М416 измеритель сопротивления заземления

Содержание

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

I. ПОДГОТОВКА ПРИБОРА К РАБОТЕ

1. Установить прибор на ровной поверхности, открыть крышку.

2. Установить переключатель в положение «Контроль 5 ом», нажать кнопку и, вращением ручки «реохорд», добиться установления стрелки индикатора на нулевую отметку. На шкале реохорда при этом должко быть показание 5 ± 0,35 ом при нормальных климатических условиях и номинальном напряжении источника питания.

Прибор рассчитан для работы при напряжении источника -питания от 3,8 в до 4,8 в.

Для смены элементов необходимо снять крышку, заменить элементы и закрепить крышку винтами.

II. ПОРЯДОК РАБОТЫ
Измерение сопротивления заземляющих устройств

При измерениях прибор следует располагать в непосредственной близости от измеряемого заземлителя, так как при !Йгом на результат измерения меньше сказывается сопротивление проводов, соединяющих Вх с зажимами 1, 2.

Стержни, образующие вспомогательный заземлитель и потенциальный электрод (зонд), устанавливаются на расстояниях, указанных на рис. 1-4. Глубина погружения в грунт должна быть не менее 500 мм.

При отсутствии комплекта принадлежностей для проведения измерений вспомогательный заземлитель и зонд могут «быть выполнены в виде металлического стержня или трубы диаметром не менее 5 мм.

Во избежание увеличения переходного сопротивления заземлителя и зонда стержни следует забивать в грунт прямыми ударами, стараясь не раскачивать их.

Сопротивление вспомогательного заземлителя и зонда не должно превышать величин, указанных в разделе «Технические данные».

Практически для большинства типов грунтов, за исключением грунтов с высоким удельным сопротивлением, сопротивление вспомогательных заземлителей не превышает вышеуказанных значений.

При грунтах с высоким удельным сопротивлением измерения будут приблизительными.

Для повышения точности измерения следует уменьшить сопротивление вспомогательных заземлителей путем увлажнения почвы вокруг них или увеличения их количества.

Дополнительные стержни забивают на расстоянии не менее 2-3 метров друг от друга. Все стержни, образующие контур зонда или вспомогательного заземлителя, соединяются между oсобой электрически.

Рис. 1. Подключение прибора по трехзажимной схеме.

Рис. 2. Подключение прибора по четырёхзажимной схеме.

Рис. 3. Подлючение прибора по трехзажимной схеме к сложному (контурному) завемлителю.

Рис. 4. Подключение прибора по четырехзажимной схеме к сложному (контурному) заземлителю.

Измерение проводится по схемам рис. 1-4 в зависимости* от величины измеряемого сопротивления н точности измерения. В случае измерения по схеме, изображенной на рис. 1 и 3, в результат измерения входит сопротивление провода, соединяющего зажим 1 с Вх. Поэтому такое включение используется, когда не требуется точное измерение, или при измерениях сравнительно больших (больше 1 Ома) сопротивлений.

Для сложных заземлителей, выполненных в виде контур» с протяженным периметром, расстояния между контуром,., вспомогательным заземлителем и зондом должны быть не менее указанных на рис 3, где й — наибольшая диагональ контура измеряемого заземляющего устройства в метрах. Независимо от выбранной схемы измерение необходимо» проводить в следующем порядке:

а) переключатель В1 установить в положение «XI»;

б) нажать кнопку и, вращая ручку «Реохорд», добиться максимального приближения стрелки индикатора к нулю;

в) результат измерения равен произведению показания» шкалы реохорда на множитель. Если измеряемое сопротивление окажется больше 10 ом, переключатель установить в положение «Х5», «Х20» или «XI00» и проделать операции «б» и «в».

Измерение удельного сопротивления грунта

Измерение удельного сопротивления грунта производится аналогично измерению сопротивления заземления. При этом к. зажимам 1 и 2 вместо Rх присоединяется дополнительный*, электрод в виде металлического стержня или трубы известных* размеров.

Вспомогательный заземлитель и зонд располагают от дополнительного электрода на расстояниях, указанных на рис. 1-4.

В местах забивки стержня, вспомогательного заземлнтеля и зонда растительный или насыпной слой должен быть удален.

Удельное сопротивление грунта на глубине забивки трубы подсчитывается по формуле:

где: R — сопротивление, измеренное измерителем заземления в ом;

L — глубина забивки трубы в см.

d — диаметр трубы в см.

Измерение активных сопротивлений

Измерение активных сопротивлений осуществляют подключением их к прибору в соответствии с рис. 5

Рис. 5. Схемы измерения активных сопротивлений


а)Схема измерения без исключения погрешности вносимой соединительными проводами

б)Схема измерения с исключеним погрешности вносимой соединительными проводами

III. ПОВЕРКА ПРИБОРА

Поверка основной погрешности производится в нормальных условиях на всех оцифрованных отметках диапазона .»О,Ю ом и на любых трех оцифрованных отметках остальных диапазонов.

Погрешность определяется путем сравнения показаний прибора с известными сопротивлениями, включенными согласно рис. 6,

Рис. 6. Схема подключения прибора при поверке.

где: R1 — измеряемое сопротивление;

R2 и RЗ — сопротивления вспомогательного заземлителя и зонда, величины которых для каждого диапазона выбираются согласно таблице 1.

Таблица 1.

Диапазон измерения, ом Величины сопротивлений в ом
R1 R2
0,1 ÷ 10 0,1 ÷ 10 500 500
0,5 ÷ 50 0,5 ÷ 50 1000 1000
2 ÷ 200 2 ÷ 200 2500 2500
10 ÷ 1000 10 ÷ 1000 5000 5000

Поверка основной погрешности производится в следующем порядке:

а) переключатель установить в положение, соответствующее поверяемому диапазону;

б) вращая ручку «Реохорд», установить соответствующуюю цифрованную отметку (с учетом множителя) против риски;

в) нажать кнопку и, подбором величины сопротивления на магазине В1, установить стрелку индикатора на нулевую отметку.

По разности между показанием шкалы реохорда (с учетом множителя) и величиной сопротивления В1 определяется основная погрешность.

ПРИМЕЧАНИЕ: Сопротивления R1, R2 и RЗ долины быть не ниже кл. 1,0.

Общий порядок работы

Измеритель типа М416 относятся к самой распространённой группе приборов, используемых не только для определения сопротивления заземляющих устройств, но и способных измерять удельную проводимость грунта (ρ).

Этот измеритель предназначается для определения величин сопротивлений в пределах от 0,1 до 1000 Ом в четырех диапазонах, ограниченных значениями 10, 50, 200 и 1000 Ом соответственно. В качестве источника питания в устройстве используются три соединенные последовательно пальчиковые батарейки напряжением по 1,5 Вольта каждая.

После установки элементов питания в специальный отсек в первую очередь измерительный прибор проверяется на работоспособность. Для этого переключатель режимов работы (пределов измерений) переводится в положение «Контроль 5 Ωm». После этого следует нажать расположенную под табло индикатора красную кнопку и вращением ручки под обозначением «реохорд» добиться, чтобы шкала индикатора установилась на нулевой отметке.

По завершении калибровки измерителя следует подсоединить к нему шнуры, после чего он будет полностью готов к проверке заземления.

Перед тем как замерить искомую величину (сопротивление), прилагаемые к комплекту дополнительный заземлитель и зонд вбиваются в землю на глубину не менее 0,8 метра. Их удаление от конструкции тестируемого заземления должно соответствовать цифрам, указанным на рисунке. Перемычка между клеммами 1 и 2 означает, что измеритель используется для грубого замера сопротивлений (более 5-ти Ом).

Порядок проведения измерительных операций выглядит следующим образом:

  1. к этим элементам измерительной схемы (включая контур заземления) с помощью контрольных шнуров подсоединяются соответствующие клеммы прибора;
  2. по окончании сборки схемы переключатель предела измерений переводится в положение «Х1»;
  3. после этого нажимается кнопка запуска измерений с одновременным вращением ручки «реохорда»;
  4. в процессе замера искомой величины по его шкале фиксируется точное показание измерителя;
  5. на завершающей стадии полученный результат умножается на указатель выбранного вами предела измерений (в данном случае – на единицу).

В результате выполнения приведённой последовательности операций удаётся точно определить искомое сопротивление заземляющего устройства.

Особенности схемы включения для точных измерений

Рассмотренная выше последовательность измерительных операций относится к так называемой «3-х зажимной» схеме включения измерителя М416 (клеммы 1 и 2 соединены перемычкой). В этом случае на результат проведённых операций существенное влияние оказывают параметры самой измерительной цепочки. При их фиксации учитывается сопротивление соединительных проводов и контактов. В результате такого включения защитное заземление оценивается довольно грубо (с большой погрешностью).

При необходимости более точного определения сопротивления (менее 5 Ом) измеритель включается по 4-х зажимной схеме, что соответствует отсутствию перемычки между клеммами 1 и 2. В этом случае в измерительной цепи используется дополнительный провод, подключаемый согласно схеме, указанной на крышке М416. При 4-х зажимной схеме подключения погрешность, вносимая соединительными проводами и контактами, практически отсутствует.

При организации точных измерений необходимо обратить внимание на следующую деталь. Для конструкции заземляющего устройства сложной конфигурации (так называемое «заземление с протяженными периметрами») могут использоваться уже рассмотренные схемы включения. Однако в этих случаях дополнительный заземлитель должен быть удалён от обследуемой конструкции на расстояние равное её пятикратному максимальному размеру плюс 20 метров.

Другие измерительные приборы

Параметры заземления можно определять и другими измерителями, принцип работы которых основан на том же методе компенсации потенциалов, создаваемых внешним источником на дополнительном заземлителе и в обследуемой конструкции.

Отечественные модели

К образцам таких изделий можно отнести измеритель Ф4103-М1, рассчитанный на питание от источника 12±0,25Вольт и позволяющий организовать замеры в 10-ти диапазонах (от 0-0,3 Ома до 0-15 Килом).

Перед началом проверки заземления или других рабочих операций необходимо побеспокоиться о том, чтобы снизить зависимость прибора от факторов, способствующих появлению дополнительной погрешности измерений. Для этого он должен быть защищён от действия сильных электрических полей или удалён на значительное расстояние от них. Наличие помехи может быть зафиксировано по качаниям стрелки индикатора при настройке прибора в режиме «ИЗМЕРЕНИЕ I» (при вращении ручки «ПДСТ»).

Измеритель Ф4103 является электрически безопасным, так как его корпус изготовлен из непроводящего ток материала.

Померить сопротивление заземления можно и посредством ещё одной разновидности приборов, известных под обозначениями ИС-10 или ИС-20. Это более совершенные и компактные модели измерителей компенсационного типа, имеющие современную электронную «начинку» и ЖК индикатор. Во всем остальном (то есть по принципу работы и в части организации самих измерений) они ничем не отличаются от уже рассмотренных образцов.

Иностранные модели

Не стоит забывать об измерителях сопротивления заземления иностранного производства. Чаще всего применяются при работе в отечественных электросетях такие измерители, как KEW 4105A и 1820 ER. По методу организации и проведения замеров они не имеют принципиальных отличий от уже рассмотренных моделей. Единственным их преимуществом является расширенный функционал, позволяющий измерять не только сопротивление току растекания на землю, но и напряжения шага и потенциал прикосновения.

Важно! Измерение всех этих величин возможно без отключения специального автомата, устанавливаемого в цепях защиты обследуемого устройства.

Необходимо помнить, что периодичность проверок заземления, организуемых с помощью любого измерителя, устанавливается требованиями ПТЭЭП (п.2.7.8.-2.7.15). Помимо этого, такие испытания проводятся и после восстановления конструкции заземления или по окончании её капитального ремонта. Проверка позволяет убедиться в нормальном состоянии заземления и его способности выполнять основные функции.

Пошаговый расчет контура заземления

Нижеприведенные расчеты выполняются на основании информации, предоставленной в следующей технической литературе:

«Основы техники безопасности в электроустановках», П.А. Долин
«Правила устройства электроустановок (ПУЭ)», Седьмое издание
Скачать | 10 Мб

Для просмотра документов в формате *.djvu воспользуйтесь программой:

WinDjView, version 2.1 — просмотр файлов формата *.djvu

Онлайн расчет контура заземления

Результаты

Пошаговая инструкция по проектированию заземления

Шаг 1. Определение значения требуемого нормируемого сопротивления группового заземлителя. Для этого обратимся к ПУЭ, Глава 1.7 «Заземление и защитные меры электробезопасности» . Если заземляющее устройство является общим для установок на различное напряжение, то за расчетное сопротивление заземляющего устройства принимают наименьшее из допустимых. Нас интересуют следующие пункты:

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN или PE проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При удельном сопротивлении земли ρ > 100 Ом • м допускается увеличивать указанные нормы в 0,01ρ раз, но не более десятикратного.

Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью

1.7.104. Сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей, в системе IT должно соответствовать условию:

R ≤ Uпр/I,

где R — сопротивление заземляющего устройства, Ом;

Uпр — напряжение прикосновения, значение которого принимается равным 50 В (см. также 1.7.53);

I — полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВ• А, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.

Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью

1.7.96. В электроустановках напряжением выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства при прохождении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть

R ≤ 250/I,

но не более 10 Ом, где I — расчетный ток замыкания на землю, А.

В качестве расчетного тока принимается:

1) в сетях без компенсации емкостных токов — ток замыкания на землю;

2) в сетях с компенсацией емкостных токов: для заземляющих устройств, к которым присоединены компенсирующие аппараты, — ток, равный 125% номинального тока наиболее мощного из этих аппаратов;

для заземляющих устройств, к которым не присоединены компенсирующие аппараты, — ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.

Расчетный ток замыкания на землю должен быть определен для той из возможных в эксплуатации схем сети, при которой этот ток имеет наибольшее значение.

Шаг 2. Удельное сопротивление грунта в месте строительства заземляющего устройства. В лучшем варианте у Вас в наличии могут быть результаты геологических изысканий, выполненные спец. организацией. В ином случае, обратитесь к карте грунтов местности, в соответствии с ней выберите значение по таблице 1 с.148:

Таблица 1 — Приближенные значения удельных электрических сопротивлений различных грунтов и воды:

Грунт, вода Удельное сопротивление, Ом∙м
возможные пределы
колебаний
при влажности 10-20%
массы грунта
Глина 8-70 40
Суглинок 40-150 100
Песок 400-700 700
Супесь 150-400 300
Торф 10-30 20
Чернозем 9-53 20
Садовая земля 30-60 40
Каменистый 500-800
Скалистый 104-107
Вода:
морская 0,2-1
речная 10-100
прудовая 40-50
грунтовая 20-70
в ручьях 10-60

Шаг 3. Местонахождение выполненяемых работ определяет климатическую зону, характерную для данной местности с.151:

Таблица 2 — Признаки климатических зон для определения коэффициентов сезонности ψ:

Характеристика климатической зоны Климатические зоны
I II III IV
Средняя многолетняя низшая
температура (январь), °С
От -20
до -15
От -14
до -10
От -10
до 0
От 0
до +5
Средняя многолетняя высшая
температура (июль), °С
От +16
до +18
От +18
до +22
От +22
до +24
От +24
до +26
Среднегодовое количество осадков, см ~40 ~50 ~50 ~30-50
Продолжительность замерзших вод, дни 190-170 ~150 ~100 0

Шаг 4. В зависимости от габаритов горизонтального и вертикального заземлителей находим коэффициент сезонности, который показывает на сколько промерзание грунта снижает эффективность заземления с.151:

Таблица 3 — Коэффициенты сезонности ψ для однородной земли:

Климатическая
зона
Влажность земли во время
измерения ее сопротивления
повышенная нормальная малая
Вертикальный электрод длиной 3 м
I 1,9 1,7 1,5
II 1,7 1,5 1,3
III 1,5 1,3 1,2
IV 1,3 1,1 1,0
Вертикальный электрод длиной 5 м
I 1,5 1,4 1,3
II 1,4 1,3 1,2
III 1,3 1,2 1,1
IV 1,2 1,1 1,0
Горизонтальный электрод длиной 10 м
I 9,3 5,5 4,1
II 5,9 3,5 2,6
III 4,2 2,5 2,0
IV 2,5 1,5 1,1
Горизонтальный электрод длиной 50 м
I 7,2 4,5 3,6
II 4,8 3,0 2,4
III 3,2 2,0 1,6
IV 2,2 1,4 1,12

Шаг 5. Количество применяемых горизонтальных и вертикальных электродов создает понятие коэффициента использования этих устройств. Ведь электрод, удаленный от точки подключения заземления имеет ниже эффективность, чем первый. Таким образом, исходя из таблиц 4, 5, мы видим, что не рационально использование более 20 шт. заземлителей размещенных в ряд. А при размещении по контуру — невозможно применение 2-х штырей.

Таблица 4 — Коэффициенты использования ηв вертикальных электродов группового заземлителя (труб, уголков и т.п.) без учета влияния полосы связи:

Отношение расстояний между
вертикальными электродами к их длине
Число заземлителей, n
2 4 6 10 20 40 60 100
Электроды размещены в ряд
1 0,85 0,73 0,65 0,59 0,48
2 0,91 0,83 0,77 0,74 0,67
3 0,94 0,89 0,85 0,81 0,76
Электроды размещены по контуру
1 0,69 0,61 0,56 0,47 0,41 0,39 0,36
2 0,78 0,73 0,68 0,63 0,58 0,55 0,52
3 0,85 0,80 0,76 0,71 0,66 0,64 0,62

Таблица 5 — Коэффициенты использования ηг горизонтального полосового электрода, соединяющего вертикальные электроды (трубы, уголки и т.п.) группового заземлителя:

Отношение расстояний между
вертикальными электродами к их длине
Число вертикальных электродов
2 4 6 10 20 40 60 100
Вертикальные электроды размещены в ряд
1 0,85 0,77 0,72 0,62 0,42
2 0,94 0,80 0,84 0,75 0,56
3 0,96 0,92 0,88 0,82 0,68
Вертикальные электроды размещены по контуру
1 0,45 0,40 0,34 0,27 0,22 0,20 0,19
2 0,55 0,48 0,40 0,32 0,29 0,27 0,23
3 0,70 0,64 0,56 0,45 0,39 0,36 0,33

Шаг 6. Расчет сопротивлений выполняется по формулам с.90-91:

Таблица 6 — Формулы для вычисления сопротивлений одиночных заземлителей растеканию тока в однородном грунте:

Тип заземлителя Схема Формула Условия применения
1. Шаровой в земле 2∙t>>D
2. Полушаровой у поверхности земли
3. Стержневой круглого сечения (трубчатый) или уголковый у поверхности земли l>>d
Для уголка с шириной полки b
d=0,95∙b
4. То же в земле l>>d, t0>=0,5 м
Для уголка с шириной полки b
d=0,95∙b
5. Протяженный на поверхности земли (стержень, труба, полоса, кабель и т.п.) l>>d
Для полосы шириной b
d=0,5∙b
6. То же в земле l>>d, l>>4∙t
Для полосы шириной b
d=0,5∙b
7. Кольцевой на поверхности земли D>>d, l>>4∙t
Для полосы шириной b
d=0,5∙b
8. То же в земле D>>d, D>>2∙t
Для полосы шириной b
d=0,5∙b
9. Круглая пластина на поверхности земли D — диаметр пластины
10. То же в земле 2∙t0>>D
11. Пластинчатый в земле (пластина поставлена на ребро) 2∙t0>>a

В онлайн калькуляторе выбран самый распространенный тип прокладки заземлителей:

— вертикальный: 4. Стержневой круглого сечения в земле;

— горизонтальный: 5. Протяженная полоса в земле.

Обратите внимание, что t — глубина залегания, для горизонтального — глубина прокладки (0,5÷0,7 м), для вертикального — погружение в землю центральной точки (например, 3-х метровый штырь забивается в траншею глубиной 0,7 м, тогда t=(0,7+3)/2=1,85 м)

Шаг 7. Сопротивление группового заземлителя рассчитывается по формуле с.108:

где Rв, Rг — сопротивления растеканию вертикального и горизонтального электродов;

n — число вертикальных электродов;

ηв, ηг — коэффициенты использования.

В статье рассмотрен вариант заземлителя в однослойном грунте. Если необходим расчет зазмелителя в многослойной земле — читаем c.130, 152.

Что такое заземление

Это комплекс, состоящий из металлических конструкций и проводников, который обеспечивает электрический контакт корпуса электроустановки с физической землей, то есть с грунтом. Система начинается с заземлителя: металлического электрода, заземленного в грунт. Эти элементы не могут быть одиночными, для надежности они объединяются в заземляющий контур.

Как это работает

Внешний контур заземления (который находится непосредственно в грунте), соединяется с помощью надежного проводника с внутренним контуром в помещении, или с щитком заземления. Далее, с помощью внутренней сети защитных проводников, производится подключение к корпусам электроустановок, и контактам заземления на коммутационных устройствах (распределительные щитки, коробки, розетки и прочее).

Устройства, генерирующие электроэнергию, также имеют систему заземления, с которой соединяется нулевая шина. При возникновении аварийной ситуации (фаза соединилась с корпусом электроустановки), возникает электрическая цепь между фазным проводником и нулевой шиной по линии заземления. Сила тока в аварийной цепи спонтанно возрастает, срабатывает устройство защитного отключения (автоматический выключатель) или перегорает предохранительная вставка.

Результат работы исправной системы:

  • не происходит возгорание силового кабеля (опасность пожара);
  • предотвращается возможность поражения электротоком при касании аварийного корпуса электроустановки.

Сопротивление тела человека в десятки раз выше, чем сопротивление заземления. Поэтому сила тока (при наличии фазы на корпусе электроустановки) не достигнет опасной для жизни величины.

Из чего состоит заземление

  1. Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
  2. Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
  3. Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.

Рассмотри эти компоненты подробнее.

Внешний, или наружный контур

Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.

Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.

  • Глина пластичная, торф = 20–30 Ωм·м
  • Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
  • Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м

Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.

  • Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м

Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.

  • Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м

Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.

Важно! Неверный расчет контура заземления, игнорирование параметров, часто приводят к печальным результатам: поражение электротоком, выход из строя оборудования, возгорание кабеля.

Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.

Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:

Расчет приведен для вертикально установленных заземлителей.

Расшифровка величин формулы:

  • R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • Рэкв — удельное сопротивление грунта, см. информацию выше.
  • L — общая длина каждого электрода в контуре.
  • d — диаметр электрода (если сечение круглое).
  • Т — вычисленное расстояние от центра электрода до поверхности земли.

Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.

Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.

Важно! Монтаж горизонтального контура более трудоемок и связан с повышенным расходом материала. К тому же, такое заземление сильно зависит от сезонной погоды.

Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.

И все же приводим формулу расчета горизонтальных заземлителей.

Соответственно, расшифровка дополнительных величин:

  • Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • b — ширина электрода — заземлителя.
  • ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:

  • ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:

Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.

Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.

Далее расскажем о том, как добиться правильных характеристик внешнего контура заземления.

Технология проведения работ

Выбираем место размещения заземлителей. Разумеется, недалеко от дома (объекта), чтобы не пришлось прокладывать длинный проводник, который придется механически защищать. Желательно, чтобы вся площадь контура находилась на территории, которую вы контролируете (являетесь собственником). Чтобы в один прекрасный момент, ваша защитная «земля» не была выкопана пьяным экскаваторщиком. Так что забивать штыри за забором не будем.

Подойдет огород (за исключением картофельной грядки), палисадник, клумба возле дома. Возделываемые участки предпочтительнее, они регулярно поливаются. А дополнительная влага в земле пойдет на пользу заземлению. Если ваш грунт обладает низким удельным сопротивлением — можно установить заземление на площадке, которая затем будет покрыта асфальтом или плиткой. Под искусственным покрытием земля не пересушивается. Да и риск повредить контур заземления минимален.

Разумеется, необходимо учитывать дальнейшие планы. Если в месте установки контура через год появится гараж со смотровой ямой — лучше сразу выбрать место поспокойнее.

В зависимости от формы площадки, выбираем порядок расположения электродов: в линию, или треугольником.

Важно! Вне зависимости от расположения, вертикальных заземлителей должно быть не менее трех.

Если выбран треугольник — размечаем площадку соответствующей формы со сторонами 2.5–3 метра. Копаем траншею в форме равностороннего треугольника на глубину 70–100 см, шириной 50–70 см. Мы знаем, что все заземлители соединяются между собой. Проводник должен быть углублен на расстояние не менее 50 см, с учетом минимального уровня грунта (например, вскопка грядки). Если сверху будет уложено покрытие — его толщина в расчет не берется. Только чистый грунт.

Можно выбрать весь грунт, не только по периметру траншеи. Получится треугольная яма глубиной 0.7–1.0 м. Готовый контур можно будет засыпать грунтом с низким удельным сопротивлением. Например, золой или пеплом. Соли проникнут в землю, и будут способствовать снижению общего сопротивления растекания тока.

После чего, по углам ямы (траншеи) начинаем забивать электроды.

Параметры заземлителей (рассматриваем вертикальное расположение)

  • Сталь без гальванического покрытия:

Круг — диаметр 16 мм.

Труба — диаметр 32 мм.

Прямоугольник или уголок — площадь поперечного сечения 100 мм².

  • Сталь оцинкованная

Круг — диаметр 12 мм.

Труба — диаметр 25 мм.

Прямоугольник или уголок — площадь поперечного сечения 75 мм².

  • Медь

Круг — диаметр 12 мм.

Труба — диаметр 20 мм.

Прямоугольник или уголок — площадь поперечного сечения 50 мм².

Важно! Категорически запрещено бурить скважины, а затем погружать в них заземлители. При таком способе монтажа сопротивление увеличивается в разы.

Грунт должен плотно облегать металлическую поверхность заземлителя. Красить электроды запрещено!

А как быть, если по расчетам длина каждого из трех электродов превышает 1.5–2 метра? Есть небольшие секреты.

  1. Электроды забивают не кувалдой, а вибратором, отбойным молотком с насадкой, или перфоратором. Кувалда подойдет для высоты чуть более 1 метра. Это вариант для идеального грунта с наименьшим сопротивлением.
  2. Совершенно не обязательно устанавливать трехметровую стремянку. Длинные электроды соединяются между собой по мере погружения в грунт. Если вы купили фабричный комплект — заземлители составные, можно набрать из сегментов любую длину.
  3. Для кустарного изготовления также есть способ забить в землю 4 метровый уголок. Нарезаем электрод на куски по 1.5 метра. Забиваем первый сегмент. Привариваем к нему следующий — забиваем далее. И так до расчетной глубины.

    Информация: часто бывает, что заземлитель упирается в монолитное препятствие (например, на глубине 2.5 метра), а расчетная глубина — 3.5 м. В этом случае электрод просто обрезается, а в контуре заземления будет добавлен еще один стержень, для компенсации потерянной длины.

  4. Если забить стержни на расчетную глубину не получается в принципе — опять же берем количеством. Линейный перерасчет (типа: вместо трех по 4 метра, забиваем шесть по 2 метра длиной) не работает. Количество заземлителей определяется только последующим замером сопротивления растекания тока.

Соединяем электроды проводником. Если арматура стальная — лучше всего подойдет сварка. Медные стержни соединяются болтовой стяжкой, проводник должен иметь сечение не менее 30% от сечения электродов.

После сборки контура, проводим замеры сопротивления растекания тока. Требования к контуру заземления для индивидуального жилья — 10 Ом. Измерение лучше доверить сертифицированным специалистам, у которых имеется соответствующее оборудование. Тем более, что при получении ТУ от энергетиков, вам все равно придется представить систему заземления для измерений. Если сопротивление выше нормы — добавляем электроды и привариваем их к контуру. Пока не получим норму.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *