Излучение лазера

Лазерное излучение. Что нужно знать

В настоящее время лазеры прочно закрепились во всех сферах жизнедеятельности человека. Они используются в медицине, химии, физике, биологии и во многих других областях современной науки. Сложно переоценить вклад этого явления в прогресс человечества. Однако неосторожное использование этой технологии может привести к пагубным последствиям для здоровья человека. Ослепление, ожоги, электротравмы — это далеко не полный список увечий, которые можно получить при взаимодействии с лазером. Лазерное неэкранированное излучение большой мощности представляет собой серьёзную опасность если относится к нему легкомысленно и не соблюдать элементарные правила безопасности.

Данная статья поможет вам разобраться в нюансах этого явления и даст представление об угрозах, которые лазерное излучение представляет собой для здоровья человека. Так же вы получите представление об основах безопасной работы с лазером и узнаете, как современные лазеры делятся на классы по уровню угрозы для здоровья человека. Здесь так же можно ознакомиться с небольшой исторической справкой о лазерах.

Лазер как явление

LASER — Light Amplification by Stimulated Emission of Radiation. Как видите, за этим словом скрывается аббревиатура на английском языке. На русский это можно перевести как «усиление света индуцированным излучением». Усиление энергии до состояния повышенной интенсивности приводит к появлению лазерного излучения. В результате многократного отражения в системе зеркал происходит усиление излучения, и в итоге мы можем наблюдать явление, которое абсолютно уникально по своим физическим свойствам. Лазерный луч намного уже луча света обычной лампы, но их отличия на этом не заканчиваются. Лазерное излучение проецирует волну одной длины и один чистый цвет, кроме этого световые волны полностью совпадают во времени друг с другом. От обычного света лазерные лучи отличает их организованность (когерентность, если говорить научными терминами).

В 1916 году были сделаны первые шаги на пути изучения лазера. После длительных исследований небезызвестный Альберт Энштейн выдвинул свою теорию взаимодействия излучения с веществом, сделав таким образом возможной разработку квантовых усилителей, способных проецировать электромагнитные волны. Следующий значительный прорыв состоялся в 1928 году, когда Ланденбург провёл свою серию экспериментов. Результатом кропотливой работы стала формулировка условия нахождения индуцированного излучения как преобладание его над поглощением. И только более чем четверть века спустя, в 1955 году советские физики Басов и Прохоров сконструировали квантовый генератор с аммиаком в качестве активной среды. С тех пор огромное количество учёных стали участниками гонки по конструированию лазерных систем, не прекращающейся и сегодня.
Данная технология внесла неоценимый вклад в развитие медицины.

Многие задачи, которые казались до этого нерешаемыми, с усовершенствованием лазеров остались в прошлом. Его чудодейственные лучи вернули здоровье многим тысячам людей. Чего стоит только лазерная коррекция зрения, которая всего за 10 минут позволяет вернуть любому пациенту идеальное зрение. Эффективность этой операции достигает 100%. Косметологи так же нашли применение для этой технологии в своей деятельности. Излучение медицинского лазера даёт возможность селективно воздействовать на корни волос, пигментные пятна и другие дефекты кожи. Сегодня возможно быстро и почти безболезненно удалить родинку, как и надоевшую татуировку.

В своё время выдающийся французский учёный Луи де Бройль, произнёс пророческую фразу: «Лазеру уготовано грандиозное будущее. Тяжело предвидеть, как именно он будет применяться, но я считаю, что за лазером стоит целая техническая эпоха». И мы действительно живём в эпоху, когда почти не осталось сфер деятельности, в которых так или иначе не используются технологии на основе лазерных лучей. Современные измерительные приборы невозможно представить без применения лазерных лучей в их конструкции. Лазер позволил измерить расстояние от Земли до Луны, точность этих измерений составила несколько сотен метров. Применение лазерных лучей в сфере радиолокации позволило многократно повысить точность получаемых данных. Нет никаких сомнений, что эта технология ещё сыграет свою роль в дальнейшем научном и техническом прогрессе.

Как лазерные лучи воздействуют на человеческий организм?

Одной из характеристик лазерных лучей является крайне высокий уровень концентрации энергии. Пучок света, производимый лазером, способен повышать температуру поверхности, на которую он направлен. С помощью направленного облучения можно добиться деформации почти любой поверхности за небольшой промежуток времени. Концентрация колоссального энергетического потока на небольшой площади позволяет достичь температуры в более чем миллион градусов. Благодаря этому свойству лазеры получили широкое распространение в хирургии и материалообработке, оно же делает их угрозой для человеческой кожи при чрезмерном облучении. Повреждение кожного покрова лучом лазера аналогично термическому ожогу. Так же значительная опасность кроется в лазерном излучении, вырабатывающемся посредством фотохимического эффекта. Однако современные приборы сводят такой риск к минимуму.

Стоит заметить, что молниеносная скорость воздействия лазерных лучей дает возможность избежать болевых ощущений. Благодаря этому свойству, лазер получил широкое распространение в хирургии. В ходе непродолжительных операций с применением лазера не требуется какой-либо анестезии. Мало какая серьезная операция может быть осуществима без обезболивания. При этом временные затраты на такие операции гораздо ниже, чем при традиционном оперировании с помощью скальпеля.

Зачастую работа лазерных установок сопровождается шумом, который может достигать уровня до 120 Дб. Длительно пребывание в помещении с таким оборудованием может стать причиной проблем со слухом. Так же химическая реакция мощного лазерного луча и воздуха сопровождается обильным выделением озона. У людей, вовлечённых в работу с лазерами на протяжении долгого времени, могут диагностироваться нарушения функций вестибулярного аппарата. Частота этих нарушений зависит от профессионального стажа. Лазерное излучение может стать причиной необратимых изменений в человеческом организме, расстройства органов зрения, центральной нервной системы и вегетативной системы.

Берегите глаза

Глаз — один из самых хрупких элементов нашего организма. В отличие от остальных органов, он не имеет защиты от окружающей среды. При попадании невидимого инфракрасного лазера в глаз человек ничего не почувствует, потому что мозг не воспримет его как источник света и защитной реакции не последут. Поглощение ультрафиолетового излучение роговицей глаза может привести к отёку эпителия и эрозии. В особенно тяжелых случаях возможно помутнение передней камеры. Сетчатка глаза подвержена риску в гораздо большей степени. После того, как лазерное излучение достигает сетчтаки, оно распространяется дальше на всю оптическую систему органа зрения.

Если прямой лазерный луч попадет в глаз, когда взгляд направлен вдаль, последствия могут быть очень плачевными. Концентрация спектра коллимированного луча на сетчатке в этот момент может достигать 100000 крат. На глазном дне при таком повреждении обнаруживаются ожог и отек сетчатки, кровоизлияние с дальнейшим появлением рубца и уменьшением остроты зрения. Столь мощное воздействие может даже привести к слепоте. Из этого следует вывод, что вероятность потери зрения в результате сильного излучения достаточно велика.

Классификация лазеров

Подавляющее большинство лазерного оборудования, изготавливаемого во всем мире, производится и сертефицируется с оглядкой на международные стандарты, согласованные американским объединением CDRH (Center for Devices and Radiological Health). В зависимости от уровня угрозы, которую различные лазерные установки представляют для человеческого организма, они делятся на четыре основных класса:

Класс I (безопасные) — маломощные лазерные системы, не излучающие вредный для человека уровень радиации. Такие лазеры не могут являться причиной повреждения глаза. К данному классу так же относятся приборы, оборудованные корпусом, не выпускающим луч лазера наружу. В таком случае луч может быть мощнее допустимой для первого класса нормы.

Класс II (низкий уровень опасности) — эти лазеры уже способны нанести ущерб человеческому глазу, при зрительном контакте более 0,25 секунды. К ним не относятся приборы, вырабатывающие излучение с невидимой волной.

Класс III (средний уровень опасности) — даже непродолжительный визуальный контакт с лучом подобной лазерной установки может привести к повреждениям органа зрения. Работать с такими устройствами без специальных защитных очков нельзя ни в коем случае. Рассеянное излучение не представляет опасности при расстоянии визуального контакта более 13 сантиметров и времени менее 10 секунд. Имеется значительный риск воспламенения при соприкосновении луча с огнеопасными материалами. На выходе мощность составляет около 500 мВт.

Класс IV (высокоопасные) — мощные лазеры, представляющие опасность для здоровья. Они в состоянии нанести значительные повреждения сетчатке глаза непродолжительным излучением прямого луча. В практике использования подобных приборов были ситуации, когда луч случайно отражался в глаз от обычной отвертки или пугавицы на рукаве. Воздействие этих лазеров с большой долей вероятности может привести к серьезным ожогам на коже, а так же стать причиной воспламенения горючих и прочих легковоспламеняющихся материалов. Опасность создает и повышенно ультрафиолетовое излучение импульсных ламп. В последнее время правительствами многих стран ведутся активные работы по адаптации таких лазеров для военных целей. Компании, представляющие свои разработки на выставках, получают финансирование от госудаства.

Меры предосторожности

В неумелых руках мощный лазер представляет не меньшую опасность, чем огнестрельное оружие. Только сертефицированный персонал допускается к работе с такими устройствами. Лучшей профилактикой лазерного излучения является соблюдение правил эксплуатации и защиты. Использование лазерных установок II-III уровней предполагает ограждение зоны работы с лазером и экранирование излучения. Лазеры IV уровня должны быть полностью изолированны от остального производства, работа с ними проводится дистанционно. Поверхности в таких помещениях окрашиваются в цвета с малым коэффициентом отражения. При недостаточном уровне освещения работа с лазерами недопустима. Окна для наблюдения должны быть оборудованы защитным стеклом. В случае необходимости ремонта прибора, категорически запрещено использование деталей и расходных материалов, несогласованных с производителем.

Средства защиты от лазерного излучения должны гарантировать предотвращение пагубного действия излучения или уменьшение его величины до уровня, не превышающего безопасного. В экипировку работников, взаимодействующих с лазером должны входить щитки, маски, технологические халаты и специальные очки. Один раз в год им необходимо проходить полный медицинский осмотр. Такая предосторожность более чем оправдана. Большая часть исследователей, изучающих здоровье обслуживающего персонала лазеров, установили у них предрасположенность к астеническим и вегетативно-сосудистым расстройствам. Доступ к участкам производства, на которых проходит работа с лазером, должен быть строго ограничен. Лазерная установка должна быть надежно защищена от несогласованного использования с помощью выключателя, запираемого на ключ, или другого аналогичного механизма.

>Лазерное излучение

Физическая сущность лазерного излучения

Замечание 1

В наше время лазер нашел широкое применение во многих сферах деятельности человека – это промышленность, медицина, научные исследования, мониторинг состояния окружающей среды и др. Лазерное излучение (ЛИ), как и другие виды излучений, оказывают неблагоприятное воздействие на организм человека. Непрерывно излучающие лазеры создают интенсивность порядка $10$ Вт/см кв, а этого вполне достаточно, чтобы расплавить и испарить любой материал. Интенсивность излучения при генерации коротких импульсов достигает иногда больше $10$ Вт/см кв. Чтобы представить себе эту величину, надо отметить, что вблизи поверхности Земли интенсивность солнечного света составляет только $0,1$…$0,2$ Вт/см кв. ЛИ является оптическим когерентным излучением, которое имеет высокую направленность и большую плотность энергии.

Излучение формируется в активной среде, которая является главным элементом лазера и, чтобы она образовалась необходимо:

  1. Свет нелазерных источников;
  2. Разряд электричества в газах;
  3. Химреакции;
  4. Бомбардировку электрическим пучком и другие методы.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Оптический резонатор образуют зеркала, между которыми располагается активная среда, она может представлять твердый материал – стекло, пластмассу, рубины – может быть представлена полупроводниками, жидкостью с органическими красителями, газом и др. Лазеры могут быть импульсного и непрерывного действия.

По своим физико-техническим параметрам лазеры классифицируются:

  1. Конструктивное исполнение:

    • Стационарные лазеры;
    • Лазеры передвижные;
    • Открытые лазеры;
    • Закрытые лазеры.
  2. Мощность излучения:

    • Лазеры сверхмощные;
    • Мощные лазеры;
    • Лазеры средней мощности;
    • Маломощные лазеры.
  3. Режим работы:

    • Лазеры непрерывного режима;
    • Импульсные лазеры;
    • Импульсные лазеры с модулированной добротностью.
  4. Способ отвода тепла:

    • Лазеры с естественным охлаждением;
    • Лазеры с принудительным охлаждением водой;
    • Лазеры с принудительным охлаждением воздухом;
    • Лазеры с принудительным охлаждением специальными жидкостями.
  5. Назначение:

    • Технологические лазеры;
    • Лазеры специальные;
    • Лазеры исследовательские;
    • Лазеры уникальные.
  6. Метод накачки:

    • Накачка химическим возбуждением;
    • Накачка пропусканием высокочастотного тока;
    • Пропусканием импульсного тока;
    • Пропусканием постоянного тока;
    • Накачка импульсным светом;
    • Накачка постоянным светом.
  7. Длина генерируемой световой волны:

    • Инфракрасные лазеры;
    • Лазеры видимого света;
    • Ультрафиолетовые лазеры;
    • Рентгеновские лазеры;
    • Субмиллиметровые лазеры.
  8. По активному элементу:

    • Газодинамические лазеры;
    • Твердотельные лазеры;
    • Полупроводниковые лазеры;
    • Лазеры жидкостные;
    • Лазеры газовые.

Лазерное излучение и организм человека

Все лазеры, исходя из степени их опасности для работающих, делят на 4 класса:

  1. Не представляющие для кожи человека и его глаз опасности излучения;
  2. Как прямое, так и зеркально отраженное излучение представляет большую опасность для глаз;
  3. Все три излучения – прямое, зеркально отраженное и диффузно отраженное – на расстоянии $0,1$ м от отражающей поверхности, представляет опасность. Есть также опасность облучения кожи;
  4. Опасность диффузно отраженным излучением на расстоянии $0,1$ м от диффузно отражающей поверхности.

В организме человека лазерное излучение может вызвать патологические изменения, расстройство органов зрения, ЦНС и вегетативной системы. Лазерное излучение оказывает негативное влияние на внутренние органы человека – печень, почки, спинной мозг и др. Возникающие поверхностные ожоги – основной патофизиологический эффект облучения.

Лазеры $II$, $ III$, $IV$ классов в обязательном порядке маркируют знаками лазерной опасности и снабжают сигнальными устройствами на весь период работы. Чтобы излучение не распространилось за пределы обрабатываемых материалов $III$ и $IV$ класс лазеров оснащают специальными экранами. Для их производства используют огнестойкий, неплавящийся, светопоглощающий материал. Управление такими лазерами дистанционное.

Для лазерного излучения установлены предельно допустимые уровни. Определены эти уровни с учетом области спектра отдельно для глаз и кожи. Работающие с лазером должны проходить как предварительный, так и ежегодный медицинский осмотр. Для лазеров $II$…$IV$ классов работники должны использовать индивидуальную защиту глаз, а для $IV$ класса – защитные маски. В зависимости от длины волны излучения стекла защитных очков могут быть бесцветные или оранжевого, сине-зеленого цвета.

Все опасности лазерного излучения делят на первичные – лазерная установка и вторичные – в процессе взаимодействия лазерного излучения и мишени.

  1. Первичные факторы вредности:

    • Прямое лазерное излучение;
    • Электрическое напряжение;
    • Световое излучение;
    • Акустический шум;
    • Вибрация вспомогательного оборудования;
    • Газы, загрязняющие воздух, выделяющиеся из узла установки;
    • Рентгеновское излучение при напряжении выше $15$ кВ.
  2. Вторичные факторы вредности:

    • Отраженное лазерное излучение;
    • Аэродисперсные системы;
    • Акустические шумы;
    • Излучение плазменного факела.

Нормирование лазерного излучения

К нормированию лазерного излучения существует два научно обоснованных подхода:

  1. Первый касается повреждающих эффектов тканей или органов непосредственно в месте облучения;
  2. Второй подход касается выявляемых изменений систем и органов, которые не подвергались непосредственному воздействию.

В основе гигиенического нормирования лежат критерии биологического действия.

Исходя из этого, диапазон лазерного излучения разделили на области:

  1. Область ультрафиолета – от $0,18$ — $0,38$ мкм;
  2. Видимая область – $0,38$ — $0,7$5 мкм;
  3. Инфракрасная ближняя область – $0,75$ — $1,4$ мкм;
  4. Инфракрасная дальняя область – свыше $1,4$ мкм.

Замечание 2

Обоснование гигиенических нормативов затруднено по той причине, что диапазон длин волн широкий, параметры лазерного излучения и биологические эффекты разнообразны. На экспериментальную и клиническую проверку необходимо время и средства, поэтому для уточнения и разработки предельно допустимых уровней ЛИ используют математическое моделирование.

Математические модели, безусловно, учитывают характер распределения энергии и абсорбционные характеристики облучаемых тканей. При определении и уточнении ПДУ ЛИ использовался метод математического моделирования основных физических процессов. Он вошел в последнюю редакцию санитарных норм и правил устройства и эксплуатации лазеров – СНиП № 5804-91.

Разработанные нормы учитывали результаты научных исследований и основных положений документов:

  1. СаНиП устройства и эксплуатации лазеров № 2392-81;
  2. Стандарт МЭК (первое издание, $1984$ г.);
  3. Изменения к стандарту Международной электротехнической комиссии ($1987 $г., публикация $825$).

Данные нормы подлежат применению и это засвидетельствовано Письмом Роспотребнадзора от $16$.$05$.$2007$ № 0100/4961-07-32. Предельно допустимые уровни лазерного излучения устанавливают правила № 5804-91.

Они же устанавливают требования относительно:

  1. Устройств и эксплуатации лазеров;
  2. Производственных помещений, размещения оборудования и рабочих мест;
  3. Требований к персоналу;
  4. Состояния производственной сферы;
  5. Применения средств защиты;
  6. Медицинского контроля.

Лазерные излучатели45

Лазерные излучатели — оптоэлектронные компоненты, включающие в себя полупроводниковые лазерные диоды и лазерные модули со встроенными схемами управления. Цена лазерных излучателей известных фирм, таких как,

Komoloff, LECC, Iroyal, Osram, зависит от технических характеристик каждого из компонентов.

Лазерные диоды являются полупроводниковым элементом, лазерным источником оптического излучения. Конструктивно они выполнены на основе арсенид алюминия-галлия, в твердометаллических корпусах с выходными кварцевыми линзами. Выбор компонента осуществляется по основным параметрам: длина волны (нм), мощность излучения (мВт), рабочее напряжение (В), цвет свечения. Лазерные диоды нашли широкое применение в различном измерительном оборудовании, как лазерные дальномеры, в проигрывателях CD и DVD дисков, волоконно-оптических линиях связи, медицинской технике.

Лазерные модули представляют собой лазерные диоды с оптическими фокусирующими компонентами, и драйверами тока, которые осуществляют контроль питания лазерных диодов. Лазерный модуль оснащен фокусирующей или коллимирующей линзой для определенной формы излучения, это может быть точка, крест или линия. Конструктивно модули выполнены в цельнометаллических корпусах со встроенной схемой управления, и выводами для элементов питания, напряжение которых, в среднем, составляет 3.2…5В, за исключением модулей с мощностью свыше 50мВт.

Мощные лазерные модули от производителя Komoloff B 100, 150, 250, 500, 800, 1000, 2000 c синим цветом свечения выполнены с внешним драйвером, питающимся от источника напряжения 12В. Цена изделия зависит от его параметров и конструктивного исполнения. Выбор изделия производится по основным характеристикам, мощности излучения (мВт/Вт), длины волны (нм), виду излучения (точка/линия/крест) и цвету свечения (зеленый, красный, синий).

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Волгоград, Воронеж, Екатеринбург, Ижевск, Казань, Калуга, Краснодар, Красноярск, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Пермь, Ростов-на-Дону, Рязань, Самара, Тверь, Тула, Тюмень, Уфа, Челябинск. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Евросеть» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Ярославль, Владивосток, Махачкала, Томск, Оренбург, Кемерово, Новокузнецк, Астрахань, Пенза, Липецк, Киров, Чебоксары, Калининград, Курск, Улан-Удэ, Ставрополь, Сочи, Иваново, Брянск, Белгород, Сургут, Владимир, Нижний Тагил, Архангельск, Чита, Смоленск, Курган, Орёл, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и др.

Товары из группы «Лазерные излучатели» вы можете купить оптом и в розницу.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *