Измерение тока и напряжения

Измерение тока, напряжения и мощности

Измерение тока. Для измерения тока используются амперметры. Амперметр включается в цепь таким образом, чтобы через него проходил весь измеряемый ток, т.е. последовательно. Поэтому его сопротивление должно быть малым по сравнению с сопротивлением цепи.

Для измерения постоянного тока используются приборы магнитоэлектрической системы, реже приборы электромагнитной системы. Для измерения переменного тока частотой 50 Гц в основном применяют приборы электромагнитной системы. Сопротивление этих приборов лежит в пределах от долей ома до нескольких ом.

Для расширения пределов измерения амперметров в цепях постоянного тока используют шунты. Их сопротивления подсчитывают по формуле:

,

где Iан — номинальное значение тока амперметра; Rа — внутреннее сопротивление амперметра; Iш — ток, проходящий через шунт.

Для расширения пределов измерения амперметров в цепях переменного тока используют измерительные трансформаторы тока.

Измерение напряжения. Для измерения напряжения используют вольтметры.

Вольтметры включаются параллельно участку электрической цепи, на котором измеряют напряжение. Вольтметр должен иметь большое сопротивление по сравнению с сопротивлением соответствующего участка цепи. В цепях постоянного тока используют вольтметры магнитоэлектрической системы, но обычно с добавочным сопротивлением.

Для расширения пределов измерений вольтметров в цепях постоянного тока до 4500 В служат добавочные резисторы (сопротивления). Их сопротивление определяют по формуле:

где Uн — номинальное напряжение прибора; Umax — максимальное измеряемое напряжение; RV — сопротивление вольтметра.

В цепях переменного тока используют вольтметры электромагнитной и электродинамической системы.

Измерение мощности. Мощность в электрической цепи синусоидального тока определяется по формуле:

P=U I · cos(Ð ),

где U и I — действующие значения напряжения и тока; j =Ð — угол разности начальных напряжения и тока (угол сдвига фаз).

Для измерения мощности в электрических цепях необходимо измерить напряжение, ток и угол сдвига фазы. Для этого используется прибор — ваттметр с двумя катушками. Это приборы электродинамической и ферродинамической измерительных систем. Катушка напряжения включается параллельно участку цепи, подобно вольтметру, ее зажимы на лицевой стороне ваттметра обозначены буквой U. Токовая катушка включается в цепь последовательно, подобно амперметру, ее зажимы обозначены буквой I (рисунок 1.4.).

Рисунок 1.4 — Схема включения ваттметра

На ваттметре начало токовой катушки и катушки напряжения отмечены звездочками, это генераторные зажимы. При измерении активной мощности эти зажимы включаются со стороны источника энергии. Такие же особенности имеет и так же включается в сеть фазометр — прибор, предназначенный для измерения угла сдвига фаз j. Он позволяет непосредственно определить по шкале угол j и cos j.

Цена деления многопредельного ваттметра определяется по формуле:

,

где Uп, Iп— предельные значения напряжения и тока, указанные на соответствующих зажимах прибора; n — число делений шкалы.

Активная мощность, измеряемая ваттметром,

Р=Wизм CW,

где Wизм — число делений шкалы, указываемое стрелкой прибора.

Таким же образом определяется цена деления амперметра и вольтметра, если шкала прибора не проградуирована в единицах измерения.

Измерения тока и напряжения

Ток и напряжение являются основными величинами, характеризующими режим электрической цепи.

Обычно ток измеряют амперметром, включенным последовательно с элементом электрической цепи, в котором измеряется ток. Включение амперметра, имеющего сопротивление Ял, вызывает изменение тока в измеряемой цепи, что приводит к погрешности. Погрешность, возникшая в результате включения приборов, называется методической.

Рассмотрим методическую погрешность при включении амперметра в цепь (рис. 12.20). Ток в цепи при отсутствии амперметра Iy=U/R. После включения амперметра ток / становится меньше: I = U / (R + R4). Относительная погрешность измерения

Для амперметров

мощность, потребляемая амперметром; Р — мощность измеряемого элемента.

Рис. 11.20. Схема включения амперметра

Методическая погрешность при измерении тока тем меньше, чем меньше потребляемая амперметром мощность по сравнению с мощностью измеряемой цепи.

Напряжение измеряют вольтметром. Вольтметр подключают параллельно к измеряемой цепи (рис. 11.21). При подключении вольтметра режим электрической цепи также меняется и появляется методическая погрешность 8Г ={U — Uх) / Uх, где U — истинное значение напряжения на измеряемом элементе; 1!, — напряжение на зажимах вольтметра. Находя с помощью законов Кирхгофа U и Uх для электрических цепей, показанных на рис. 12.21,6, после преобразования получаем:

Обычно в вольтметре R » Rv. поэтому отношением R / Rv в знаменателе пренебрегаем.

Методическая погрешность при измерении напряжения тем меньше, чем больше сопротивление вольтметра Rv по сравнению с сопротивлением измеряемой цепи R или чем меньше потребляемая вольтметром мощность по сравнению с мощностью измеряемой цепи.

Рис. 11.21. Измерение напряжения: а — исходная схема; б — схема измерений

Электрический ток можно измерять с помощью измерительного резистора Rn и вольтметра (рис. 11.22). В этом случае сопротивление RH выбирают много меньше сопротивления измеряемой цепи R, т.е. Rn » R .

Измерив напряжение Uи, находят ток по закону Ома: I = Uи / RH. Такой метод измерения тока используют при лабораторных исследованиях, в электронных и радиотехнических цепях, в электрических цепях с большими токами. Универсальные электронные приборы (цифровые и аналоговые), в которых предусматривается измерение тока, содержат во входном устройстве измерительный резистор в качестве датчика тока.

Сложнее всего измерять слишком маленькие и, наоборот, слишком большие токи и напряжения. Для измерения малых токов (до 100 мкА) обычно применяют цифровые микроамперметры или гальванометры с электронными усилителями. Переменные токи более 100 мкА можно измерять выпрямительными микроамперметрами, токи в диапазоне от 10 мА до 100 А в частотном диапазоне до десятков килогерц измеряют амперметрами различных видов. При высоких частотах (до сотен мегагерц) для измерений применяют термоэлектрические приборы.

Для измерения больших постоянных токов (более 100 А) применяют амперметры с шунтами. Параллельно амперметру с внутренним сопротивлением включают шунт с сопротивлением Яш (рис. 11.23).

!

Рис. 11.22. Схема измерения тока с помощью вольтметра и измерительного резистора

Шунт ограничивает ток амперметра 1Л, который не должен превышать максимального предела измерений при любом измеряемом токе:

где П — коэффициент расширения пределов измерения амперметром; Яш — сопротивление шунта, Rw = R л / (и -1).

Рис. 11.23. Измерительная схема амперметра с шунтом

Для измерения больших переменных токов промышленной частоты используют измерительные трансформаторы тока.

Малые напряжения измеряют с помощью электронных цифровых и аналоговых приборов, компенсаторов, позволяющих измерять постоянные напряжения с большой точностью. Для измерения напряжений более 1000 В применяют как электронные, так и электромеханические приборы с добавочными резисторами и измерительными трансформаторами напряжения.

Предел измерения многих вольтметров можно увеличить с помощью добавочного резистора Rn включенного последовательно с вольтметром (рис.

11.24). Измеряемое напряжение откуда

. Коэффициент расширения пределов измерения

вольтметром

Добавочное сопротивление Rd = Rv(m -1).

Рис. 11.24. Измерительная схема вольтметра с добавочным резистором

Яндекс.Директ

Электроизмерительные приборы

Текст В настоящее время существуют приборы, с помощью которых могут быть произведены измерения более 50 электрических величин. Перечень электрических величин включает в себя ток, напряжение, частоту, отношение токов и напряжений, сопротивление, емкость, индуктивность, мощность и т.д. Появление множества технических средств реализующих измерения, являеться вытекающим из многообразия количества измеряемых величин . Электроизмерительную аппаратуру и приборы можно классифицировать по ряду признаков. По функциональному признаку эту аппаратуру и приборы можно разделить на средства сбора, обработки и представления измерительной информации и средства аттестации и поверки.

Электроизмерительную аппаратуру по назначению можно разделить на меры, системы, приборы и вспомогательные устройства. Кроме того, важный класс электроизмерительных приборов составляют преобразователи, предназначенные для преобразования электрических величин в процессе измерения или преобразования измерительной информации.

Здесь будет рассмотрена лишь часть измерительных приборов, необходимых для ремонта и обслуживания бытовых электроприборов и электрооборудования! Так же будут представлены некоторые приборы не применяемые в быту, а описаны лиш для общего ознакомления!

Измерение силы тока, количества электричества и зарядов – Трансформаторы тока, амперметры, вольтметры, мультиметры

Трансформаторы тока – служат для передачи сигналов измерительной информации измерительным приборам и/или устройствам защиты и управления в электросетях переменного тока промышленной частоты.

Трансформаторы тока

Амперметры и вольтметры – служат для измерения тока и напряжения в электросетях.

Амперметр и вольтметр

Мультиметры- служат для измерения основных электрических величин: напряжения и силы постоянного и переменного токов, а также сопротивления постоянному току и тестирования p-n переходов и др. так же применяются при изготовлении, эксплуатации и ремонте электро- и радиоаппаратуры.

Мультиметр

Измерение ЭДС и напряжения – Трансформаторы напряжения, вольтметры

Трансформаторы напряжения – служат для измерений высоких напряжений переменного тока промышленной частоты.

Трансформатор напряжения

Измерение мощности и энергии – Счетчики электрической энергии, ваттметры

Счетчики электрической энергии – служит для измерения и учета активной/реактивной энергии.

Счетчики электрической энергии

Ваттметры – для точных измерений мощности в цепях постоянного и переменного тока, а также для поверки менее точных приборов.

Ваттметр

Измерение показателей качества электрической энергии и АСКУЭ

Система информационно-измерительная автоматизированная коммерческого учета электроэнергии – для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения и отображения информации, для коммерческого учета электроэнергии.

Измерение показателей качества электрической энергии и АСКУЭ

Прочие (Измерения электрических и магнитных величин) — Контроллеры, измерительные системы и комплексы.

Контроллеры – служат для измерения, регистрации и обработки напряжения и силы постоянного тока, параметров однофазных и трехфазных цепей переменного тока (действующих значений напряжения и силы переменного тока, активной, реактивной и полной мощности, частоты, угла сдвига фаз), их преобразования в цифровой код, а также для формирования аналоговых сигналов управления технологическим оборудованием в различных отраслях промышленности, главным образом энергетике.

Контроллер

Комплексы измерительные – служат для измерения параметров импульсных электромагнитных помех с целью определения качества выполнения заземляющего устройства (ЗУ), область применения – оборудование энергообъектов , электрические цепи (электрощиты) зданий и промышленных помещений.

Комплекс измерительный

Системы измерительные – служит для непрерывного измерения и контроля технологических параметров.

Система измерительная

Измерение электрического сопротивления, проводимости, емкости, угла сдвига фаз, индуктивности и добротности электрических цепей, параметров диэлектриков – Мегаомметры, измерители сопротивления.

Омметр

Измерение характеристик магнитных полей, свойств магнитных материалов – Тесламетры, измерители магнитной индукции.

Тесламетр

Самописцы – приборы для вывода результатов измерений температуры, напряжения и тока, влажности, интегральных импульсов и вращения с возможностью сохранения данных и вывода их на бумажный носитель.

Самописец

Метрологическое оборудование – Генераторы эталонных электрических сигналов, прецизионные мультиметры, калибраторы тестового оборудования, многофункциональные калибраторы, эталонные счетчики электрической энергии для оснащения лабораторий и работы в полевых условиях.

прецизионные мультиметры

Измерение параметров высоковольтного оборудования — Импульсный локатор повреждений кабеля, прибор контроля выключателей, прибор контроля РПН трансформаторов…

Локатор повреждения кабеля

Электроизмерительные приборы по материалам Википедии.

Применение – Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту — для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.

Классификация

  • Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:
  • амперметры — для измерения силы электрического тока;
  • вольтметры — для измерения электрического напряжения;
  • омметры — для измерения электрического сопротивления;
  • мультиметры – (иначе тестеры, авометры) — комбинированные приборы
  • частотомеры — для измерения частоты колебаний электрического тока;
  • магазины сопротивлений — для воспроизведения заданных сопротивлений;
  • ваттметры и варметры — для измерения мощности электрического тока;
  • электрические счётчики — для измерения потреблённой электроэнергии
  • и множество других видов
  • Кроме этого существуют классификации по другим признакам:
  • по назначению — измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;
  • по способу представления результатов измерений — показывающие и регистрирующие ( в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);
  • по методу измерения — приборы непосредственной оценки и приборы сравнения;
  • по способу применения и по конструкции — щитовые (закрепляемые на щите или панели), переносные и стационарные;
  • по принципу действия: лектромеханические, магнитоэлектрические, электромагнитные, электродинамические электростатические, ферродинамические, индукционные, магнитодинамические, электронные, термоэлектрические, электрохимические.

Обозначения

Зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число — условный номер модели. Например: С197 — киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.

  • В — приборы вибрационного типа (язычковые)Д — электродинамические приборы
  • Е — измерительные преобразователи
  • И — индукционные приборы
  • К — многоканальные и комплексные измерительные установки и системы
  • Л — логометры
  • М — магнитоэлектрические приборы
  • Н — самопишущие приборы
  • П — вспомогательные измерительные устройства
  • Р — меры, измерительные преобразователи, приборы для измерения параметров элементов электрических цепей
  • С — электростатические приборы
  • Т — термоэлектрические приборы
  • У — измерительные установки
  • Ф — электронные приборы
  • Х — нормальные элементы
  • Ц — приборы выпрямительного типа
  • Ш — измерительные преобразователи
  • Щ — ?
  • Э — электромагнитные приборы

    Обозначение

Измерение тока. Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть IА измеряемого тока I, обратно пропорциональная его сопротивлению RА. Большая часть Iш этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора RA и шунта Rш можно по току IА, фиксируемому прибором, определить измеряемый ток:

I = IА (RА+Rш)/Rш = IАn (105)

где n = I/IА = (RA + Rш)/Rш — коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора IА,

Rш = RA/(n-1) (106)

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Рис. 332. Схемы для измерения тока (а, б) и напряжения (в, г)

Измерение напряжения. Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (Rд) (рис. 332,г). При этом на прибор приходится лишь часть Uv измеряемого напряжения U, пропорциональная сопротивлению прибора Rv.

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения Uv, фиксируемого вольтметром, определить напряжение, действующее в цепи:

U = (Rv+Rд)/Rv * Uv = nUv (107)

Величина n = U/Uv=(Rv+Rд)/Rv показывает, во сколько раз измеряемое напряжение U больше напряжения Uv, приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле Rд=(n— 1) Rv.

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры. По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения. Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале). Отношение входного напряжения делителя U1 к выходному U2 (рис. 333, а) называется коэффициентом деления. При холостом ходе U1/U2 = (R1+R2)/R2 = 1 + R1/R2. В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

Рис. 333. Схемы включения делителей напряжения

выводам делителя подключен вольтметр (рис. 333,б). Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра Rv достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы. Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную — к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U1 и U2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков ?1 и ?2 обеих обмоток трансформатора, т. е.

U1/U2 = ?1/?2 = n (108)

Таким образом, подобрав соответствующее число витков ?1 и ?2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U1 может быть определено умножением измеренного вторичного напряжения U2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде

Рис. 334. Включение электроизмерительных приборов посредством измерительных трансформаторов напряжения (а) и тока (б)

обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I1 и I2, проходящие по его обмоткам, будут обратно пропорциональны числу витков ?1 и ?2 этих обмоток, т.е.

I1/I2 = ?1/?2 = n (109)

Следовательно, подобрав соответствующим образом число витков ?1 и ?2 обмоток трансформатора, можно измерять большие токи I1, пропуская через электроизмерительный прибор малые токи I2. Ток I1 может быть при этом определен умножением измеренного вторичного тока I2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I1 могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя. Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU1/U2 и I1/I2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°). Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измере-

Рис. 335. Проходной измерительный трансформатор тока

ний приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.). В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *