитная сила Fэм , действующая на каждую из двух сторон катушки, равна wBLI. Вращающий момент, создаваемый парой сил Fэм , Мвр = Fэмd = wBLId = С1I , где d и L— ширина и длина рамки (катушки); С1 — коэффициент, зависящий от числа витков w, размеров катушки и магнитной индукции В. Повороту рамки противодействуют спиральные пружинки 5 и 5′, создающие противодействующий момент, пропорциональный углу закручивания a:

Мпр = С2a,

где С2 — коэффициент, зависящий от жесткости пружинок. Стрелка устанавливается на определенном делении шкалы при равенстве моментов

Mвр = Мпр, т. е. когда С1I = С2a.

Угол поворота стрелки

a = = С×I

пропорционален величине тока; следовательно, у приборов магнитоэлектрической системы шкала равномерная, что является их достоинством.

Направление вращающего момента (определяемое правилом левой руки) изменяется при изменении направления тока. Поэтому при включении прибора нужно соблюдать полярность включения.

При включении прибора магнитоэлектрической системы в цепь переменного тока на катушку действуют быстро изменяющиеся по величине и направлению механические силы, среднее значение которых равно нулю. В результате стрелка прибора не будет отклоняться от нулевого положения. Поэтому эти приборы нельзя применять непосредственно для измерений в цепях переменного тока.

В приборах магнитоэлектрической системы успокоение (демпфирование) стрелки происходит благодаря тому, что при перемещении алюминиевой рамки 5 в магнитном поле постоянного магнита NS в ней индуктируются вихревые токи. Направление этих токов по правилу Ленца таково, что они противодействуют вращению рамки и быстро успокаивают ее колебания.

Измерительные приборы магнитоэлектрической системы находят применение также при измерениях в цепях переменного тока. При этом в цепь подвижной катушки включают преобразователи переменного тока в постоянный или пульсирующий ток. Наибольшее распространение получили детекторная и термоэлектрическая системы.

На (рис. 3, а) показана принципиальная схема для измерения переменного тока прибором детекторной системы.

Рисунок 3 — Схемы включения магнитоэлектрического прибора детекторной (а) и термоэлектрической (б) систем в цепь переменного тока

Измерительный прибор включен в диагональ АВ моста, собранного из четырех выпрямительных полупроводниковых диодов. При переменном токе в цепи в диагонали АВ возникает пульсирующий ток, не меняющий своего направления. Этот ток, взаимодействуя с магнитным полем постоянного магнита, создает изменяющийся по величине, но действующий в одном направлении вращающий момент, пропорциональный току.

Отклонение стрелки прибора пропорционально среднему значению вращающего момента за период, а следовательно, среднему значению тока. Если в цепи действует синусоидальный ток, то шкалу прибора можно отградуировать в действующих значениях тока, поскольку между средним и действующим значениями тока существует определенное соотношение. При отклонении формы кривой тока от синусоиды правильное измерение действующих значений при указанной выше градуировке шкалы оказывается невозможным.

В приборах термоэлектрической системы в качестве преобразователя используется термопара 1. Измерительный прибор 2 соединен со свободными концами термопары, а рабочие концы, образующие ее горячий спай, нагреваются измеряемым током проволочного нагревательного элемента 3 (рис. 3, б).

Количество тепла Q, выделяемого в нагревателе, пропорционально квадрату действующего значения тока. Температура нагрева горячего спая термопары и ее ЭДС находятся в прямой зависимости от величины Q. В связи с этим отклонение стрелки измерительного прибора, пропорциональное ЭДС термопары, также находится в прямой зависимости от квадрата действующего значения тока.

Вольтметры и амперметры детекторной и термоэлектрической систем применяются для измерений в цепях переменного тока промышленной частоты (50 Гц) и повышенных частот.

Достоинства приборов магнитоэлектрической системы:

1) точность показаний;

2) малая чувствительность к посторонним магнитным полям;

3) незначительное потребление мощности;

4) равномерность шкалы.

К недостаткам следует отнести:

1) необходимость применения специальных преобразователей при измерениях в цепях переменного тока и чувствительность к перегрузкам (тонкие токопроводящие пружинки 5 и 5′ из фосфористой бронзы при перегрузках нагреваются и изменяют свои упругие свойства).

Электромагнитная система

Принцип действия электромагнитных приборов основан на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Неподвижный элемент прибора — катушка 1, выполненная из изолированной проволоки, включается в электрическую цепь (рис. 4).

Подвижный элемент — стальной сердечник 2, имеющий форму лепестка, эксцентрично укреплен на оси О. С этой же осью жестко соединены указательная стрелка 3, спиральная пружинка 4, обеспечива­ющая противодействующий момент, и поршень 5 успокоителя. Ток в витках катушки 1 образует магнитный поток, сердечник 2 намагничивается и втягивается в катушку. При этом ось О поворачивается, и стрелка прибора отклоняется на угол a.

Магнитная индукция В в сердечнике (при отсутствии насыщения) пропорциональна току катушки. Сила F, с которой сердечник втягивается в катушку, зависит от величины тока и магнитной индукции В в сердечнике. Приближенно принимают, что сила F, а следовательно, и обусловленный ею вращающий момент пропорциональны квадрату тока в катушке:

Мвр = СI2.

Рисунок 4 — Устройство прибора Рисунок 5 -Устройство астатического электромагнитной системы механизма электромагнитной системы прибора

Противодействующий момент, уравновешивающий вращающий момент, пропорционален углу a. В связи с этим угол отклонения стрелки находится в квадратичной зависимости от тока; шкала прибора оказывается неравномерной.

Для успокоения подвижной части прибора обычно применяют воздушный демпфер. Он состоит из изогнутого цилиндра 6 и поршня 5, шток которого укреплен на оси О. Сопротивление воздуха, оказываемое перемещению поршня в цилиндре, обеспечивает быстрое установление стрелки на определенном делении шкалы.

Достоинства приборов электромагнитной системы:

1) простота конструкции;

2) пригодность для измерения в цепях постоянного и переменного тока;

3) надежность в эксплуатации.

К недостаткам следует отнести:

1) неравномерность шкалы;

2) влияние посторонних магнитных полей на точность показаний. Последнее обусловлено тем, что магнитное поле катушки расположено в воздушной среде и поэтому его индукция невелика.

Для ослабления влияния посторонних магнитных полей в некоторых приборах применяют две катушки 1 и 2 (рис. 5) и два сердечника, установленные на общей оси и действующие в одном направлении вращающие моменты

Мвр1 + Мвр2 = Мвр.рез .

Катушки расположенные так, что их магнитные потоки Ф1 и Ф2 направлены в противоположные стороны. Постороннее магнитное поле Фвн ослабляет поток Ф1 (уменьшая вращающий момент Мвр1 и одновременно усиливает поток Ф2, увеличивая вращающий момент Мвр2 . В результате общий вращающий момент Мвр.рез остается неизменным и зависит только от измеряемого тока. Приборы такой конструкции называются астатическими. Для уменьшения погрешности измерений, вносимых посторонними магнитными полями, некоторые приборы экранируют, помещая их в стальные корпуса.

Электродинамическая система

Приборы этой системы (рис. 6, а) состоят из двух катушек: неподвижной 1 и подвижной 2. Подвижная катушка укреплена на оси ОО’ и расположена внутри неподвижной катушки. На оси ОО’ подвижной катушки укреплены указательная стрелка 3 и спиральные пружинки 4 и 4′, через которые подводится ток к катушке 2. Эти пружинки одновременно создают противодействующий момент Мпр ,

Рисунок 6 — Устройство прибора

электродинамической системы (а) и принцип

действия (б)

пропорциональный углу закручивания a. Принцип действия прибора (рис. 6, б) основан на взаимодействии тока I2 подвижной катушки с магнитным потоком Ф1 неподвижной катушки.

При постоянном токе электромагнитная сила Fэм, действующая на проводники подвижной катушки, пропорциональна току I2 и магнитной индукции B1. Поскольку индукция B1 пропорциональна току I1 неподвижной катушки, вращающий момент, действующий на подвижную катушку, пропорционален произведению токов катушек:

Мвр=С¢ B1I2 =C¢¢I1I2,

где С¢ и С¢¢— коэффициенты пропорциональности. При переменном токе вращающий момент пропорционален произведению мгновенных значений токов:

i1=I1msinw t и i2=I2msin(w t+y).

Показание прибора в этом случае определяется средним за период значением вращающего момента:

Здесь С — коэффициент, зависящий от числа витков, геометрических размеров и расположения катушек; I1 и I2 — действующие значения токов в катушках; y — угол сдвига фаз между векторами токов I1 и I2 .

При равенстве моментов (Мвр = Мпр) подвижная катушка отклоняется на угол a и стрелка указывает на шкале числовое значение измеряемой электрической величины. Для успокоения подвижной части прибора используют воздушные демпферы. Электродинамические приборы применяют, главным образом, для измерения мощности в цепях переменного тока.

Достоинства приборов электродинамической системы:

1) высокая точность (обусловленная отсутствием ферромагнитных сердечников).

2) возможность использования для измерения электрических величин в цепях постоянного и переменного тока.

Недостатками приборов являются:

1) чувствительность к перегрузкам;

2) влияние посторонних магнитных полей на точность измерений;

3) неравномерность шкалы;

Электростатическая система

Энергия, запасенная системой заряженных пластин электростатического прибора при фиксированном напряжении

W= ,

может изменятся только вследствие изменения электроемкости. Поэтому такие приборы могут быть построены на основе изменения расстояния между пластинами, активной площади пластин или среды между ними. Во всех случаях с поворотом подвижной части прибора должна изменяться энергия W за счет изменения емкости C.

Устройство вольтметра электростатической системы с переменным расстоянием между пластинами показано на рисунке 7. Измеряемое напряжение подключается к клеммам «А» и «Б» вольтметра, соединенным с двумя неподвижными изолированными пластинами «а» и «с». Между неподвижными пластинами на тонких бронзовых ленточках (пружинах) подвешена подвижная пластина «b» и электрически соединена с одной из неподвижных пластин. При включении напряжения эти пластины получают заряд одного знака, и подвижная пластина отталкивается от неподвижной. Вторая неподвижная пластина получает заряд противоположного знака, поэтому она притягивает к себе подвижную пластину. Таким образом, силы, действующие на подвижную пластину со стороны неподвижных, направлены в одну сторону. Поступательное перемещение подвижной пластины через тягу «d» преобразуется во вращательное движение оси и стрелки прибора.

Устройство электростатического вольтметра с переменной активной площадью показано на рисунке 8. Подвижные пластины «с» всегда получают заряды, противоположные по знаку зарядам неподвижных камер «а» и «b», и втягиваются в них. Успокаивающий момент создается, как правило, магнитоиндукционным способом.

Ценным свойством электростатических вольтметров является: отсутствие собственного потребления мощности при измерениях на постоянном токе и очень малое потребление мощности на переменном.

Магнитоэлектрические приборы. Принцип действи, достоинства, недостатки, область применения.

В измерительных механизмах магнитоэлектрической системы вращающий момент создается взаи­модействием измеряемого постоянного тока в катушке механизма с полем постоянного магнита. Существуют два основных типа приборов магнитоэлектрической системы: приборы с подвижной катушкой (подвижной рамкой) и приборы с подвижным магнитом, причем первые применяются значительно чаще, чем вторые.

Принцип действий магнитоэлектрических приборов основан на взаимодействии магнитного поля постоянного магнита и обмотки с током. В воздушном зазоре 1 (рис. 7.1) между неподвижным стальным цилиндром 2 и полюсными наконечниками NS неподвижного постоянного магнита расположена алюминиевая рамка с обмоткой 3, состоящей из w витков изолированной проволоки.

Рамка жестко соединена с двумя полуосями О и О’, которые своими концами опираются о подшипники. На полуоси О закреплены указательная стрелка 4 и две спиральные пружинки 5 и 5′, через которые к катушке подводится измеряемый ток I, противовесы 6. Полюсные наконечники NS и стальной цилиндр 2 обеспечивают в зазоре 1 равномерное радиальное магнитное поле с индукцией В. В результате взаимодействия магнитного поля с током в проводниках обмотки 3 создается вращающий момент. Рамка с обмоткой при этом поворачивается и стрелка отклоняется на угол α. Электромагнитная сила Fэм , действующая на обмотку, равна Fэм = wBlI.

Вращающий момент, создаваемый силой Fэм,

Mвр = Fэмd = wBlId = C1I1,

где d и l— ширина и длина рамки (обмотки); С1 — коэффициент, зависящий от числа витков w, размеров обмотки и магнитной индукции В.

Повороту рамки противодействуют спиральные пружинки 5 и 5′, создающие противодействующий момент, пропорциональный углу закручивания α:

Мпр = С2α,

где С2 — коэффициент, зависящий от жесткости пружинок.

Стрелка устанавливается на определенном делении шкалы при равенстве моментов

Мвр = Мпр, т. е. когда C1I = С2α. Угол поворота стрелки

α =C1 I = СI

С2 пропорционален току. Следовательно, у приборов магнитоэлектрической системы шкала равномерная, что является их достоинством.

Направление вращающего момента (определяемое правилом левой руки) изменяется при изменении направления тока. При включении прибора магнитоэлектрической системы в цепь переменного тока на катушку действуют быстро изменяющиеся по значению и направлению механические силы, среднее значение которых равно нулю. В результате стрелка прибора не будет отклоняться от нулевого положения. Поэтому эти приборы нельзя применять непосредственно для измерений в цепях переменного тока.

Достоинства приборов магнитоэлектрической системы: точность показаний, малая чувствительность к посторонним магнитным полям, незначительное потребление мощности, равномерность шкалы. К недостаткам следует отнести необходимость применения специальных преобразователей при измерениях в цепях переменного тока и чувствительность к перегрузкам (тонкие токопроводящие пружинки 5 и 5′ из фосфористой бронзы при перегрузках нагреваются и изменяют свои упругие свойства).

15. электромагнитные приборы, принцип действия, достоинства, недостатки, область применения

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Принцип работы приборов этой системы основан на взаимодействии магнитного поля, создаваемого катушкой со стальным сердечником, помещенным в поле этой катушки. Электромагнитный измерительный механизм выполняют с плоской или круглой катушкой.

Достоинством приборов электромагнитной системы являются простота и надежность конструкции, невысокая стоимость, стойкость к перегрузкам и пригодность для измерений в цепях переменного и постоянного тока.

К недостаткам относятся невысокая точность, малая чувствительность, неравномерность шкалы и зависимость показаний от внешних магнитных полей и частоты переменного тока.

Электромагнитные приборы используют, главным образом, для измерения тока и напряжения в промышленных установках переменного тока.

16. Электродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек одной, неподвижно закрепленной, и другой, сидящей на оси и могущей поворачиваться.

Достоинствами электродинамических приборов являются пригодность для измерения постоянного и переменного тока, равномерность шкалы у ваттметров и относительно высокая точность по сравнению с другими приборами, предназначенными для измерений в цепях переменного тока.

К недостаткам относится сильное влияние внешних магнитных полей на точность измерений, чувствительность к перегрузкам и относительно высокая стоимость.

Электродинамические приборы применяют обычно в качестве точных лабораторных приборов, а также в качестве ваттметров и счетчиков электрической энергии в цепях постоянного тока.

17.ферродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Работа ферродинамических приборов основана на том же принципе, что и приборов электродинамической системы. Для усиления магнитного поля в ферродинамическом измерительном механизме применен магнитопровод из ферромагнитного материала.

Ферродинамические приборы используют в качестве щитовых амперметров, ваттметров и вольтметров, работающих в условиях тряски и вибраций (например, на э. п. с. переменного тока). Кроме того, их применяют в качестве самопишущих приборов, так как они имеют значительный вращающий момент, преодолевающий трение в записывающих устройствах.

Достоинства: незначительное влияние внешних магнитных полей, большой вращающий момент, прочная конструкция, устойчивость к вибрациям и ударам, небольшая потребляемая мощность.

Недостатки: дополнительные погрешности вследствие влияния гистерезиса и вихревых токов, зависимость показаний от частоты, невысокая точность щитовых приборов – обычно 1,5; 2,0.

18 электростатические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия: основой электростатических приборов является электростатический измерительный механизм с отсчетным устройством.

Они применяются, главным образом, для измерения напряжений переменного и постоянного тока. Находят применение также электрометры — электростатические приборы специальной конструкции, требующие вспомогательных источников питания. Электрометры обладают повышенной чувствительностью к напряжению.

Достоинствами электростатических приборов являются:

малое собственное потребление мощности, что объясняется малыми токами утечки и малыми диэлектрическими потерями в изоляции, малой емкостью измерительного механизма, большой диапазон измеряемых напряжений, возможность измерений на постоянном и на переменном токе, независимость показаний от частоты в широком диапазоне и формы измеряемого напряжения, независимость показаний от внешних магнитных полей.

К недостаткам электростатических приборов можно отнести:

малую чувствительность по напряжению, влияние внешних электростатических полей, что требует экранирование измерительного механизма, неравномерную шкалу (при соответствующем выборе формы подвижных и неподвижных электродов можно получить практически равномерную шкалу на участке от 15-25 % до 100 % от ее номинального значения).

Мембрана гидроаккумулятора 50 л

  • КЕРАМИЧЕСКАЯ ПЛИТКА (11043)
  • Ванны (6802)
  • Мебель для ванных комнат (12841)
  • Смесители (13152)
  • Унитазы, Раковины, Биде (7243)
  • Инсталляции (1320)
  • Душевые кабины (4420)
  • Аксессуары для санузлов (5328)
  • Мойки (3011)
  • Котлы, водонагреватели, газовые колонки (2102)
  • Радиаторы, Полотенцесушители, Конвекторы (11205)
  • Тёплые полы (электро), греющий кабель (461)
  • Водопровод и Отопление (7509)
  • Канализация, дренаж (2655)
  • Насосы (1556)
    • Дренажный насос (117)
    • Циркуляционный насос (383)
    • Насосы для скважин (345)
    • Насосы повышения давления (14)
    • Насосные станции (221)
    • Канализационные установки (70)
    • Фекальные насосы (54)
    • Фонтанные насосы (18)
    • Reflex Расширительные баки (34)
    • ДЖИЛЕКС (Россия) (176)
      • Автоматические насосные станции (12)
      • Дренажные насосы (12)
      • Колодезные насосы (7)
      • Комплектующие (25)
      • Корпуса для фильтров (12)
      • Магистральные насосы (2)
      • Оголовки (26)
      • Поверхностные насосы (6)
      • Расширительные баки, гидроаккумуляторы ДЖИЛЕКС (55)
      • Системы интеллектуального водоснабжения (5)
      • Скважинные насосы (8)
      • Циркуляционные насосы (6)
    • DAB (Италия) (53)
    • ESPA (Испания) (117)
    • GRUNDFOS (Дания) (523)
    • JD (Китай) (32)
    • KARCHER (Германия) (23)
    • PEDROLLO (Италия) (40)
    • SFA САНИНАСОС (Франция) (29)
    • VALTEC (Италия) (16)
    • WILO (Германия) (359)
    • ВИХРЬ (37)
    • ЗУБР (57)
    • Обсадные трубы ПВХ для скважин с резьбой ХЕМКОР (7)
    • разное (6)
    • ХОЗЯИН (Россия) (47)
  • Печи банные и отопительные (1105)
  • Садовая мебель, инвентарь, ёмкости (578)
  • Системы водоочистки (776)
  • Вентиляция, кондиционирование (882)
  • Бытовая техника (340)
  • Крепёж (1028)
  • Разное (616)
  • Распродажа (1937)
  • Уцененный товар (962)
  • Дисконтные и подарочные карты (8)
  • Инструмент (936)
  • Электрооборудование (200)
  • Гальваника (покраска изделий) (659)

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *