Как производится электричество

Области применения электрической энергии

123

ВОПРОС 3

Всем ясно, что без электрической энергии невозможна нормальная жизнь современного общества. Она используется абсолютно всеми бытовыми электроприборами: холодильниками, стиральными машинами, осветительными приборами, утюгами, микроволновыми печами, компьютерами, телевизорами и т. д. Трудно представить, как бы мы жили, погасни свет в квартире или замолчи телевизорА

Помимо городских квартир, большое количество электроэнергии потребляют подсобные хозяйства фермеров, на которых имеются не только жилые, но и хозяйственные постройки.

Как хозяин в доме, вы должны знать об электричестве больше, нежели просто уметь сменить пробки или вкрутить лампочку. Необходимо понимать зависимость между током, напряжением и мощностью, преимущества и недостатки переменного тока.\

ВОПРОС 4

Применение электротехнических устройств в технологических машинах

Высокопроизводительная работа транспортных и транспортно — технологических машин в современных условиях невозможна без использования электрической энергии, применения сложных электронных и электротехнических устройств. В конструкции таких машин электрическая энергия требуется для пуска двигателя, передачи световой и звуковой информации другим участникам движения о габаритных размерах и направлении движения машины, освещения дороги и зоны технологических работ. Посредством электрической энергии производится воспламенение рабочих зарядов в цилиндрах двигателей, работающих на легких видах топлив, осуществляется контроль текущего состояния отдельных агрегатов и систем, передача оператору информации о текущих показателях агрегатов, узлов и систем, наступлении предельного состояния по износу и видам нагружения отдельных наиболее ответственных деталей.

Электрооборудование автомобиля представляет собой сложный комплекс взаимосвязанных электротехнических и электронных систем, приборов и уст­ройств, обеспечивающих надежное функционирование двигателя, трансмиссии и ходовой части, безопасность движения, автоматизацию рабочих процессов автомобиля и комфортные условия для водителя и пассажиров.

Автомобильное электрооборудование включает в себя следующие системы и устройства:

1. Система электроснабжения:

— генераторная установка;

— аккумуляторная батарея.

2. Система электростартерного пуска двигателя внутреннего сгорания (зажигания).

— аккумуляторная батарея;

— электростартер;

— реле управления (дополнительные реле и реле блокировки);

— электротехнические устройства для облегчения пуска двигателя.

5. Электронные системы управления агрегатами автомобиля.

6. Система информации и контроля технического состояния автомобиля и его аг­регатов:

— датчики и ука­затели давления;

— датчики температуры;

— датчики уровня топлива в баке;

— спидометр;

— тахометр;

— сигнальные (контрольные) лампы и пр.

7. Электроприводы:

— Электродвигатели;

— мото­редукторы;

— мотонасосы.

8. Система подавления радиопомех.

9. Коммутационные, защитные устройства и электропроводка.

— Выключатели;

— пере­ключатели;

— реле различного назначения;

— контакторы;

— предохранители и блоки предохранителей;

— соединительные панели;

— разъемные соединения.

Развитие электрооборудования автомобилей тесно связано с широким применением элек­троники и микропроцессоров, обеспечивающих автоматизацию и оптимизацию рабочих процессов, большую безопасность движения, снижение токсичности от­работавших газов и улучшение условий работы водителей.

ВОПРОС 5

Основные электрические величины и единицы их измерения.

Таблица 1. Электрические величины и единицы

Наименование Обозначение латинским шрифтом Единицы измерения
Наименование Обозначение русским шрифтом
Напряжение Электродвижущая сила Ток Сопротивление активное Сопротивление реактивное Сопротивление полное Мощность активная Мощность реактивная Мощность полная Энергия U, u E, e I, i R, r X, x Z, z P Q S W Вольт Вольт Ампер Ом Ом Ом Ватт Вольт-ампер реактивный Вольт-ампер Ватт-секунда или джоуль В В А Ом Ом Ом Вт вар ВА Вт*сек, дж

ВОПРОС 6

Элементы электрических цепей.

Активными элементами являются источники электрической энергии. Они подразделяются на источники напряжения – условное обозначение на рисунке.

Пассивные элементы – элементы, которые не являются источниками электрической энергии. Они делятся на диссипативные и реактивные.

Диссипативные элементы – элементы, осуществляющие диссипацию (dissipatiоn – рассеивание) электрической энергии. Элементы с такими свойствами осуществляют преобразование электрической энергии в тепловую. Такими элементами являются резисторы. Они характеризуются электрическим сопротивлением, которое измеряется в омах (Ом). Их условное обозначение показано на рис. 1.2.

Реактивные элементы – элементы, способные накапливать электрическую энергию и отдавать ее либо источнику, от которого эта энергия была получена, либо передавать другому элементу. В любом случае этот элемент не превращает электрическую энергию в тепловую. Такими элементами являются катушка индуктивности и конденсатор. На рис. 1.3 показано условное обозначение этих реактивных элементов.

Электрической цепью называется такое соединение электрических элементов, при котором под воздействием источника электрической энергии в элементах протекает электрический ток.

Узел – точка соединения трех и более элементов.

Ветвь – участок цепи, содержащий хотя бы один элемент и находящийся между двумя ближайшими узлами.

Контур – замкнутая часть электрической цепи.

Перемычка – это электрический проводник с нулевым сопротивлением, подсоединенный своими концами к различным двум точкам схемы.

Вопрос 7

Схемы замещения и эквивалентные схемы.

Эквивалентая схема

Параллельная схема замещения диэлектрика и векторная диаграмма токов в ней изображены на рис. 4.3.

Возможно ли представить современную жизнь без электричества? Нет электричества – и остановились все фабрики и заводы, выключились компьютеры в офисах, погас свет в магазинах и домах. Применение электричества сегодня настолько широко, что мы порой даже не замечаем его и не задумываемся, какой бы была наша жизнь без этого чудесного явления.

Первое применение электричества

Интерес к такому явлению, как электричество сопровождал жизнь людей с самых древних времен. Первым его исследователем стал древнегреческий философ Фалес. Еще в VII в. до н.э. он обратил внимание, что если потереть янтарь кусочком шерсти, то янтарь начинает притягивать к себе ткань. Не случайно электричество и получило свое название от древнегреческого слова «электрон», что в переводе означает «янтарь». Однако долгое время полезное свойство, обнаруженное Фалесом, никак не использовалось (хотя, например, Аристотель исследовал электрические свойства угрей, которые им использовались против своих врагов).

Лишь в 17 веке появился и термин «электричество» и первые серьезные исследования в этой области. Термин ввел английский ученый Уильям Гилберт в своей книге «О магните, магнитных телах и большом магните – Земле», который в результате опытов выявил, что электризоваться может не только янтарь, но и другие предметы. В этот же период Отто фон Герике была создана первая электростатическая машина. Она представляла собой серный шар на металлическом стержне и могла не только притягивать, но и отталкивать предметы. Но еще очень долго электричество не приносило никакой практической пользы, хотя это явление будоражило умы многих ученых и активно изучалось ими. 18-19 века прошло под знаком активного исследования явления элекричества, были выявлены его многие полезные свойства. В частности, возможность передачи электрической энергии на некоторые расстояния, наличие тока в молнии и мышцах животных.

Конец 18- начало 19 веков ознаменовано изучением практической ценности электричества. В частности, ученый Вольта создает источник постоянного тока, который носит название гальванического элемента. В числе титулованных ученых, занимавшихся изучением электричества, нельзя не упомянуть Майкла Фарадея, который основал учение об электромагнитных полях, ввел многие термины и законы. Именно он стал создателем самого первого генератора электроэнергии, что стало основополагающим открытием в последующем развитии и распространении электричества. Ему же принадлежит честь создания первого электродвигателя, что сделало электричество уже не абстрактной научной субстанцией, а изобретением, полезным на практике.

Область применения электричества

Сказать, что сегодня область применения электричества широка – это не сказать практически ничего. Пожалуй, сложно найти сферу, где электричество е применялось бы.

Конечно, самый очевидный и общедоступный способ применения электроэнергии, о котором знает даже ребенок, — это освещение. Эта система освещения получила свое распространение с изобретением ламп накаливания русским электротехником А.Н. Лодыгиным во второй половине XIX века. Первые лампы состояли из закрытого сосуда без кислорода и со стержнем из угля внутри. Замена свечного освещения на электрическое существенно повысило пожарную безопасность.

Сфера применения электричества не ограничивается освещением. Оно также широко применяется для передачи информации. Такие устройства, как телефоны, телеграф, радио и телевидение не смогли бы работать без электричества.

Все мы с детства знаем виды транспорта, работающие на электроэнергии – это трамваи, троллейбусы, поезда, в том числе и в метро. Из-за роста цен на бензин все большее распространение получается и частный электротранспорт, например, на Западе уже достаточно широко используются электромобили.

Электричество достаточно широко применяется в сфере отопления или охлаждения. Надо отметить, что электрическое отопление является достаточно дорогим и ресурсозатратным, поэтому в некоторых странах оно запрещено к применению. А вот системы конидиционирования воздуха, работающие с применением электроэнергии, используются практически повсеместно.

Работа бытовой и офисной техники также невозможна без электричества – это утюги, стиральные и посудомоечные машины, электроплиты, принтеры, сканеры и многое другое. Не смогут работать без электроэнергии и компьютеры и планшеты, без которых сложно представить современную жизнь. Ведь приходя домой вечером, мы обязательно ставим свой телефон или планшет на зарядку, которая происходит от электрической розетки.

Электроэнергия широко применяется для таких процессов, как производство и обработка материалов (без электричества не работали бы аппараты для сварки, сверления, резки).

Еще одной сферой, где сегодня достаточно широко применяется электричество, является медицина. Многие обследования и процедуры были бы невозможны без него (электрофорез, электрокардиограмма и многие другие).

Очень важным вопросом сегодня является генерация электроэнергии. Для этого создаются электростанции.Все большее распространение получают электростанции, работающие за счет природных явлений – солнца, ветра, приливов.

Благодаря существованию линий электропередач (ЛЭП) электроэнергию возможно передавать на очень большие расстояния. Это позволяет электрифицировать даже самые отдаленные уголки (хотя, стоит отметить, что по информации Всемирного банка, существует большое число стран, где электроэнергия практически не используется, больше миллиарда людей на Земле не пользуются электричеством. Но как правило, это представители достаточно отсталых стран, например, в Африке).

Для хранения электроэнергии применяются всем нам знакомые аккумуляторы и батареи. Сегодня их можно приобрести практически в любом магазине, в любой точке планеты.

Промышленное применение электроэнергии.

Одной из крупнейших проблем, решенных в рассматриваемый нами период, было получение и использование электроэнергии — новой энергетической основы промышленности и транспорта.

Переход к массовому, непрерывному и автоматизированному производству требовал перевода системы машин на новый двигатель. Им стал электропривод, (электромотор), обеспеченный соответствующей передачей электроэнергии от генератора.

Предпосылкой для решения этой технической проблемы стало изобретение итальянским физиком А. Пачинотти (1841 —1912) в I 1860 г. и независимо от него бельгийским мастером 3. Т. Граммом t (1826—1901) в 1869—1870 гг. динамо-машины, т. е. самовоз-буждающегося генератора постоянного тока. Именно благодаря конструкции, предложенной Граммом, изобретение получило распространение на практике.

Первые электрогенераторы были машинами небольшой мощности и разнообразной конструкции (генераторы Ф. Хельнера — Альтене-ка—1873 г., Т. А. Эдисона—1878 г. и др.). Коэффициент полез-ного действия (КПД) этих машин был невелик.

В начале 70-х гг. принцип обратимости электрических машин был уже хорошо известен. Эти машины могли использоваться и в качестве генератора, и в качестве двигателя.

В 70—80-х гг. генераторы постоянного тока были настолько усовершенствованы, что, по сути дела, приобрели основные чер-ты современных машин.

Другой предпосылкой стало осуществление передачи электро-энергии по проводам на значительные расстояния. Первую передачу электроэнергии на расстояние 1 км демонстрировал фран-цуз И. Фонтен в 1873 г.

Однако практического применения этот опыт не получил. Более того, сам Фонтен считал, что подобная передача энергии возможна только для незначительных мощностей и на небольшое расстояние.

Теоретические обоснования и основы расчета электропередач были сделаны в 1880 г. в работах Д. А. Лачинова (1842—1902) и французского ученого М. Депрё (1843—1918). Лачинов и Депре независимо друг от друга пришли к выводу о возможности и эко-номической целесообразности передачи электроэнергии на боль-шие расстояния при условии повышения напряжения. В 1882 г. Депре осуществил передачу электроэнергии по проводам на рас-стояние 57 км между Мюнхеном и Мисбахом. Получив финансовую поддержку банкира Ротшильда, Депре построил несколько линий электропередачи во Франции.

Дальнейшее развитие передачи электрической энергии на рас-стояние связано с именем М. О. Доливо-Добровольского, который в 1888 г. изобрел систему трехфазного переменного тока. В 1891 г. Доливо-Добровольский вместе с инженером Броуном органи-зовал передачу электроэнергии на расстояние 170 км от Лауфена-на-Некаре до Электротехнической выставки во Франкфурте-на-Майне. Это событие можно считать началом зарождения исполь-зования трехфазного тока, вызвавшего переворот в промышленности, транспорте и быту.

В 1892 г. электропередача трехфазного тока была осуществ-лена в Швейцарии и Германии, а в 1893—в США. Первая промыш-ленная установка трехфазного тока в России была построена в 1893 г. для Новороссийского элеватора.

Внедрение трехфазной передачи электроэнергии встретило со-противление в США — Эдисона, в Англии — Свинберна, в Австро-Венгрии— Дери, в Швейцарии — Броуна, специализировавшихся на выпуске машин и аппаратов постоянного, однофазного или двух-фазного переменного токов. Любопытно отметить, что намеченный Доливо-Добровольским в 1899 г. обобщающий доклад о преимущест-вах электропередачи трехфазного тока был запрещен правлением крупнейшего треста германской электротехнической промышлен-ности «АЭГ», как задевающий интересы этой фирмы.

Решение вопроса об электропередаче на значительные рассто-яния на основе практического использования системы трехфазного переменного тока позволило сконцентрировать производство элек-троэнергии на особых предприятиях — электростанциях, где в ка-честве первичных генераторов служили тепловые или водяные дви-гатели.

Следует заметить, что сооружение первых электрических стан-ций относится к концу 70— началу 80-х гг. Эти электростанции (блок-станции, как их тогда называли), производившие постоян-ный ток, могли обеспечить ограниченное число потребителей, ос-ветить небольшие районы города (см. подробнее в гл. 5). Имен-но в этом крылся недостаток использования постоянного тока.

В 80-х гг. начали строить электрические станции переменного тока, которые позволили расширить область применения электро-энергии. В 1884 г. в Англии была пущена первая электростан-ция переменного тока. В 1889 г. вблизи Портленда (США) была построена крупная гидростанция однофазного переменного тока мощностью 720 кВт.

В конце 90-х гг. для снабжения электроэнергией промышлен-ных районов и городов развернулось широкое сооружение районных электростанций, строившихся вблизи источников сырья или у рек.

Ожесточенная борьба развернулась вокруг огромных источников энергии Ниагарского водопада (США). Эдисон предлагал строи-тельство электростанций по производству постоянного тока. Вестингауз ратовал за сооружение гидростанций переменного тока. Добыв с помощью разведки чертеж генераторов переменного тока Вестингауза, Эдисон воспроизвел такой же и предложил сенату своего штата законопроект о запрещении переменного тока как необычайно опасного. Эдисон добился того, чтобы казнь на электри-ческом стуле проводилась только с помощью постоянного электри-ческого тока. Он развернул кампанию в газетах, где выставлял переменный ток противным человеческой природе, морали и библии, призывал не проводить в дома переменный ток. Но все было на-прасно. Несмотря на все попытки опорочить переменный ток, он стал широко использоваться для передачи электроэнергии на рас-стояние.

В 1896 г. вступила в строй первая районная гидроэлектро-станция на Ниагаре. На станции были установлены три турбины переменного тока по 5 тыс. л. с. каждая. Динамо-машины выраба-тывали ток в 2 тыс. В. Для передачи электроэнергии потребителю напряжение поднималось трансформаторами до 50 тыс. В. Электро-передача осуществлялась на расстояние до 550 км.

В начале столетия была открыта мощная гидроэлектростанции в Брузио (Швейцария) напряжением 7,7 тыс. В. После прохождения трехфазного тока через трансформаторы он повышался до 50 тыс. В и передавался на расстояние 400 км. I

Идеи сооружения гидроэлектростанций в России зародились 70-е гг. XIX в. Военный инженер Ф. А. Пироцкий с 1874 г. неоднократно предлагал использовать силу рек и водопадов, расположенных недалеки ко от Петербурга, для производства электроэнергии, могущей найти использование в столице. 1

В 1889 г. инженер В. Ф. Добротворский высказал идею строительства гидростанции для снабжения Петербурга электричеством!

В 1892 г. русский изобретатель Н. Н. Бенйрдос предложил проект постройки гидроэлектростанций на Неве мощностью «в десяток-другой тысяч сил». 1

В последующие годы в России были разработаны проекты комплексного использования рек Волхова (проект Г. О. Графтио — 1910 г.) и Волги (проект Г. М. Кржижановского—1913 г.) и сооружения на них гидроэлектростанций. Эти проекты были осуществлены только при Советской власти. 1

Первая промышленная гидроэлектростанция в России мощностью 300 кВт была построена в 1895—1896 гг. под руководством инженеров В. Н. Чиколева и Р. Э. Классона (1868—1926) для электро-снабжения Охтинского порохового завода в Петербурге. В 1899 г. были введены в эксплуатацию гидроэлектростанции на Бакинских нефтяных камнях и на кавказском курорте Боржоме. В 1903 г. бы-ла пущена электростанция «Белый уголь» в Ессентуках. В 1909 г. закончилось строительство крупнейшей в дореволюционной России Гиндукушской ГЭС мощностью 1350 кВт на реке Мургаб (ныне тер-ритория Туркменской ССР). В 1914 г. для электроснабжения Москвы в Богородске (ныне Ногинск) была построена самая крупная в мире теплоэлектростанция «Электропередача», работавшая на торфе.

В результате сооружения районных электростанций промышленные предприятия были избавлены от необходимости строить собст-венные мелкие электростанции или устанавливать свои электрогенераторы.

Электроэнергия производилась на государственных, городских (муниципальных), а также на частных электростанциях, причем ко-личество частных электростанций значительно превышало число государственных и городских. Так, по сведениям Русского техни-ческого общества в 1913 г. из 20 крупных были электростанций 16 были частными.

Электростанции производили электрический ток специально для продажи потребителям. Заводам и фабрикам стало выгоднее поку-пать электроэнергию и направлять ее к рабочим машинам, снабженным электроприводом, нежели производить ее на собственном пред-приятии. Претерпел изменения и электродвигатель. Вместо синхрон-ного двигателя со специальным возбудителем (или однофазного дви-гателя с дополнительным двигателем для разгона) был изобретен асинхронный трехфазный электродвигатель, который начинал вращаться сразу при включении напряжения. Заслуга в создании та-кого двигателя (1889 г.) принадлежит М. О.Доливо-Добровольскому.

В начале 90-х гг. XIX в. широкое распространение получили электрифицированные машины в горнодобывающей промышлен-ности, на металлургических заводах для производства проката и для загрузки мартеновских и доменных печей.

Стали создаваться электрометаллургическое и электрохимиче-ское производства, основанные на использовании электронагрева. В области производства цветных металлов большое значение имела постройка в США в 1884 г. братьями Коульс электрической печи промышленного значения для восстановления алюминия и полу-чения его сплавов.

Наряду с превращением электроэнергии в механическую для промышленных целей развитие энергетики позволило осуществить во всерастущих масштабах ее превращение в световую, звуковую, теп-ловую и, наконец, химическую энергию.

В США в результате концентрации и централизации монопольное значение приобрела фирма «Дженерал Электрик», которая основала ряд дочерних фирм в Европе.

В 1907 г. американский и германский гиганты электричества заключили договор о разделе сфер деятельности в глобальном масштабе. В частности, был установлен взаимный обмен изобре-тениями и опытами. Заводы обоих концернов вырабатывали самые различные электротехнические и иные товары: «…от кабелей и изолятора до автомобилей и летательных аппаратов».

Применение электроэнергии в различных областях промышлен-ности и в сфере быта произвело на современников такое же силь-ное впечатление, как освоение паровых машин в период промыш-ленного переворота.

Доклад Использование электроэнергии

Самую большую роль в жизни человека, играет электроэнергия. Казалось бы сегодня, очень сложно представить ту семью, которая бы отказалась от телевизора, света и мелких бытовых приборов. Мы так привыкли к комфорту, что слабо представляем жизнь без электричества. А ведь раньше наши предки не знали, что это такое. Они больше проводили времени на свежем воздухе, чем сидели за телевизором, пользовались свечками и раньше ложились спать. Сегодня энергетика обеспечивает многие сферы. Она служит отличной поддержкой, для поддерживания бесперебойной работы промышленности, транспорта, и сельского хозяйства. Трудно представить нормальное развитие экономики, если убрать из нее энергетику.

Энергетика хорошо поддерживает научно-технический прогресс. Чтобы повысить работу производства многие заводы производят замену человека на технические машины. Чтобы эти машины работали хорошо, проводится их автоматизация. На это всегда тратиться много ресурсов и электрической энергии. Именно электроэнергия приводит в действие работающие приборы и различное оборудование. Вместе с другими отраслями народного хозяйства энергетика занимает важную часть во всей экономической системе каждой страны. Электроэнергетика словно вторглась не только в жизнь человека, но и во все сферы его деятельности. Благодаря этому освоили космос, наука набрала новых оборотов, делаются открытия и поддерживается нормальная жизнь на планете.

Самым главным потребителем электрической энергии считается промышленность. Но на сегодняшний день она немного теряет свои позиции. Электроэнергию отлично используют в сельском хозяйстве. Она служит помощником для обогрева разных помещений с животными и теплиц. Самое же главное, электроэнергия является источником света. В транспорте эта отрасль так же смогла заработать себе большую похвалу. Известно, что железнодорожный транспорт потребляет огромное количество энергии. Но это проявляет себя все же, с лучшей стороны. Ведь уменьшаются затраты на топливо и на стоимость перевозок. Неотъемлемой и незаменимой частью электроэнергия является в быту. Она создает комфорт и беззаботность жизни.

Вся электрическая энергия производится на электрических станциях, с помощью генераторов. По проводам она передается в населенные пункты и различные заводы. Потребность в электроэнергии вырастает с каждым годом. Поэтому становятся актуальными вопросы: строить новые электростанции, или использовать старые, но немного их при этом модернизировать. В любом случае электроэнергия стала неотъемлемой частью жизни каждого человека, и неважно находится он дома, или на работе.

>Использование электроэнергии

Популярные доклады

  • Доклад на тему Созвездие Дева 2 класс

    Созвездие Девы является одним из созвездий зодиакальной группы (все ведь знают такой знак Зодиака — Дева). Из всех созвездий этой группы оно является самым крупным по площади (а вообще из всех созвездий — вторым по размерам),

  • Доклад-сообщение Река Кубань 2, 3, 4, 8 класс

    Кубань – протекает на юге России. Берет свое начало от слияния двух рек Уллукам и Учкулан. Вытекает из-под ледников горы Эльбрус и бурным потоком срывается с высоты около 3000 метров. Бежит через Карачаево-Черкессию, Адыгею, Ставрополье

  • Доклад Народы Западной Сибири 4 класс сообщение

    Сибирь-район с суровым климатом и минимальным процентом заселения. Это место будоражит воображение. Несмотря на огромную территорию, населенных пунктов сравнительно немного. Соответственно народы немногочисленны.

(380 Kb)

I Введение
II Производство и использование электроэнергии
1. Генерация электроэнергии
1.1 Генератор
2. Использование электроэнергии
III Трансформаторы
1. Назначение
2. Классификация
3. Устройство
4. Характеристики
5. Режимы
5.1 Холостой ход
5.2 Режим короткого замыкания
5.3 Нагрузочный режим
IV Передача электроэнергии
V ГОЭЛРО
1. История
2. Результаты
VI Список использованной литературы

II. Производство и использование электроэнергии

1. Генерация электроэнергии

Генерация электроэнергии – производство электроэнергии посредством преобразования её из других видов энергии с помощью специальных технических устройств.
Для генерации электроэнергии используют:
Электрический генератор – электрическую машину, в которой механическая работа преобразуется в электрическую энергию.
Солнечную батарею или фотоэлемент – электронный прибор, который преобразует энергию электромагнитного излучения, в основном светового диапазона, в электрическую энергию.
Химические источники тока – преобразование части химической энергии в электрическую, посредством химической реакции.
Радиоизотопные источники электроэнергии – устройства, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.
Электроэнергия вырабатывается на электростанциях: тепловых, гидравлических, атомных, солнечных, геотермальных, ветряных и других.
Практически на всех электростанциях, имеющих промышленное значение, используется следующая схема: энергия первичного энергоносителя с помощью специального устройства преобразовывается вначале в механическую энергию вращательного движения, которая передается в специальную электрическую машину – генератор, где вырабатывается электрический ток.
Основные три вида электростанций: ТЭС, ГЭС, АЭС
Ведущую роль в электроэнергетике многих стран играют тепловые электростанции (ТЭС).
Тепловые электростанции требуют огромного количества органического топлива, запасы же его сокращаются, а стоимость постоянно возрастает из-за все усложняющихся условий добычи и дальности перевозок. Коэффициент использования топлива в них довольно низок (не более 40%), а объемы отходов, загрязняющих окружающую среду, велики.
Экономические, технико-экономические и экологические факторы не позволяют считать тепловые электростанции перспективным способом получения электроэнергии.
Гидроэнергетические установки (ГЭС) являются самыми экономичными. Их КПД достигает 93 %, а стоимость одного кВт•ч в 5 раз дешевле, чем при других способах получения электроэнергии. Они используют неисчерпаемый источник энергии, обслуживаются минимальным количеством работ¬ников, хорошо регулируются. По величине и мощности отдельных гидростанций и агрегатов наша страна занимает ведущее положение в мире.
Но темпы развития сдерживают значительные затраты и сроки строительства, обусловленные удаленностью мест строительства ГЭС от крупных городов, отсутствие дорог, трудные условия строительства, подвержены влиянию сезонности режима рек, водохранилищами затапливаются большие площади ценных приречных земель, крупные водохранилища негативно воздействуют на экологическую ситуацию, мощные ГЭС могут быть построены только в местах наличия соответствующих ресурсов.
Атомные электростанции (АЭС) работают по одному принципу с тепловыми электростанциями, т. е. происходит преобразование тепловой энергии пара в механическую энергию вращения вала турбины, которая приводит в действие генератор, где механическая энергия преобразовывается в электрическую.
Главное достоинство АЭС – небольшое количество используемого топлива (1 кг обогащенного урана заменяет 2,5 тыс. т угля), вследствие чего АЭС могут быть построены в любых энергодефицитных районах. К тому же запасы урана на Земле превышают запасы традици-онного минерального топлива, а при безаварийной работе АЭС незначительно воздействуют на окружающую среду.
Главным недостатком АЭС является возможность аварий с катастрофическими последствиями, для предотвращения которых требуются серьезные меры безопасности. Кроме того, АЭС плохо регулируются (для их полной остановки или включения требуется несколько недель), не разработаны технологии переработки радиоактивных отходов.
Атомная энергетика выросла в одну из ведущих отраслей народного хозяйства и продолжает быстро развиваться, обеспечивая безопасность и экологическую чистоту.

1.1 Генератор

Электрический генератор – это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.
Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.
Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.
Генератор переменного тока – электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

Генераторы переменного тока, так же как и генераторы постоянного тока, основаны на использовании явления электромагнитной индукции.
Коллектор генератора постоянного тока в генераторе переменного тока заменен контактными кольцами.
В простейшем генераторе переменного тока проводники, выполненные в виде рамки, соединены своими концами с контактными кольцами. Кольца вращаются вместе с рамкой, по их поверхности скользят щетки, соединяющие генератор со внешней цепью.
В электрических машинах переменного тока вращающуюся часть называют ротором, а неподвижную часть – статором.

В прямоугольном контуре вращается постоянный магнит

При вращении рамки изменяется магнитный поток через нее, поэтому в ней индуцируется ЭДС. Так как с помощью токосъемника (колец и щеток) рамка соединена с внешней электрической цепью, то в рамке и внешней цепи возникает электрический ток.
При равномерном вращении рамки угол поворота изменяется по закону:

Магнитный поток через рамку также изменяется с течение времени, его зависимость определяется функцией:

где S − площадь рамки.
По закону электромагнитной индукции Фарадея ЭДС индукции, возникающая в рамке равна:

где – амплитуда ЭДС индукции.
Другая величина, которой характеризуется генератор, является сила тока, выражающаяся формулой:

где i — сила тока в любой момент времени, Im – амплитуда силы тока (максимальное по модулю значение силы тока), φc — сдвиг фаз между колебаниями силы тока и напряжения.
Электрическое напряжение на зажимах генератора меняется по синусодальному или косинусоидальному закону:

или

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока. По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода:

2. Использование электроэнергии

Электроснабжение промышленных предприятий. Промышленные предприятия потребляют 30-70% электроэнергии, вырабатываемой в составе электроэнергетической системы. Значительный разброс промышленного потребления определяется индустриальной развитостью и климатическими условиями различных стран.
Электроснабжение электрифицированного транспорта. Выпрямительные подстанции электротранспорта на постоянном токе (городской, промышленный, междугородний) и понижающие ПС междугороднего электрического транспорта на переменном токе питаются электроэнергией от электрических сетей ЭЭС.
Электроснабжение коммунально-бытовых потребителей. К данной группе ПЭ относится широкий круг зданий, расположенных в жилых районах городов и населенных пунктов. Это – жилые здания, здания административно-управленческого назначения, учебные и научные заведения, магазины, здания здравоохранения, культурно-массового назначения, общественного питания и т.п.

III. Трансформаторы

Трансформатор – статическое электромагнитное устройство, имеющее две или большее число индуктивно-связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока.

Схема устройства трансформатора

1 – первичная обмотка трансформатора
2 – магнитопровод
3 – вторичная обмотка трансформатора
Ф – направление магнитного потока
U1 – напряжение на первичной обмотке
U2 – напряжение на вторичной обмотке

Первые трансформаторы с разомкнутым магнитопроводом предложил в 1876 г. П.Н. Яблочков, который применил их для питания электрической «свечи». В 1885 г. венгерские ученые М. Дери, О. Блати, К. Циперновский разработали однофазные промышленные трансформаторы с замкнутым магнитопроводом. В 1889-1891 гг. М.О. Доливо-Добровольский предложил трехфазный трансформатор.

1. Назначение

Трансформаторы широко применяются в различных областях:
Для передачи и распределения электрической энергии
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.
Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В.
Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя (преобразовательные трансформаторы).
Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.
Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.
Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. (измерительные трансформаторы)

2. Классификация

Классификация трансформаторов:

  • По назначению: силовые общего(используются в линиях передачи и распределения электроэнергии) и специального применения (печные, выпрямительные, сварочные, радиотрансформаторы).
  • По виду охлаждения: с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением.
  • По числу фаз на первичной стороне: однофазные и трёхфазные.
  • По форме магнитопровода: стержневые, броневые, тороидальные.
  • По числу обмоток на фазу: двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток).
  • По конструкции обмоток: с концентрическими и чередующимися (дисковыми) обмотками.

3. Устройство

Простейший трансформатор (однофазный трансформатор) представляет собой устройство, состоящее из стального сердечника и двух обмоток.

Принцип устройства однофазного двухобмоточного трансформатора
Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток.
При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки.

а)

б)

Условное обозначение трансформатора:
а) – трансформатор со стальным сердечником, б) – трансформатор с сердечником из феррита

4. Характеристики трансформатора

  • Номинальная мощность трансформатора – мощность, на которую он рассчитан.
  • Номинальное первичное напряжение – напряжение, на которое рассчитана первичная обмотка трансформатора.
  • Номинальное вторичное напряжение – напряжение на зажимах вторичной обмотки, получающееся при холостом ходе трансформатора и номинальном напряжении на зажимах первичной обмотки.
  • Номинальные токи, определяются соответствующими номинальными значениями мощности и напряжения.
  • Высшее номинальное напряжение трансформатора – наибольшее из номинальных напряжений обмоток трансформатора.
  • Низшее номинальное напряжение – наименьшее из номинальных напряжений обмоток трансформатора.
  • Среднее номинальное напряжение – номинальное напряжение, являющееся промежуточным между высшим и низшим номинальным напряжением обмоток трансформатора.

5. Режимы

5.1 Холостой ход

Режимом холостого хода – режим работы трансформатора, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение.

В первичной обмотке трансформатора, соединенной с источником переменного тока течёт ток, в результате чего в сердечнике появляется переменный магнитный поток Φ, пронизывающий обе обмотки. Так как Φ одинаков в обеих обмотках трансформатора, то изменение Φ приводит к появлению одинаковой ЭДС индукции в каждом витке первичной и вторичной обмоток. Мгновенное значение ЭДС индукции e в любом витке обмоток одинаково и определяется формулой:

где – амплитуда ЭДС в одном витке.
Амплитуда ЭДС индукции в первичной и вторичной обмотках будет пропорционально числу витков в соответствующей обмотке:

где N1 и N2 – число витков в них.
Падение напряжения на первичной обмотке, как на резисторе, очень мало, по сравнению с ε1, и поэтому для действующих значений напряжения в первичной U1 и вторичной U2 обмотках будет справедливо следующее выражение:

K – коэффициент трансформации. При K>1 трансформатор понижающий, а при K<1 – повышающий.

5.2 Режим короткого замыкания

Режимом короткого замыкания – режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (Z=0).

Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.

Необходимо различать два режима короткого замыкания:

Аварийный режим – тогда, когда замкнута вторичная обмотка при номинальном первичном напряжении. При таком замыкании токи возрастают в 15¸ 20 раз. Обмотка при этом деформируется, а изоляция обугливается. Железо так же подгорает. Это тяжелый режим. Максимальная и газовая защита отключает трансформатор от сети при аварийном коротком замыкании.

Опытный режим короткого замыкания – это режим, когда вторичная обмотка накоротко замкнута, а к первичной обмотке подводится такое пониженное напряжение, когда по обмоткам протекает номинальный ток – это UK – напряжение короткого замыкания.

В лабораторных условиях можно провести испытательное короткое замыкание трансформатора. При этом выраженное в процентах напряжение UK, при I1=I1ном обозначают uK и называют напряжением короткого замыкания трансформатора:

где U1ном – номинальное первичное напряжение.

Это характеристика трансформатора, указываемая в паспорте.

5.3 Нагрузочный режим

Нагрузочный режим трансформатора – режим работы трансформатора при наличии токов не менее чем в двух его основных обмотках, каждая из которых замкнута на внешнюю цепь, при этом не учитываются токи, протекающие в двух или более обмотках в режиме холостого хода:

Если к первичной обмотке трансформатора подключить напряжение U1, а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I1 и I2. Эти токи создадут магнитные потоки Φ1 и Φ2, направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается. Вследствие этого индуктированные суммарным потоком ЭДС ε1 и ε2 уменьшаются. Действующее значение напряжения U1 остается неизменным. Уменьшение ε1 вызывает увеличение тока I1:

При увеличении тока I1 поток Φ1 увеличивается ровно настолько, чтобы скомпенсировать размагничивающее действие потока Φ2. Вновь восстанавливается равновесие при практически прежнем значении суммарного потока.

IV. Передача электроэнергии

Передача электроэнергии от электростанции к потребителям – одна из важнейших задач энергетики.
Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока.

Необходимость передачи электроэнергии на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации генерирующих мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии.
Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии. От эффективности передачи электроэнергии на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории.
Передавать электроэнергию от мест её производства к потребителям необходимо с минимальными потерями. Главная причина этих потерь – превращение части электроэнергии во внутреннюю энергию проводов, их нагрев.

Согласно закону Джоуля-Ленца, количество теплоты Q, выделяемое за время t в проводнике сопротивлением R при прохождении тока I , равно:

Из формулы следует, что для уменьшения нагрева проводов необходимо уменьшать силу тока в них и их сопротивление. Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, однако, очень толстые провода, висящие между опорами линий электропередач, могут оборваться под действием силы тяжести, особенно, при снегопаде. Кроме того, при увеличении толщины проводов растёт их стоимость, а они сделаны из относительно дорогого металла – меди. Поэтому более эффективным способом минимизации энергопотерь при передаче электроэнергии служит уменьшение силы тока в проводах.
Таким образом, чтобы уменьшить нагрев проводов при передаче электроэнергии на дальние расстояния, необходимо сделать силу тока в них как можно меньше.
Мощность тока равна произведению силы тока на напряжение:

Следовательно, для сохранения мощности, передаваемой на дальние расстояния, надо во столько же раз увеличить напряжение, во сколько была уменьшена сила тока в проводах:

Из формулы следует, что при постоянных значениях передаваемой мощности тока и сопротивления проводов потери на нагрев в проводах обратно пропорциональны квадрату напряжению в сети. Поэтому для передачи электроэнергии на расстояния в несколько сотен километров используют высоковольтные линии электропередач (ЛЭП), напряжение между проводами которых составляет десятки, а иногда сотни тысяч вольт.
С помощью ЛЭП соседние электростанции объединяются в единую сеть, называемую энергосистемой. Единая энергосистема России включает в себя огромное число электростанций, управляемых из единого центра и обеспечивает бесперебойную подачу электроэнергии потребителям.

V. ГОЭЛРО

1. История

ГОЭЛРО (Государственная комиссия по электрификации России) – орган, созданный 21 февраля 1920 года для разработки проекта электрификации России после Октябрьской революции 1917 года.

К работам комиссии было привлечено свыше 200 деятелей науки и техники. Возглавлял комиссию Г.М. Кржижановский. ЦК Коммунистической партии и лично В. И. Ленин повседневно направляли работу комиссии ГОЭЛРО, определяли основные принципиальные положения плана электрификации страны.

К концу 1920 комиссия проделала огромную работу и подготовила «План электрификации РСФСР» – том в 650 страниц текста с картами и схемами электрификации районов.
План ГОЭЛРО, рассчитанный на 10-15 лет, реализовал ленинские идеи электрификации всей страны и создания крупной индустрии.
В области электроэнергетического хозяйства план состоял из программы, рассчитанной на восстановление и реконструкцию довоенной электроэнергетики, строительство 30 районных электрических станций, сооружение мощных районных тепловых электростанций. Электростанции намечалось оборудовать крупными для того времени котлами и турбинами.
Одной из основных идей плана являлось широкое использование огромных гидроэнергоресурсов страны. Предусматривались коренная реконструкция на базе электрификации всех отраслей народного хозяйства страны и преимущественно рост тяжёлой промышленности, рациональное размещение промышленности по всей территории страны.
Осуществление плана ГОЭЛРО началось в трудных условиях Гражданской войны и хозяйственной разрухи.

С 1947 СССР занимал 1-е место в Европе и 2-е в мире по производству электроэнергии.

План ГОЭЛРО сыграл в жизни нашей страны огромную роль: без него не удалось бы вывести СССР в столь короткие сроки в число самых развитых в промышленном отношении стран мира. Реализация этого плана сформировала всю отечественную экономику и до сих пор в значительной мере ее определяет.

Составление и выполнение плана ГОЭЛРО стали возможным и исключительно благодаря сочетанию многих объективных и субъективных факторов: немалого промышленно-экономического потенциала дореволюционной России, высокого уровня российской научно-технической школы, сосредоточения в одних руках всей экономической и политической власти, ее силы и воли, а также традиционного соборно-общинного менталитета народа и его послушно-доверительного отношения к верховным правителям.
План ГОЭЛРО и его реализация доказали высокую эффективность системы государственного планирования в условиях жестко централизованной власти и предопределили развитие этой системы на долгие десятилетия.

2. Результаты

К концу 1935 программа электростроительства была в несколько раз перевыполнена.

Вместо 30 было построено 40 районных электростанций, на которых вместе с другими крупными промышленными станциями было введено 6914 тыс. кВт мощностей (из них районных 4540 тыс. кВт – почти в три раза больше, чем по плану ГОЭЛРО).
В 1935 г. среди районных электростанций было 13 электроцентралей по 100 тыс. кВт.

До революции мощность самой крупной электростанции России (1-й Московской) составляла всего 75 тыс. кВт; не было ни одной крупной ГЭС. К началу 1935 г. общая установленная мощность гидроэлектростанций достигла почти 700 тыс. кВт.
Были построены крупнейшая в то время в мире Днепровская ГЭС, Свирская 3-я, Волховская и др. В высшей точке своего развития Единая энергосистема СССР по многим показателям превосходила энергосистемы развитых стран Европы и Америки.

Электричество было практически неизвестно в деревнях до революции. Большие землевладельцы устанавливали небольшие электростанции, но число их было мало.

Электроэнергия стала применяться в сельском хозяйстве: в мельницах, кормовых резцах, зерноочистительных машинах, на лесопилках; в промышленности, а позже – в быту.

Список использованной литературы

Веников В. А., Дальние электропередачи, М.– Л., 1960;
Совалов С. А., Режимы электропередач 400–500 кв. ЕЭС, М., 1967;
Бессонов, Л.А. Теоретические основы электротехники. Электрические цепи : учебник / Л.А. Бессонов. — 10-е изд. — М. : Гардарики, 2002.
Электротехника: Учебно-методический комплекс. /И. М. Коголь, Г. П. Дубовицкий, В. Н. Бородянко, В. С. Гун, Н. В. Клиначёв, В. В. Крымский, А. Я. Эргард, В. А. Яковлев; Под редакцией Н. В. Клиначёва. — Челябинск, 2006-2008.
Электрические системы, т. 3 – Передача энергии переменным и постоянным током высокого напряжения, М., 1972.
Яворский Б. М., Детлаф А. А., Справочник по физике для инженеров и студентов вузов, М.: Наука, — 2-е изд., — 1964, — 848с.
Автомобильный справочник BOSCH. Перевод с англ. Первое русское издание. – М.: За рулем, 2002. – 896 с.
Доцент кафедры МСА Кузнецов М.И., Краткий конспект лекций по курсу «Электромеханические системы». – Пермь, 2001.
Богданов К.Ю., Физика. 11 класс. Учебник. — М.: Просвещение, 2010. — 208 с.
Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н., Физика. 11 класс. Учебник.19-е изд. — М.: Просвещение, 2010. — 399 с.
Электрические сети, оборудование, документация, инструкции
Практическая электроника
Электротехника
Школа для электрика
Физический портал для школьников
Мозговой штурм трансформатора
Электротехнический портал для студентов ВУЗов и инженеров

Извините, ничего не найдено.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *