Магнитоэлектрический вольтметр

Магнитоэлектрические амперметры

ЛЕКЦИЯ 6.

Электроизмерительные приборы магнитоэлектрической системы.

Для расширения пределов измерения магнитоэлектрических амперметров и вольтметров применяются масштабные преобразователи: для амперметров – шунты, для вольтметров – добавочные сопротивления.

Магнитоэлектрические амперметры.

Основой амперметров является измерительный механизм (ИМ). В микро- и миллиамперметрах, предназначенных для измерения токов (не превосходящих 50 мА), измерительная цепь состоит из рамки и пружин, через которые подводится ток к рамке (сопротивление цепи измерительного механизма RА = Rр + 2Rпруж ).

Значение тока полного отклонения ограничено влиянием его теплового действия на упругие свойства спиральных противодействующих пружинок.

Если измеряемый ток I превышает по значению ток полного отклонения IА подвижной части, то параллельно цепи измерительного механизма И подключается шунт (резистор, через который пропускается ток Iш = I – IА (рис. 6.1, а). Сопротивление шунта Rш определяется из условия

IА RА = Iш Rш = I = const.

Если шунт рассматривать как делитель тока с коэффициентом деления n= I / IА,то его сопротивление

Rш = RА/ (n – 1).

Обычно Rш = 10-2 – 10-4 Ом.

В двухпредельном амперметре (рис.6.2), если принять I1<I2, сопротивления шунта для пределов I1и I2 соответственно равны:

Rш1 = R1 + R2 = RА/(n1 – 1); Rш2 = (R1 + RА )/(n2 – 1), (6.1)

где n1 = I1 / IА; n2 = I2 / IА – коэффициенты шунтирования.

Совместно решая (6.1), можно определить сопротивления шунтов:

.

Аналогично можно рассчитать сопротивления для многопредельного ступенчатого шунта.

Шунты бывают внутренние и наружные. Внутренние шунты изготовляют на токи примерно до 50 А, наружные – на токи до 10 кА.

В целях стандартизации, наружные шунты выпускаются на различные номинальные падения напряжения (от 45 до 300 мВ) и классов точности от 0.02 до 0.5.

Магнитоэлектрический измерительный механизм с включенным последовательно добавочным резистором (рис.6.1, б) можно использовать как вольтметр для измерения напряжения. Его подключают параллельно к объекту измерения. В измерительной цепи вольтметра измеряемое напряжение преобразуется в ток, необходимый для отклонения подвижной части ИМ.

Предел измерения UV вольтметра зависит от тока полного отклонения IV подвижной части и внутреннего сопротивления RV вольтметра (суммы сопротивлений обмотки рамки Rр и пружин 2Rпруж):

UV = IVRV; RV = Rр + 2Rпруж .

Ток полного отклонения IV рамки магнитоэлектрических вольтметров составляет примерно 50 мА.

Для изменения предела измерения напряжения UV до U последовательно с вольтметром включается добавочный резистор, сопротивление Rд которого при заданном значении IV определяется из выражений:

UV /RV = U/(RV+Rд) = IV = const; U = UV + Uд;

Rд = RV = RV(n – 1),

где n=U/UV – коэффициент расширения предела измерения вольтметра (множитель шкалы).

В многопредельных вольтметрах (рис.6.3) используют ступенчатое включение резисторов и для соответствующих пределов измерения напряжений U1,U2,U3 при заданном токе рамки IV сопротивления добавочных резисторов рассчитывают по формулам:

R1д = RV(n1 – 1), или R1д = (U1/IV) – RV ;

R2д = RV(n2 – 1) – R1д, или R2д = (U2 – U1)/IV, и т.д..

где n1 = U1 /UV; n2= U2 /UV – коэффициенты расширения пределов.

Добавочные резисторы могут быть внутренними (до 600 В) и наружными (до 1500 В). Наружные добавочные сопротивления выпускаются на определенные номинальные токи (от 0.5 до 30 мА) и имеют классы точности от 0.02 до 1.

Шунты и добавочные сопротивления изготавливаются из материалов с высоким удельным сопротивлением (манганин, константан), имеющих температурный коэффициент сопротивления, близкий к нулю.

Комбинированные аналоговые измерительные приборы (выпрямительные приборы).

Комбинированный аналоговый измерительный прибор – ампервольтомметр (авометр) – является универсальным многопредельным прибором, с помощью которого возможны измерения токов, напряжений в цепях постоянного и переменного токов частотой от 20 Гц до 20 кГц и выше, сопротивлений постоянному току и емкостей. В авометре используют магнитоэлектрический ИМ , который может при помощи переключающего устройства соединяться с различными измерительными цепями.

Принцип работы таких приборов заключается в выпрямлении переменного тока с помощью полупроводниковых диодов (см. рис. 6.4). Постоянная составляющая выпрямленного тока измеряется прибором магнитоэлектрической системы (микроамперметром, миллиамперметром). В схеме прибора используют одно- и двухполупериодные выпрямители.

В однополупериодных схемах (рис. 6.4, а) ток i через магнитоэлектрический прибор, включенный последовательно с диодом VD1, пропускается только в положительный полупериод. В отрицательный полупериод, для которого сопротивление диода VD1 велико, ток протекает через диод VD2, включенный параллельно прибору. Диод VD2 защищает диод VD1 от пробоя. Для уравнивания сопротивления параллельных ветвей последовательно со вторым диодом включен резистор R, сопротивление которого равно сопротивлению измерительной цепи прибора. Подвижная часть магнитоэлектрического прибора обладает механической инерцией и при частотах выше 10…20 Гц не успевает следить за мгновенными значениями вращающего момента, реагируя только на среднее значение момента. Из уравнения шкалы магнитоэлектрического прибора a = следует, что отклонение стрелки выпрямительного прибора пропорционально среднему за период значению переменного тока. Для однополупериодного выпрямления при токе синусоидальной формы

и показания прибора

a = SI Iср . (6.2)

В двухполупериодных схемах выпрямления (рис. 6.4, б) ток i, протекающий через прибор, увеличивается вдвое по сравнению с током, протекающим в схеме рис. 6.4, а. Для синусоидального тока

I ср.в= 0.636 Im.

Из (6.2) видно, что шкала выпрямительного прибора линейна и при любой форме кривой измеряемого тока отклонение стрелки прибора пропорционально среднему за период значению. Однако на практике шкалу выпрямительных приборов всегда градуируют в средних квадратических значениях напряжения (тока) синусоидальной формы, поэтому средневыпрямленное значение тока , протекающего через прибор, можно выразить через среднеквадратическое значение I измеряемого тока и коэффициент формы для синусоиды КФ:

Здесь КФ =

Тогда I = 2.2IА .

При двухполупериодной схеме

I = 1.1IА.

Следовательно, в выпрямительных приборах все значения оцифрованных делений шкалы как бы умножены на коэффициент формы Кф= 1.11. Отсюда следует, что при измерении тока или напряжения несинусоидальной формы полученный отсчет по шкале такого выпрямительного прибора сначала нужно разделить на 1.11 (получить выпрямленное значение измеряемой величины), а затем умножить на коэффициент формы, соответствующий форме реального сигнала. В приборах с однополупериодным выпрямлением вместо 1.11 подставляют 2.22 (2Кф).

Выпрямительные приборы имеют классы точности 1.5 и 2.5 с пределами измерения по току от 2 мА до 600 А, по напряжению – от 0.3 до 600 В.

Достоинствами выпрямительных приборов является высокая чувствительность, малое собственное потребление энергии и возможность измерения в широком диапазоне частот. Частотный диапазон выпрямительных приборов определяется возможностями применяемых диодов. Так, применение точечных кремниевых диодов обеспечивает измерение переменных токов и напряжений до частот порядка 104…105 Гц. Основными источниками погрешностей этих приборов являются изменения параметров диодов с течением времени, влияние окружающей температуры, а также отклонение формы кривой измеряемого тока или напряжения от той, при которой произведена градуировка прибора.

Электромагнитный измерительный механизм.

Состоит из неподвижной катушки с обмоткой, в которую подается измеряемый ток, и сердечника на оси из магнитного материала (табл.5.1,б).

Сердечник втягивается в магнитное поле, создаваемое измеряемым током. Обмотка неподвижной катушки, в отличие от предыдущего, может быть выполнена из более толстого провода. Поэтому электромагнитные приборы обладают большей перегрузочной способностью.

Зависимость угла поворота от квадрата тока (см. формулы на схеме)

a =

указывает на возможность измерения переменного и постоянного токов, а также на квадратичный характер шкалы. Однако, на практике шкалу прибора можно приблизить к линейной подбором конфигурации сердечника.

Таким образом, электромагнитные приборы измеряют среднеквадратическое (действующее) значениетока. Это относится и к другим видам приборов с квадратичной функцией преобразования.

Достоинства приборов электромагнитной системы:

Простота конструкции, хорошая перегрузочная способность и одинаковая пригодность для измерений в цепях постоянного и переменного токов, а также отсутствие токоподводов к подвижной части, низкая трудоемкость в изготовлении и низкая стоимость используемых материалов и, следовательно, пониженная цена по сравнению с другими приборами, имеющими равные метрологические свойства.

Недостатки: большое собственное потребление энергии (собственное сопротивление вольтметров составляет 100 ¸ 2000 Ом), невысокая точность (классы точности 1.0; 1.5; 2.5), малая чувствительность, влияние внешних магнитных полей.

Электромагнитные приборы применяют преимущественно в качестве щитовых амперметров и вольтметров в цепях переменного тока промышленной частоты. Классы точности щитовых приборов 1.5 и 2.5. Промышленностью выпускаются амперметры с верхним пределом измерения от долей ампера до 200 А, и вольтметры с пределами измерения от долей вольта до сотен вольт.

Выпускаются также переносные приборы электромагнитной системы классов точности 0.5 и 1.0 для измерения в лабораторных условиях.

Электромагнитные амперметры и вольтметры.

Диапазон измерения токов весьма широк. Для стационарных измерений используют однопредельные амперметры, для переносных – многопредельные.

Применение шунтов для расширения пределов измерения электромагнитных амперметров нерационально, т.к. приводит к увеличению мощности потребления приборами, громоздкости и дороговизне.

Пределы измерения амперметров расширяют с помощью измерительных трансформаторов тока (ТТ) (рис.6.5,а).

Первичная обмотка ТТ с меньшим числом витков включается последовательно в цепь измеряемого тока I1, а к зажимам вторичной обмотки с большим числом витков подсоединяется амперметр А. Измеряемый ток определяют посредством умножения показаний амперметра на номинальный коэффициент трансформации тока КIном, т.е.

IX = I1 = I2KIном.

Лабораторные измерительные трансформаторы тока изготовляются на номинальные напряжения 0.5 – 35 кВ; номинальные первичные токи 0.1 – 25000 А; номинальные вторичные токи 5 А и 1 А. Классы точности ТТ 0.05, 0.1, 0.2, 0.5.

Измерительная цепь электромагнитного вольтметра представляет собой последовательное соединение неподвижной катушки и добавочного резистора. Добавочные резисторы применяют в многопредельных вольтметрах с наибольшим пределом измерения 600 В.

Для расширения пределов измерения электромагнитного вольтметра применяют измерительные трансформаторы напряжения ТН (рис.6.5,б).

Первичную обмотку ТН с большим числом витков подключают параллельно участку цепи, на котором измеряется напряжение U1, вторичную обмотку с напряжением U2 и малым числом витков соединяют с вольтметром.

Вторичная обмотка замкнута на большое сопротивление, вследствие чего токи в обмотках малы и ТН работает в условиях, близких к х.х.

Измеряемое напряжение определяют посредством умножения показаний вольтметра на номинальный коэффициент трансформации КUном, т.е.

Измерение мультиметром постоянного тока

Сила тока измеряется при наладке различных электронных узлов, схем и устройств. В быту тестер для измерения силы тока может применяться, например, для контроля зарядного тока аккумулятора, когда на зарядном устройстве нет соответствующего прибора или он вышел из строя.

Шкала постоянного тока обычно имеет четыре предела:

Если измерения производятся в перечисленных пределах, то щупы подключаются к тем же гнездам, что и при измерении других величин: черный провод – к гнезду, обозначенному значком заземления или надписью COM, красный – к гнезду VΩmA.

Если же диапазон измеряемых токов лежит выше, чем 200 мА, то необходимо щуп из гнезда VΩmA переключить в гнездо 10А, в противном случае прибор выйдет из строя. Черный провод при этом остается в гнезде со значком заземления.

Измерение переменного тока данная модель мультиметра не производит.

Также как и при измерении напряжения мультиметром, измерять силу тока необходимо начинать с максимального предела, чтобы предотвратить выход из строя мультиметра.

Переключать прибор на более низкий предел нужно только после того, как убедились, что показания прибора ниже установленного предела. Если нет необходимости в более точных измерениях, то на нижний предел можно и не переключать.

Самое главное, нужно всегда помнить, что для измерения силы тока тестер подключается в цепь последовательно, а при измерении напряжения и сопротивления – параллельно.

Силу тока в розетке измерить невозможно – прибор мгновенно выйдет из строя! Поэтому, прежде чем подключать щупы к точкам измерения, обязательно нужно убедиться в том, что переключатель мультиметра установлен в нужном секторе и на необходимом пределе измерений.

Замена питающего элемента прибора

Как только вы заметите на дисплее значок батарейка, это значит что батарей от которой питается прибор «подсела» и пришла пора ее заменить. Для этого необходимо открутить отверткой два болтика, снять заднюю крышку и установить новый элемент питания – батарейку на 9 V.

Надеюсь в данной статье на все ваши вопросы «как правильно пользоваться мультиметром » был дан полноценный ответ, если нет – задавайте вопросы в комментариях.

Как измерить силу тока мультиметром

Чтобы ответить на вопрос, как измерить силу тока мультиметром, необходимо разобраться, что такое сила тока, и что собой представляет мультиметр. Итак, начнем с первой позиции.

Со школьной скамьи известно, что сила тока – это количество (объем) электроэнергии, который проходит через какой-нибудь проводник, к примеру, это может быть обычная лампочка или кусок проволоки. Сам же электрический ток – это направленное движение электронов. Так вот сила тока – это, по сути, количество электронов, прошедших через какую-то одну точку в проводнике за единицу времени (обычно считается за одну секунду). Чисто с физической стороны – это один ампер, равный одному кулону в секунду. На этом информацию по школьной программе можно считать законченной.

Теперь переходим к электрике. Для чего необходимо измерять силу тока? Основное назначение данной процедуры – это определить, не является ли проходящий через проводник ток выше, чем этот проводник может выдержать. Другого назначения нет.

А вот измерять лучше именно мультиметром, который собой представляет универсальный измерительный прибор, с помощью которого можно измерить не только силу тока, но и напряжение, и сопротивление электрической цепочки.

Конструктивные особенности

Итак, в мультиметре есть два вида выходов, они обозначены цветом: красным и черным. А вот гнезд может быть на разных моделях разное количество: два, четыре или больше. Черный выход – это масса, то есть, общий (обозначается или «com», или минусом). Красный используется именно для измерений, то есть, является потенциальным. Здесь может быть несколько гнезд для измерения каждого параметра электрической цепи, то есть, сопротивления, напряжения и силы тока. На мультиметре такие гнезда обозначаются единицей измерения параметров, так что не ошибетесь.

Второй внешний элемент – это рукоятка, вращающаяся по кругу. С ее помощью устанавливается предел измерений. Так как перед нами стоит вопрос, как можно измерить силу тока мультиметром, то нас должна интересовать шкала с амперами. Хотелось бы отметить, что таких пределов на аналоговых тестерах меньше, чем на цифровых. Плюс ко всему последние комплектуются разными полезными опциями, к примеру, звуковым сигналом.

А вот теперь один из важных моментов. У каждого мультиметра есть предел по току, который является максимальным. Поэтому выбирая проверяемую электрическую сеть, необходимо сопоставить проверяемую ситу тока цепи с пределом в тестере. К примеру, если в проверяемой электрической цепочке предполагается, что проходящий по ней ток будет иметь показатель 200 А, то не стоит проверять эту цепь мультиметром с максимальным пределом в 10 А. Предохранители прибора тут же сгорят, как только вы начнете тестирование. Кстати, максимальный показатель обязательно указывается на корпусе прибора или в его паспорте.

Измеряем силу тока

Что нужно сделать в первую очередь:

  • устанавливаем щупы: черный в черное гнездо, красный в красное с обозначением ампера – «А»;
  • переключаем тумблер, который показывает, какой ток надо будет проверять: переменный «AC» или постоянный «DC»;
  • устанавливается интервал измеряемых пределов так, чтобы не спалить сам прибор, то есть, предел установить таким, который будет выше ожидаемого уровня силы тока в электрической цепи.

Подготовительный этап закончен, мультиметр готов, можно проводить измерение силы тока.

Внимание! Перед тем как проводить замеры, необходимо электрическую сеть обесточить. Не стоит проводить тестирование во влажной среде или в помещении с высокой влажностью. Придерживайтесь обязательно требований техники безопасности.

К примеру, как проверить участок электропроводки. Для этого концы участка надо оголить (удалить изоляцию на проводах) и подключить к ним два щупа от мультиметра. Кстати, на конце черного провода установлен «крокодил», так что подсоединить его к проводке не составит труда. На красном проводе установлен именно щуп в виде шила. Его придется вручную подсоединять, прикладывая щуп к оголенному концу.

Итак, если все приготовления закончены, можно подавать на участок проводки напряжение. На дисплее мультиметра должны показаться цифровые обозначения силы тока. Если на экране высветились нули, то это или обрыв сети, или неправильно установлен предел измерений. Поэтому выключите подачу тока на участок, отсоединить мультиметр и настройте его под другую ожидаемую величину. И все, то же самое, проведите заново.

Подготовка к проведению измерений

Прежде всего, необходимо определить интервал, в котором будут проводиться измерения. Следует помнить, что мультиметр позволяет замерять не только силу тока, но и напряжение с сопротивлением. В соответствии с этим, у всех моделей шкала разбита на определенные сектора, предназначенные для каждой электрической системы, подлежащей проверке. Поэтому, нельзя использовать прибор, рассчитанный на 10 ампер, для измерения тока в 200 ампер. В лучшем случае все может обойтись лишь сгоревшим предохранителем. В инструкции или на самом приборе указывается максимально допустимое значение измеряемого тока.

При переходе в режим измерения силы тока, нужно переключиться на конкретную позицию постоянного или переменного тока, которому соответствуют обозначения DC и АС. Все зависит от того, какая цепь будет проверяться, и какой источник питания у этой цепи. После этого, на приборе нужно установить необходимый измерительный интервал. Чтобы полностью исключить перегорание предохранителя, верхняя граница интервала должна значительно превышать возможную силу тока. Если, при включении в цепь, прибор ничего не покажет, то максимальное значение интервала нужно опустить ниже.

В комплект мультиметра входят два кабеля. На одном конце каждого из них установлен щуп и разъем. Оба кабеля необходимо подсоединить к гнездам, соответствующим измерению силы тока. Наиболее точное их обозначение описывается в инструкции.

Меры безопасности при работе с мультиметром

Запрещается проводить замеры при наличии мокрой окружающей среды или в условиях высокой влажности воздуха. Это связано с тем, что влага является очень хорошим проводником электрического тока. Во всех случаях рекомендуется использование защитных резиновых перчаток.

Перед началом работы нужно проверить целостность изоляции проводов. которая может быть нарушена из-за продолжительной эксплуатации. В таких случаях очень высока вероятность удара электрическим током.

В случае поражения током, пострадавшему необходимо оказать первую медицинскую помощь. Поэтому, производить измерения лучше всего с напарником, способным подстраховать в случае возникновения нештатной ситуации.

После проведения измерений ток необходимо вновь отключить и соединить между собой разрезанные провода.

Сила тока измеряется не только для проведения лабораторных работ по физике. Любой домашний мастер, собирающий электрические схемы, нуждается в точном измерении параметров электрических цепей.

  • Проверка параметров трансформатора, самодельного блока питания
  • Поиск токов утечки аккумулятора в электрической схеме автомобиля. Это наиболее популярное применение амперметра
  • Зарядка аккумуляторной батареи с ручной установкой параметров.

Все давно привыкли пользоваться цифровыми мультиметрами, не задумываясь о точности (точнее погрешности) измерений прибора.

Электрики КИП знают, как производится поверка измерительных приборов. Ремонтно-поверочные базы есть на каждом предприятии. Мы все помним, что на любом приборе обязательно нанесен штампик о поверке, а в документации указана дата последнего измерения, периодичность этой процедуры, и срок действия.

А как быть с популярными универсальными приборами, которые продаются на радио рынках, в магазинах электротоваров или на китайских интернет сайтах? Максимум, чего можно добиться от продавца, это полулегальную бумагу (паспорт или инструкцию), в которой указывается погрешность измерения.

Как проверить амперметр на исправность в бытовых условиях?

Самый беспроигрышный вариант – отдать амперметр (мультиметр) метрологам. В каждом городе есть лаборатория сертификации и стандартизации, с обширным ассортиментом ремонтно-поверочного оборудования. Обычно в этой организации принимают жалобы на несоответствие товара стандартам.

Ваш прибор проверят на исправность, проведут поверку точности измерений, и выдадут соответствующий сертификат. Даже штампик поставят, по вашему желанию. Есть одна проблема: эта услуга стоит определенных денег. Учитывая стоимость приборов из Поднебесной – цена услуги может быть сопоставима с ценой объекта поверки.

Второй вариант – проверить правильность с помощью другого амперметра.
Если опустить самое главное – где взять заведомо исправный «другой амперметр», процедура несложная.

    1. Собирается электрическая цепь из источника питания и надежного потребителя. Лучше взять мощный резистор с хорошей площадью охлаждения. Тогда ток в цепи будет стабильным, и не изменится из-за нагрева сопротивления. По закону Ома рассчитываете напряжение источника питания и сопротивление резистора.Для проверки точности измерения в разных диапазонах, в цепь последовательно добавляется переменный резистор. Сила тока должна регулироваться в пределах шкалы проверяемого прибора.

Важно! Тестируемый и эталонный прибор подключаются последовательно, безо всяких шунтов. Диапазон измерений обоих амперметров должен быть в одном пределе, иначе точность измерения будет невысокой.

  1. Подключаете питание, выставляете сопротивление подстроечного резистора R2 таким образом, чтобы стрелки приборов находились в середине шкалы. Это точка с наименьшей погрешностью. Ждете несколько минут, наблюдая за нагревом резисторов. Если показания прибора не отходят от первоначального значения – цепь годится для поверки.
  2. Регулируете силу тока переменным резистором, фиксируя значение на каждом делении основной разметки эталонного прибора. Записываете показания тестируемого амперметра. После прохождения всей шкалы, вы будете иметь картину погрешности прибора.
  3. Далее вы можете запомнить разницу в показаниях, произвести корректировку прибора (если есть регулировочный винт) или нанести новую разметку, в соответствии с показаниями эталона. Фактически – это калибровка амперметра.

магнитный шунт

Смотреть что такое «магнитный шунт» в других словарях:

  • магнитный шунт — EN magnetic shunt device of high permeability material which is placed in parallel with part of a magnetic circuit to divert magnetic flux from that part FR shunt magnétique, m dispositif en… … Справочник технического переводчика

  • магнитный шунт — magnetinis šuntas statusas T sritis fizika atitikmenys: angl. magnetic shunt vok. Eisenschluß, m; magnetischer Nebenschluß, m rus. магнитный шунт, m pranc. shunt magnétique, m … Fizikos terminų žodynas

  • ШУНТ — электрический проводник (сопротивление) или (см.), присоединяемый параллельно участку электрической млн. магнитной цепи для ответвления части тока (магнитного потока) в обход данного участка, с целью уменьшить силу проходящего по нему тока… … Большая политехническая энциклопедия

  • Магнитоэлектрический прибор — измерительный, прибор непосредственной оценки для измерения силы электрического тока, напряжения или количества электричества в цепях постоянного тока. Подвижная часть измерительного механизма М. п. перемещается вследствие взаимодействия… … Большая советская энциклопедия

  • Токоограничивающий реактор — Токоограничивающий реактор электрический аппарат, предназначенный для ограничения тока короткого замыкания. Включается последовательно в схему и работает как индуктивное дополнительное сопротивление, уменьшающее ток при коротком замыкании,… … Википедия

  • Реактор электрический — Токоограничивающий реактор электрический аппарат, предназначенный для ограничения ударного тока короткого замыкания. Содержание 1 Применение 2 Устройство и принцип действия 3 Виды реакторов … Википедия

  • Электрический реактор — Токоограничивающий реактор электрический аппарат, предназначенный для ограничения ударного тока короткого замыкания. Содержание 1 Применение 2 Устройство и принцип действия 3 Виды реакторов … Википедия

  • Eisenschluß — magnetinis šuntas statusas T sritis fizika atitikmenys: angl. magnetic shunt vok. Eisenschluß, m; magnetischer Nebenschluß, m rus. магнитный шунт, m pranc. shunt magnétique, m … Fizikos terminų žodynas

  • magnetic shunt — magnetinis šuntas statusas T sritis fizika atitikmenys: angl. magnetic shunt vok. Eisenschluß, m; magnetischer Nebenschluß, m rus. магнитный шунт, m pranc. shunt magnétique, m … Fizikos terminų žodynas

  • magnetinis šuntas — statusas T sritis fizika atitikmenys: angl. magnetic shunt vok. Eisenschluß, m; magnetischer Nebenschluß, m rus. магнитный шунт, m pranc. shunt magnétique, m … Fizikos terminų žodynas

  • magnetischer Nebenschluß — magnetinis šuntas statusas T sritis fizika atitikmenys: angl. magnetic shunt vok. Eisenschluß, m; magnetischer Nebenschluß, m rus. магнитный шунт, m pranc. shunt magnétique, m … Fizikos terminų žodynas

РЕМОНТ ВОЛЬТМЕТРА

Вольтметр — это электроизмерительный прибор, который предназначен для измерения напряжения в цепях постоянного и переменного тока. Иногда, при неправильной эксплуатации он выходит из строя и, поэтому зачастую приходится его ремонтировать.

Для начала, при наличии неисправности, вольтметр нужно вскрыть. Для этого нужно взять ножик, и очистить его боковые стороны от клея или других склеивающих материалов. Далее нужно определить его неисправность. Прибор может быть неисправен только по следующим причинам: отсутствие баланса, погрешность измерений, затирание, невозвращение стрелки на нуль. Для настройки баланса Вам нужно взять паяльник и равномерно наложить припой на усики стрелки, чтобы стрелка в любом положении находилась на нуле. Это бывает достаточно проблематично, тем более тогда, когда у Вольтметра высокая чувствительность.
Для устранения погрешности измерения Вам необходимо подобрать резистор, при котором показания прибора точно входят в класс точности. Сделать можно это с помощью специального магазина сопротивлений. Затирание — это состояние, при котором стрелка застревает во время движения вдоль шкалы. Здесь Вам необходимо почистить кольцо и магнит прибора так, чтобы нигде вокруг него не осталось ни одной пылинки.

И при устранении невозвращения стрелки на ноль Вам необходимо выравнять рамку или заменить подпятник. Бывает, что нужно сделать и то и другое одновременно. Вот в общем-то и весь довольно не сложный ремонт. Других неполадок в нём практически не бывает, не считая конечно того, что может где-то быть обрыв цепи, но такая неполадка устраняется также, как и у всех других электронных приборов.
Форум по ремонту измерительных приборов

Обсудить статью РЕМОНТ ВОЛЬТМЕТРА

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *