Манометрические термометры принцип действия

Манометрические термометры

Прибор состоит из термобаллона , капиллярной трубки и манометрической части .

Вся система прибора (термобаллон, капилляр, манометрическая пружина) заполняется рабочим веществом. Термобаллон помещают в зону измерения температуры. При нагревании термобаллона давление рабочего вещества внутри замкнутой системы увеличивается. Увеличение давления воспринимается манометрической трубкой (пружиной), которая воздействует через передаточный механизм на стрелку или перо прибора. Термобаллон обычно изготовляют из нержавеющей стали, а капилляр — из медной или стальной трубки с внутренним диаметром 0,15—0,5 мм. В зависимости от назначения прибора длина капиллярной трубки может быть различна (до 60 м). Для защиты от механических повреждений капилляр помещают в защитную оболочку из стального плетеного рукава.

Иногда капилляра может не быть и термобаллон непосредственно соединяется с манометрической частью.

Для содержимого этой страницы требуется более новая версия Adobe Flash Player.

В манометрических термометрах применяют одновитковые, многовитковые (геликоидальные) с числом витков от 6 до 9 и спиральные манометрические трубки.

Манометрические термометры широко применяют в химических производствах. Они просты по устройству, надежны в работе и при отсутствии электропривода диаграммной бумаги — взрыво- и пожаробезопасны. С помощью этих приборов можно измерять температуру в диапазоне от —120 до +600° С.

Различают следующие типы манометрических термометров:

  • Газозаполненные (газовые), вся система которых заполнена газом под некоторым начальным давлением.
  • Жидкозаполненные (жидкостные), система которых заполнена жидкостью.
  • Конденсационные, в которых термобаллон частично заполнен низкокипящей жидкостью, а остальное его пространство заполнено парами этой жидкости.

Устройство всех типов манометрических термометров аналогично. Они бывают показывающими, самопишущими и контактными.

Газозаполненные термометры

Газозаполненные (газовые), вся система которых заполнена газом под некоторым начальным давлением. В газовых манометрических термометрах в качестве термомет­рического вещества обычно используют азот. Область применения газовых термометров по ГОСТ 8624—64 лежит в интервале от — 160 до +600°С.
Дополнительные погрешности могут появиться при изменении температуры окружающей среды (коэффициент теплового расшире­ния газов много больше, чем у жидкостей, и равен приблизительно 0,00365 град-1). Для уменьшения их приходится увеличивать раз­меры термобаллона и уменьшать сечение капилляра. Чем больше длина капилляра, тем больше по­лучаются размеры термобалло­на. При длине капилляра 60 м термобаллоны газовых термомет­ров, серийно изготовляемых, име­ют наружный диаметр 22 мм, а рабочую длину 435 мм. Такие размеры термобаллона могут создать трудности при установке их в объекты измерения. По ГОСТ 8624—64 допустимая дополнительная приведенная по­грешность газовых термомет­ров при отклонении темпе­ратуры окружающей среды на 10°С не должна превышать 0,5%.
Погрешность от изменения температуры для капилляра получается больше, чем для манометра. Погрешность возрастает пропорционально объему, а следова­тельно и длине капилляра. Она может быть уменьшена увеличением объема термобаллона при той же длине капилляра. Обычно оъем термобаллона составляет 90% общего объема термометра
При правильно выбранном соотношении объемов термобаллона, капилляра и трубчатой пружины термометры могут работать достаточно точно без температурной компенсации при длине капилляра до 40—60 м. При очень большой длине капилляра необходимый объем, термобаллона становится слишком большим и значительно возрастает тепловая инерция прибора.
К специфическим недостаткам газовых манометрических термометров относятся их сравнительно большая тепловая инерция, обусловленная низким коэффициентом теплообмена между стенками термобаллона и наполняющим его газом и малой теплопроводностью газа; большие размеры термобаллона, что затрудняет его установку на трубопроводах небольшого диаметра, и необходимость частой проверки. Последнее вызвано тем, что в эксплуатации газовых термометров возможны нарушение герметичности и утечка газа, что не всегда можно сразу заметить.

Жидкозаполненные термометры

Жидкозаполненные (жидкостные), система которых заполнена жидкостью.

В приборах этого типа вся система термометра заполняется жидкостью под некоторым начальным давлением. К жидкостям, применяемым для заполнения, предъявляются следующие требования: возможно больший коэффициент объемного расширения, высокая теплопроводность, небольшая теплоемкость и химическая инертность к материалу термометра.
Для заполнения обычно применяют ртуть (в интервале температур от .—30 до +600° С) и ксилол (в интервале температур от —40 до +200° С).
Для предохранения жидкости от закипания в термометре обеспечивается начальное давление порядка 1,47—1,96 МН/м2 (15—20 кгс/см2).

Благодаря большой теплопроводности жидкости термобаллон термометра сравнительно быстро принимает температуру измеряемой среды. Однако по этой же причине погрешности от колебания температуры окружающей среды у жидкостных термометров больше, чем у газовых. Температурные погрешности под­считываются по тем же формулам, что и для газовых термометров.

При значительной длине капилляра для жидкостных термометров необходимо применять компенсационные устройства.

1 – термобаллон, 2 – основной капилляр, 3 — дополнительный капилляр, 4 и 5 — соответственно основная и вспомогательная спиральные трубчатые пружины

Рисунок 3 – Схема температурной компенсации жидкостного манометрического термометра

На рисунке показан один из вариантов компенсационного устройства, у которого рядом с основным капилляром есть дополнительный (компенсационный) капилляр, один конец которого (у термобаллона), запаян, а другой соединен со вспомогательной (компенсационной) пружиной. Оба капилляра и обе пружины заполняются одной и той же рабочей жидкостью и имеют одинаковые характеристики. С изменением температуры окружающей среды давление жидкости в обоих капиллярах и в обеих пружинах изменяется, вследствие чего вспомогательная пружина, раскручиваясь или скручиваясь, действует в направлении, противоположном действию основной пружины, и тем самым исключается влияние температуры окружающей среды на показания прибора.
Для жидкостных термометров следует также учитывать погрешность, вызванную различным положением термобаллона отно­сительно манометра по высоте; погрешность эту можно скомпенсировать установкой стрелки или пера прибора при помощи механического корректора на нуль или начало шкалы после монтажа термометра на месте.
Жидкость практически несжимаема, поэтому изменение атмосферного давления не влияет на показания прибора.

Конденсационные термометры

Конденсационные, в которых термобаллон частично заполнен низкокипящей жидкостью, а остальное его пространство запол­нено парами этой жидкости. У конденсационных манометрических термометров возможно появление дополнительных погрешностей:
1) гидростатической (из-за различной высоты расположения термобаллона и мано­метра) ;
2) атмосферной из-за колебания атмосферного давления (особенно для начала шкалы).
В конденсационных термометрах термобаллон обычно заполняется на 2/3 объема низкокипящей жидкостью. Перед заполнением термометра воздух из системы удаляется. В замкнутой системе термометра всегда существует динамическое равновесие одновременно протекающих процессов испарения и конденсации. При повышении температуры усиливается испарение жидкости и увеличивается упругость пара, а в связи с этим усиливается также и процесс конденсации. В результате насыщенный пар достигает некоторого определенного давления, строго отвечающего температуре.
Среда, заполняющая капилляр и манометрическую трубку, служит передатчиком давления, независимо от того, жидкая она или газообразная. Так как однозначная зависимость давления насыщенного пара от температуры существует только до критической температуры, то верхний предел шкалы термометра должен быть ниже критической температуры данной жидкости.
Давление пара, изменяясь с температурой, передается через капилляр манометрической пружине. Изменение давления насыщенного пара непропорционально изменению температуры, поэтому шкала конденсационного теомометра получается неравномерной. Это — один из его недостатков.
Изменение температуры капилляра и манометрической трубки не влияет на величину давления в системе конденсационного термо­метра; длина капилляра у термометров такого типа ограничивается в основном трением жидкости в капилляре.
Жидкости для заполнения термометров должны быть химически чистыми, а точка кипения их — достаточно низкой, чтобы обеспечить необходимую величину давления в пределах измеряемых температур. Кроме того, они не должны воздействовать химически на материал термометра.
Количество жидкости в термобаллоне не имеет существенного значения. Важно только, чтобы при наиболее низкой измеряемой температуре в термобаллоье было некоторое количество насыщенного пара, а при наиболее высокой температуре оставалось некоторое количество неиспарившейся жидкости. Термобаллон должен быть заполнен так, чтобь входящий в него открытый конец капиллярной трубки был во всех случаях погружен в жидкость. Нижний предел измерения конденсационным термометром ограничиваете? достаточной величиной давления пара.
Конденсационные термометры более чувствительны, чем термометры других типов. Объясняется это тем, что давление насыщенного пара очень быстро изменяется с температурой
Деформация манометрической трубки пропорциональна избыточному давлению насыщенных паров жидкости, т. е. разности давления паров и атмосферного давления. Поэтому изменение атмосферного давления влияет на показания прибора. Для уменьшения погрешности необходимо, чтобы давление насыщенных паров рабочей жидкости в диапазоне измеряемых температур был значительно больше атмосферного давления.
Основная погрешность различных типов манометрических термометров составляет от ±0,5 до ±2,5% в зависимости от длины капиллярной трубки. При отклонении условий от нормальных возникают дополнительные погрешности, которые определяются расчетом и устраняются особыми приемами, описанными выше.
Погрешность за счет температуры окружающей среды теоретически отсутствует, так как изменение объема передаточной жидкости приводит лишь к изменению соот­ношения между жидкой и паровой фазой в термобаллоне, не меняя в нем давления, зависящего только от температуры. Однако прак­тически небольшая погрешность при изменении температуры окру­жающей среды все же наблюдается (за счет манометра) и нормируется (ГОСТ 8624—64) значением до 0,25% на каждые 10°С отклонения температуры от +20°С. Шкалы конденсационных термометров получаются существенно неравномерными из-за нелинейного соотношения между темпера­турой кипения и соответствующим давлением (рис. 3-8). Рабочая часть шкалы располагается в верхней ее половине. Длина соедини­тельного капилляра достигает 60 м. В качестве передаточной жидкости, заполняющей капилляр и манометр конденсационных термометров, чаще всего применяют глицерин (пропантриоль) в смеси со спиртом или водой
Устройство всех типов манометрических термометров аналогично. Они бывают показывающими, самопишущими и контактными.

>Выбор датчика температуры

Термометр манометрический — прибор для измерения температуры, действие которого основано на зависимости давления рабочего вещества в замкнутом объеме от температуры. В зависимости от рабочего вещества различают газовые, жидкостные и конденсационные термометры.

Конструктивно манометрические термометры представляют собой герметичную систему, состоящую из баллона, соединённого капилляром с манометром. Термобаллон погружается в измеряемую среду. При изменении температуры рабочего вещества в термобалоне происходит изменение давления во всей замкнутой системе, которое через капиллярную трубку передается на манометр. В зависимости от назначения манометрические термометры бывают показывающими, самопишущими, а также состоящими только из первичного преобразователя давления для дистанционной передачи сигнала. Часто к манометрическим термометрам подключают устройства управления и сигнализации.

Капилляр манометрического термометра обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 60 м. Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на большое расстояние манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами. Наиболее уязвимыми в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру. Поэтому устанавливать и обслуживать такие приборы должны специально обученные специалисты. Нельзя нагревать манометрический термометр выше предельной температуры, на которую он рассчитан.

Диапазон измерений манометрического термометра зависит от типа термометра и рабочего вещества. Диапазон должен быть установлен в ТУ на термометры конкретного типа.

Газовые манометрические термометры заполняются азотом или гелием. Диапазон измерения температур может составлять от -200 до +800°С (ГОСТ 16920-93). Шкала равномерная. На показания газовых манометрических термометров оказывает влияние температура капиллярной трубки, если она отличается от температуры термобаллона. Для уменьшения, этой погрешности термометрический баллон имеет объем, во много раз превышающий объем капиллярной трубки. Устранение погрешности достигается применением специальных компенсирующих устройств.
Жидкостные манометрические термометры заполняются ртутью, толуолом, ксилолом, метиловым или пропиловым спиртом. Диапазон измерения температур для жидкостных термометров составляет от -150 до 400 °С. Благодаря большой теплопроводности жидкости, такие термометры менее инерционны по сравнению с газовыми. Шкалы ртутных и спиртовых термометров равномерные, шкала термометра, заполненного ксилолом, не равномерная в диапазоне температур выше 120 °С.
Принцип работы конденсационных манометрических термометров основан на зависимости давления насыщенного пара от температуры. В конденсационных манометрических термометрах применяются легкокипящие жидкости пропан, хлористый этил, этиловый эфир, ацетон, бензол и т.д. Конденсационные манометрические термометры обладают высокой чувствительностью. Шкалы термометров не равномерны в связи с нелинейной зависимостью давления насыщенного пара от температуры. Диапазон измерения температур составляет от -50 до +300 °С.

Особенностью манометрических термометров является довольно большая тепловая инерционность. Показатель тепловой инерции в неподвижной газовой среде составляет 500-800 с, в жидкой среде 15-30 с. Инерционность зависит от размера баллона и его заполнения.

Классы точности манометрических термометров по ГОСТ 16920-93 «Термометры и преобразователи температуры манометрические. Общие технические требования и методы испытаний» выбирают из ряда 0,4; 0,5; 0,6; 1,0; 1,5; 2,5, что соответствует пределу допускаемой основной погрешности в процентах от диапазона измерений. Вариация показаний (изменение показаний при увеличении и снижении температуры) не должна превышать предел допускаемой основной погрешности. Шкалы манометрических термометров градуируются по ГОСТ 25741-83 «Циферблаты и шкалы манометрических термометров. Технические требования и маркировка».

Поверка манометрических термометров осуществляется аккредитованными лабораториями по ГОСТ 8.305-78 «ГСИ. Термометры манометрические. Методы и средства поверки». Поверка проводится в термостатах методом сличения с эталонным термометром. Одной из наиболее сложных проблем поверки манометрических термометров является необходимость обеспечения однородной температуры в термостате на всей длине термобаллона. На термометры специального назначения, увеличенной длины, оригинальной конструкции или области применения могут быть разработаны индивидуальные методы поверки и технические требования.

Стандарты на манометрические термометры публикуются в разделе «Российские и межгосударственные стандарты».

Перейти в раздел «Контактные датчики температуры основных типов» >>>

Перейти в раздел «Контактные датчики других типов»>>>

Перейти в раздел «Поверка и калибровка» >>>

Манометрические термометры. Устройство. Принцип действия.

Манометрические термометры по принципу действия могут быть разделены на два типа: 1) газовые и жидкостные и 2) паровые.

Рис. 269. Схема устройства манометрического термометра: 1 — термометрический баллон; 2 — капиллярная трубка; 3 — полая манометрическая пружина; 4 — тяга; 5 — зубчатый сектор; 6— стрелка; 7—шкала.

Манометрические термометры предназначены для дистанционного измерения и регистрации температуры газов, паров и жидкостей. В некоторых случаях манометрические термометры изготавливаются со специальными устройствами, преобразующими сигнал в электрический и позволяющими производить регулирование температуры.

В основу действия манометрических термометров положена зависимость давления рабочего вещества в замкнутом объеме от температуры. В зависимости от состояния рабочего вещества различают газовые, жидкостные и конденсационные термометры. Конструктивно они представляют собой герметичную систему, состоящую из баллона, соединённого капилляром с манометром. Термобаллон погружается в объект измерения и при изменении температуры рабочего вещества происходит изменение давления в замкнутой системе, которое через капиллярную трубку передается на манометр. В зависимости от назначения манометрические термометры бывают самопишущими, показывающими, бесшкальными со встроенными преобразователями для дистанционной передачи измерений. Достоинство данных термометров является возможность их применения на взрывоопасных объектах. К недостаткам относится невысокий класс точности измерения температуры (1,5, 2,5), необходимость частой периодической поверки, сложность ремонта, большие размеры термобаллона.

Термометрическим веществом для газовых манометрических термометров служит азот или гелий. Особенностью таких термометров является достаточно большой размер термобаллона и, как следствие, значительная инерционность измерений. Диапазон измерения температур составляет от -50 до +600°С, шкалы термометров равномерны. Для жидкостных манометрических термометров термоэлектрическим веществом является ртуть, толуол, пропиловый спирт и т.д. Благодаря большой теплопроводности жидкости, такие термометры менее инерционны по сравнению с газовыми, но при сильных колебаниях температур окружающей среды погрешность приборов выше, вследствие чего при значительной длине капилляра для жидкостных манометрических термометров применяют компенсационные устройства. Диапазон измерения температур (при ртутном заполнении) составляет от -30 до +600°С, шкалы термометров равномерны. В конденсационных манометрических термометрах применяются легкокипящие жидкости пропан, этиловый эфир, ацетон и т.д. Заполнение термобаллона происходит на 70%, оставшуюся часть занимает пар термоэлектрического вещества. Принцип работы конденсационных термометров основан на зависимости давления насыщенного пара низкокипящей жидкости от температуры, что исключает влияние изменения температуры окружающей среды на показания термометров. Термобалоны данных термометров достаточно малы, как следствие, эти термометры наименее инерционны из всех манометрических термометров. Также конденсационные манометрические термометры обладают высокой чувствительностью, связи с нелинейной зависимостью давления насыщенного пара от температуры. Диапазон измерения температур составляет от -50 до +350°С, шкалы термометров не равномерны.

Манометрические термометры. Принцип действия манометрических термометров основан на зависимости давления рабочего (термометрического) вещества в замкнутом объеме (термосистеме) от

6.1.1 Принцип действия

Принцип действия манометрических термометров основан на зависимости давления рабочего (термометрического) вещества в замкнутом объеме (термосистеме) от температуры. В соответствии с агрегатным состоянием вещества в термосистеме манометрические термометры подразделяют на газовые, жидкостные и конденсационныс (парожидкостные).

Манометрические термометрыры могут быть использованы для измерения температур от минус 150 до плюс 600 ºС. Диапазон измерения определяется наполнителем термосистемы. Термометры со специальными наполнителями (расплавленными металлами) пригодны для измерения температуры от 100 до 1000 ºС.

Замкнутая термосистема манометрического термометра, показанная на рисунке 6.1, состоит из термобаллона 2, соединительного капилляра 1 и манометрической пружины 6. Чувствительный элемент термометра (термобаллон) погружается в объект измерения, и термометрическое вещество в термобaлоне достигает температуры измеряемой среды. При изменении температуры рабочего вещества в термобaллоне изменяется давление, которое: через капиллярную трубку передается на пружинный манометр, являющийся измерительным прибором манометрического термометра.

Рисунок 6.1 – Схема манометрического термометра: 1 – соединительный капилляр; 2 – термобаллон; 3 – зубчатый сектор; 4 – показывающая стрелка; 5 – шкала; 6 – манометрическая пружина; 7 – зубчатая трибка; 8 – система тяги сектора с манометрической пружиной.

Изменение температуры контролируемой среды воспринимается заполнителем термосистемы через термобаллон 2 и преобразуется в изменение давления, под действием которого манометрическая трубчатая пружина 6 с помощью тяги 8, сектора 3 и трибки 7 премещает стрелку 4 относительно шкалы 5. Термобаллон представляет собой цилиндр, изготовленный из латуни или специальных сталей, стойких к химическому воздействию измеряемой среды.

Геометрические размеры термобаллона зависят от типа термометров и от задач измерения. Так, диаметр термобаллона находится в пределах 5 — 30 мм, а его длина 60 — 500 мм. Капилляр, соединяющий термобаллон с манометрической пружиной, представляет собой медную или стальную трубку с внутренним диаметром 0,1 — 0,5 мм. Длина капиллярной трубки в зависимости от эксплуатационных требований может быть от нескольких сантиметров до 60 м. Медные капилляры имеют стальную защитную оболочку, предохраняющую их от повреждений при монтаже и эксплуатации. Для улучшения метрологических характеристик манометрических термометров к манометрическим пружинам предъявляют ряд требований. Так, с целью уменьшения температурной погрешности пружина должна иметь по возможности малый объем. Кроме того, пружина должна иметь возможность раскручиваться на большой угол и свободный ее конец должен обладать значительным тяговым усилием для механического перемещения дополнительных устройств.

В зависимости от конструкции измерительной системы манометрические системы бывают показывающими, самопишущими бесшкальными со встроенными датчиками для дистанционной передачи показаний на расстояние. Манометрические термометры бывают: газовые, жидкостные, конденсационные. В данной работе представлен манометрический, жидкостный термометр.

Дата добавления: 2015-01-13; просмотров: 2729;

Принцип действия манометрического термометра основан на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Принципиаль­ная схема показывающего манометрического термометра приве­дена на рис. 3.4.

Термосистема состоит из термобаллона 1, капилляра 2 и манометрической одно- или многовитковой пру­жины 3. Капилляр соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 4, поводок 5, сектор 6 связан со стрелкой прибора 7.

При погружении термобаллона в среду, температура которой измеряется, изменяется давление термометрического вещества в замкнутой термосистеме, чувствительный элемент которой (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное изменение положения пружины преобразу­ется в соответствующее перемещение регистрирующей стрелки относительно шкалы прибора. Поперечное сечение манометриче­ской пружины, выполненной в виде полой металлической (сталь, латунь, бронза) изогнутой трубки, либо овальное (рис. 3.4, б), либо сложной формы с пережатым средним участком и двумя каналами каплевидной формы (рис. 3.4, в), что повышает ее меха­ническую прочность, уменьшает внутренний объем и снижает дополнительную температурную погрешность, связанную с изменением температуры окружающей среды. Цилиндрический термобаллон изготавливают из нержавеющей стали, обеспечивающей возможность контроля температуры хими­чески агрессивной среды. Для защиты от механических поврежде­ний капилляр, выполненный в виде медной или стальной трубки внутренним диаметром 0,35 и наружным 2,5 мм, прокладывают в защитной металлической оболочке. Длина капилляра различна и изменяется в зависимости от вида термометра от 0,6 до 60 м.

В зависимости от термометрического вещества манометрические термометры делятся на газовые, конденсационные и жидкостные.

В газовых и жидкостных термометрах вся термосистема запол­нена тем или иным веществом, в конденсационных термометрах термобаллон заполнен низкокипящей жидкостью и ее насыщен­ными парами, а в остальной части термосистемы находятся либо насыщенные пары данной жидкости, либо специальная жидкость для передачи давления из термобаллона в манометрическую пружину. Отличие приборов конденсационного типа заключается также в значительной нелинейности зависимости давления насыщенного пара от температуры. Поэтому необходимо применение специальных устройств для получения равномерной шкалы термометра. Характер заполнения определяет размеры термобаллона и длину капилляра: они наибольшие у газовых термометров, наи­меньшие у жидкостных. Значительные габариты термобаллона газовых термометров ограничивают область их применения.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменение температуры окружающего воздуха (дополнительная температурная погрешность), различная высота расположения термобаллона и пружины (гидростатическая погрешность) колебания атмосфер­ного давления (барометрическая погрешность).

Дополнительная температурная погрешность, появляющаяся из-за изменения упругости манометрической пружины, характерна для газовых и конденсационных термометров: при повышении температуры воздуха упругость пружины понижается, что при­водит, к завышению показаний термометра. Изменение температуры окружающей среды приводит также к изменению темпера­туры термометрической среды в капилляре и пружине и, следовательно, к изменению давления в термосистеме. Этот источник дополнительной температурной погрешности проявляется в газо­вых и жидкостных манометрических термометрах. Уменьшить данную погрешность можно с помощью специальных компенсато­ров (биметаллическая пружина, инварный сердечник), установкой параллельной термосистемы без термобаллона, а также путем применения манометрической пружины специальной формы.

При работе конденсационных и жидкостных термометров необ­ходимо учитывать гидростатическую погрешность введением поправки, которая прибавляется, если пружина находится выше термобаллона, или вычитается, если ниже.

Пример. При измерении температуры газа термобаллон жидкостного ртутного термометра находится на 2 м выше, чем манометрическая пружина. Давление, подводимое к пружине, определяется как давление в термобаллоне плюс давление столба жидкости, величина которого определяется указанным перепадом уровней расположения элементов термометра и вычисляется по фор­муле:

pг=ΔHρg, (3.6)

Где ΔH— разность уровней расположения термобаллона и манометрической

пружины, ΔH = 2 м;

ρ — плотность ртути, ρ = 13,595 кг/м3;

g—ускорение силы тяжести, м/с2.

pг = 2,0·13,595·9,81 = 0,257 МПа.

На данную величину показания манометрического термометра будут за­вышены. При чувствительности прибора 0,02 МПа/ºС ошибка измерения соста­вит 12,8°С.

Манометрическая пружина термометра находится под действием давления, которое равно разности давлений в термосистеме и внешнего атмосферного, поэтому изменение последнего оказывает влияние на точность измерения температуры. Приведенная баро­метрическая погрешность (%) определяется по уравнению

δ=100Δpσ/(pk-pн), (3.7)

где Δpσ —изменение барометрического давления, Па;

pk , pн —давления в термосистеме, соответствующие конеч­ному и начальному значениям шкалы термометра, Па.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80%. Приборы изго­тавливаются различных модификаций: показывающие, самопишущие (с диаграммами дискового и ленточного типа), с сигнальными и регулирующими устройствами, а также с выходными унифицированными сигналами для включения в систему автоматического контроля и регулирования.

Поверка манометрических приборов производится с помощью образцовых стеклянных жидкостных термометров. Стеклянный термометр и термобаллон погружают в термостат и последова­тельно выдерживают в течение трех минут в каждой поверяемой точке, повышая температуру с начальной до конечной отметки шкалы. Затем после пятиминутной выдержки операция повторяется вновь, но уже с понижением температуры. Таким образом определяется точность манометрического термометра и его вариации (разность между погрешностями при прямом и обратном ходах.)

Манометрические термометры применяются для контроля тем­пературы охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для получения защитного газа, металлур­гических печах, кислородных станциях и т. п.

Термометр дистанционный показывающий типа ТПК-60/3М.

Термометр ТКП-60/3М рис.3.5 предназначен для непрерывного измерения температуры воды, масла и других неагрессивных жидкостей в условиях повышенной вибрации. Диапазон измерений 25 + 125 С.Класс точности 2,5.
Длина соединительного капилляра 1,6; 2,5; 4,0; 6,0; 10,0; 12,0 м.
Диаметр корпуса 60мм.

Термометры манометрические типов ТГП-100, ТГП-100Эк, ТКП-100, ТКП-100Эк.

Предназначены для непрерывного измерения температуры жидких и газообразных сред в стационарных промышленных установках и управления внешними электрическими цепями от сигнализирующего устройства рис.3.6.

Диапазон измерений -50…+400С. Класс точности 1, 1,5. Длина соединительного капилляра 1,6; 2,5; 4,0; 6,0; 10,0; 16,0; 25,0 м.
Диаметр корпуса 100 мм.

Термометры манометрические конденсационный показывающий сигнализирующий типа ТКП-160Сг-М1.

Предназначен для контроля и сигнализации предельно допустимых температур жидкостей, паров и газов в стационарных промышленных установках рис.3.7.

Диапазон измерений -25+75; 0-120; 100-200; 200-300 С.
Класс точности 1,5; 2,5. Длина соединительного капилляра 1,6; 2,5; 4,0; 6,0; 10,0; 16,0; 25,0 м. Диаметр корпуса 160 мм.

Термометры манометрические и биметаллические. Принцип действия, устройство, характеристики, типы и виды манометрических и биметаллических термометров.

Принцип действия манометрических термометров основан на изменении давления газа, жидкости или насыщенного пара в замкнутом объеме в зависимости от температуры. Эти термометры широко применяются во взрывоопасных производствах и выпускаются такими фирмами как «Орлекс» (г. Орел), ОАО «МаноТомь» (г. Томск), Wika, Jumo (Germany) и др. Конструктивно термометр состоит из термобаллона 1, погружаемого в контролируемую среду, манометра 3 для измерения давления и соединяющего их капилляра 2 (рис. 1). Такие термометры используются для измерения температур от -200 до 600 °С и выпускаются следующих разновидностей.

Рис. 1. Схема манометрического термометра:

1 — термобаллон; 2 — капилляр; 3 — манометр

Газовые манометрические термометры применяются для измерения температур в интервале от -200 до 600 °С. Нижний предел измерения выбирается из интервала от -200 до 200 °С, верхний — из интервала от 50 до 600 °С, диапазон измерения находится в интервале от 100 до 700 °С. В качестве наполнителя используется гелий (при низких температурах), азот (при средних температурах) или аргон (при высоких температурах).

Реальное уравнение шкалы несколько отличается от линейного, однако это отклонение незначительно и можно считать, что шкалы газовых манометрических термометров являются равномерными.

Изменение температуры окружающего воздуха влияет на расширение рабочего вещества в капилляре и манометрической пружине, что вызывает изменение давления в термосистеме и соответствующее изменение показаний термометра. Для уменьшения этого влияния уменьшают отношение внутреннего объема пружины и капилляра к объему термобаллона, для чего увеличивают длину термобаллона и его диаметр.

Класс точности газовых термометров 1 или 1,5. Они могут выпускаться показывающими или самопишущими, могут снабжаться дополнительными устройствами.

Конденсационные манометрические термометры используются для измерения температур в интервале от -25 до 300 °С. Нижний предел измерения выбирается из интервала от -25 до 100 °С, верхний — из интервала от 35 до 300 °С, диапазон измерения колеблется в пределах от 50 до 150 °С. Термобаллон термометра примерно на 3/4 заполнен жидкостью с низкой температурой кипения, а остальная часть заполнена насыщенным паром этой жидкости. Капилляр и манометрическая пружина также заполнены жидкостью. Количество жидкости в термобаллоне должно быть таким, чтобы при максимальной температуре не вся жидкость переходила в пар. В качестве термометрических жидкостей используется фреон-22 (при низких температурах), метил хлористый, этил хлористый, ацетон, толуол, спирт (в порядке возрастания пределов измерения). Давление в термосистеме конденсационного манометрического термометра будет равно давлению насыщенного пара рабочей жидкости, определяемого, в свою очередь, температурой, при которой находится рабочая жидкость, т.е. температурой измеряемой среды с помещенным в нее термобаллоном. Эта зависимость давления насыщения пара от температуры имеет нелинейный вид, она однозначна, когда измеряемая температура не превышает критическую.

В связи с тем, что давление в термосистеме зависит только от измеряемой температуры, на показания термометра не будет оказывать влияние температура окружающей среды. Имеет место гидростатическая погрешность, вызываемая разностью высот расположения термобаллона и измерительного прибора. Для уменьшения этой погрешности длина капилляра не должна превышать 25 м. Барометрическая погрешность у конденсационных манометрических термометров может иметь место на начальном участке шкалы, когда давление в термосистеме невелико. В остальных случаях влияние барометрического давления будет пренебрежимо мало.

Конденсационные термометры выпускаются показывающими, дополнительно они могут оснащаться электроконтактными устройствами. Класс термометров 1 или 1,5.

Жидкостные манометрические термометры находят небольшое распространение. Они используются для измерения температур в интервале от -50 до 300 °С. Нижний предел измерения выбирается из интервала от -50 до 100 °С, верхний — из интервала от 50 до 300 °С, диапазон измерения колеблется в пределах от 50 до 300 °С. В качестве термометрических жидкостей используется жидкость ПМС-5 при низких температурах, при высоких — жидкость ПМС-10. Рабочее вещество жидкостных манометрических термометров практически несжимаемо. Поэтому изменение объема рабочей жидкости в термобаллоне при изменении температуры соответственно диапазону измерения вызовет такое увеличение давления в термосистеме, при котором манометрическая пружина изменит свой внутренний объем соответственно изменению объема жидкости. При этом давление зависит от жесткости пружины и для различных манометрических пружин может быть различным.

В жидкостных манометрических термометрах погрешность, вызванная изменением барометрического давления, как правило, отсутствует, так как давление в системе значительно. Погрешность, вызываемая изменением температуры окружающей среды, имеет место и в жидкостных манометрических термометрах. Для ее уменьшения применяют различные способы температурной компенсации.

В жидкостных манометрических термометрах может иметь место гидростатическая погрешность, возникающая при различных уровнях расположения термобаллона и измерительного прибора. Для снижения возможных гидростатических погрешностей длину капилляра уменьшают до 10м. Жидкостные термометры выпускаются показывающими класса 1 или 1,5.

Манометрические термометры могут работать в условиях вибрации, а также во взрывоопасных и пожароопасных помещениях. Источники погрешностей термометров: изменение барометрического давления и температуры окружающей среды, характер взаимного расположения термобаллона и манометра. В табл. 1 приведены некоторые технические характеристики показывающих манометрических термометров ТГП-100М1 (газовые), ТКП-100М1 (конденсационные), ТЖП-100 (жидкостные). Для термометров ТКП-100М1 предельная основная погрешность устанавливается для последних двух третей температурной шкалы, а на первой трети не регламентируется.

Таблица 1

Технические характеристики манометрических термометров

Обозначение

Тип

Интервал применения °С

Класс

Диаметр термобаллона, мм

Длина термобаллона, мм

Глубина погружения термобаллона, мм

Длина капилляра, м

ТГП-100М1

Газовый

1 или 1,5

20 или 30

125 250 400

От 160 до 500

От 1,6 до 60

ТКП-100М1

Конденсационный

1 или 1,5

От 125 до 400

От 1,6 до 25

ТЖП-100

Жидкостной

1 или 1,5

34 42 56 100

От 80 до 400

От 1,6 до 10

Для термометров с регламентированной погрешностью для первой трети устанавливается последующий низкий класс точности. Вариация показаний не превышает абсолютного значения предельной основной погрешности.

Биметаллические термометры. Принцип их действия основан на том, что полоска из двух свальцованных друг с другом пластин из металлов с различными коэффициентами расширения (биметалл), искривляется при изменении температуры.

Искривление находится в приблизительной пропорции с температурой. Биметаллическая пластина легла в основу двух различных измерительных элементов:

• винтовая пружина,

• спиральная пружина.

Рис. 2. Схема биметаллического термометра с винтовой пружиной

В результате механической деформации биметаллических пластин при изменении температуры в указанных элементах возникает вращательное движение. Если внешний конец биметаллической измерительной системы жестко закреплен, то другой конец без промежуточного элемента проворачивает вал указательной стрелки. Диапазоны показаний лежат между -70 и 600 °С при измерениях с классом точности 1 или 2,5. Условное изображение термометра с винтовой пружиной приведено на рис. 2. Биметаллические термометры являются наиболее простыми измерителями температуры. Они выпускаются НПО «Юмас» (Москва), ЗАО «Орлэкс» (г. Орел),ф. Wika (Germany) и др.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *