Гололед на проводах

За последние пятнадцать лет гололёд на высоковольтных линиях стал возникать всё чаще. При небольшом морозе, в условиях мягкой зимы, на проводах оседают капельки тумана или дождя, покрывая их плотной ледяной «шубой» весом несколько тонн на длине километр. В результате провода рвутся, а опоры линий электропередач ломаются. Участившиеся аварии на ЛЭП связаны, по-видимому, с общим потеплением климата и потребуют немало сил и средств на их предотвращение. Готовиться к ним нужно заранее, но традиционный способ плавления гололёда на проводах малоэффективен, неудобен, дорог и опасен. Поэтому в Московском институте радиоэлектроники и автоматики (МИРЭА) разработана новая технология не просто уничтожения уже намёрзшего льда, но позволяющая загодя предотвращать его образование.

Наука и жизнь // Иллюстрации уски льда на проводах, изоляторах и несущих конструкциях порой достигают значительных размеров и массы. Многотонные слои льда на проводах ломают даже стальные и железобетонные опоры. Экспериментальный генератор на 100 МГц мощностью 30 Вт, собранный в МИРЭА. ‹

Гололёд — бедствие для линий электропередач

Согласно словарю Даля, гололёд имеет и другое название — ожеледь или ожеледица. Гололёд, то есть плотная ледяная корка, образуется при намерзании переохлаждённых капель дождя, мороси или тумана при температуре от 0 до –5°С на поверхности земли и различных предметов, в том числе проводах высоковольтных линий электропередач. Толщина гололёда на них может достигать 60—70 мм, существенно утяжеляя провода. Простые расчеты показывают, что, например, провод марки АС-185/43 диаметром 19,6 мм километровой длины имеет массу 846 кг; при толщине гололёда 20 мм она увеличивается в 3,7 раза, при толщине 40 мм — в 9 раз, при толщине 60 мм — в 17 раз. При этом общая масса линии электропередачи из восьми проводов километровой длины возрастает соответственно до 25, 60 и 115 тонн, что приводит к обрыву проводов и поломке металлических опор.

Подобные аварии приносят значительный экономический ущерб, на их устранение уходит несколько дней и затрачиваются огромные средства. Так, по материалам фирмы «ОГРЭС», крупные аварии по причине гололёда за период с 1971 по 2001 год многократно происходили в 44 энергосистемах России. Только одна авария в сочинских электросетях в декабре 2001 года привела к повреждению 2,5 тыс. км воздушных линий электропередач напряжением до 220 кВ и прекращению электроснабжения огромного района. Много аварий гололёдного происхождения было и минувшей зимой.

Наиболее подвержены гололёду высоковольтные линии электропередач на Кавказе (в том числе и в районе предстоящей в 2014 году зимней сочинской Олимпиады), в Башкирии, на Камчатке, в иных районах России и других стран. Бороться с этим бедствием приходится очень дорогим и крайне неудобным способом.

Плавка электрическим током

Ледяную корку на высоковольтных линиях ликвидируют, нагревая провода постоянным или переменным током частотой 50 Гц до температуры 100—130°С. Сделать это проще всего, замкнув накоротко два провода (при этом от сети приходится отключать всех потребителей). Пусть для эффективного растапливания ледяной корки на проводах требуется ток Iпл. Тогда при плавке постоянным током напряжение источника питания

U0 = IплRпр,

где Rпр — активное сопротивление проводов, а переменным током от сети —

где Xпр = 2FLпр — реактивное сопротивление при частоте F = 50 Гц, обусловленное индуктивностью проводов Lпр.

В линиях значительной длины и сечения из-за относительно большой их индуктивности напряжение источника переменного тока при частоте F = 50 Гц, а соответственно и его мощность должны быть в 5—10 раз больше по сравнению с источником постоянного тока той же силы. Поэтому экономически выгодно плавить наледь постоянным током, хотя для этого нужны мощные высоковольтные выпрямители. Переменный ток применяют обычно на высоковольтных линиях напряжением 110 кВ и ниже, а постоянный — выше 110 кВ. В качестве примера укажем, что при напряжении 110 кВ сила тока может достигать 1000 А, требуемая мощность — 190 млн В·А, температура провода 130оС.

Таким образом, плавка гололёда током — довольно неудобное, сложное, опасное и дорогостоящее мероприятие. Кроме того, очищенные провода при сохранившихся климатических условиях вновь обрастают льдом, который требуется плавить снова и снова.

Прежде чем изложить сущность предлагаемого нами метода борьбы с гололёдом на проводах высоковольтных линий электропередач, остановимся на двух физических явлениях, первое из которых связано со скин-эффектом, второе — с бегущей электромагнитной волной.

Скин-эффект и бегущие волны

Название эффекта происходит от английского слова «skin» — кожа. Скин-эффект состоит в том, что токи высокой частоты, в отличие от постоянного тока, не распределяются равномерно по сечению проводника, а концентрируются в очень тонком слое его поверхности, толщина которого при частоте f > 10 кГц составляет уже доли миллиметра, а сопротивление проводов возрастает в сотни раз.

Электромагнитные колебания высокой частоты могут распространяться в свободном пространстве (при излучении антенной) и в волноводах, например, в так называемых длинных линиях, по которым электромагнитная волна скользит, словно по рельсам. Такой длинной линией может служить пара проводов линии электропередачи. Чем больше сопротивление проводов линии, тем большая часть энергии электромагнитного поля бегущей вдоль линии волны преобразуется в тепло. Именно этот эффект и положен в основу нового способа предотвращения гололёда на линиях электропередач.

В случае ограниченных размеров линии или какого-либо высокочастотного препятствия, например ёмкости, в линии помимо падающей будет распространяться и отражённая волна, энергия которой также будет преобразовываться в тепло по мере её распространения от препятствия к генератору.

Расчёты показывают, что для защиты от гололёда ЛЭП длиной порядка 10 км нужен высокочастотный генератор мощностью 20 кВт, то есть отдающий 2 Вт мощности на метр провода. Стационарный режим разогрева проводов при этом наступает через 20 минут. А при том же типе провода применение постоянного тока требуется мощность 100 Вт на метр с выходом на режим за 40 минут.

Токи высокой частоты генерируют мощные радиопередатчики УКВ ЧМ-вещания, работающие в диапазоне 87,5—108 МГц. Их можно подключать к проводам ЛЭП через устройство согласования с нагрузкой — линией электропередачи.

Для проверки эффективности предложенного метода в МИРЭА был проведён лабораторный эксперимент. Генератор мощностью 30 Вт, частотой 100 МГц подключили к двухпроводной линии длиной 50 м, разомкнутой на конце, с проводами диаметром 0,4 мм и расстоянием между ними 5 мм.

Под действием бегущей электромагнитной волны температура нагрева двухпроводной линии составила 50—60°С при температуре воздуха 20°С. Результаты эксперимента с удовлетворительной точностью совпали с результатами расчётов.

Выводы

Предлагаемый способ требует, конечно, тщательной проверки в реальных условиях действующей электросети с проведением полномасштабных экспериментов, ибо лабораторный эксперимент позволяет только дать первую, предварительную оценку новому способу борьбы с гололёдом. Но некоторые выводы из всего сказанного всё-таки можно сделать:

1. Разогрев линий электропередач токами высокой частоты позволит предотвращать образование гололёда на проводах, поскольку можно нагреть их до 10—20°С, не дожидаясь образования плотного льда. Отключать от электрической сети потребителей не придётся — высокочастотный сигнал к ним не проникнет.

Подчеркнём: способ позволяет не допускать появления гололёда на проводах, а не начинать с ним бороться после того, как ледяная «шуба» их окутает.

2. Поскольку провода можно нагревать всего на 10—20°С, то по сравнению с плавкой, требующей нагрева проводов до 100—130°С, значительно уменьшается расход электроэнергии.

3. Так как сопротивление проводов токам высокой частоты по сравнению с промышленной (50 Гц) резко возрастает, коэффициент преобразования электрической энергии в тепловую оказывается велик. Это в свою очередь приводит к снижению требуемой мощности. На первых порах, по всей видимости, можно ограничиться частотой около 100 МГц генератора мощностью 20—30 кВт, воспользовавшись существующими вещательными радиопередатчиками.

Литература

Дьяков А. Ф., Засыпкин А. С., Левченко И. И. Предотвращение и ликвидация гололедных аварий в электрических сетях. — Пятигорск: Изд-во РП «Южэнерготехнадзор», 2000.

Каганов В. И. Колебания и волны в природе и технике. Компьютеризированный курс. — М.: Горячая линия — Телеком, 2008.

Левченко И. И., Засыпкин А. С., Аллилуев А. А., Сацук Е. И. Диагностика, реконструкция и эксплуатация воздушных линий электропередачи в гололедных районах. — М.: Издательский дом МЭИ, 2007.

Рудакова Р. М., Вавилова И. В., Голубков И. Е. Борьба с гололёдом в электросетевых предприятиях. — Уфа: Уфимск. гос. авиац. техн. ун-т, 1995.

Яворский Б. М., Детлаф А. А. Справочник по физике. — М.: Наука, 1974.

Борьба с гололедом — Эксплуатация воздушных линий электропередачи

Оглавление

Эксплуатация воздушных линий электропередачи

Профилактические измерения и испытания

Определение места повреждения

Борьба с гололедом

Ремонт воздушных линий

Страница 4 из 5

Гололедно-изморозевые отложения на проводах и тросах ВЛ происходят при температуре воздуха около -5°С и скорости ветра 5… 10 м/с. Полная масса гололедно-изморосевых отложений приводится к форме полого цилиндра льда с толщиной стенки, равной b (рис. 4).

Рис. 4. Идеализированное представление гололеда на проводах

По толщине стенки гололеда при повторяемости 1 раз в 25 лет территория страны делится на 8 районов:
I район b=10 мм;
II район b=15 мм;
III район b=20 мм;
IV район b=25 мм;
V район b=30 мм;
VI район b=35 мм;
VII район b=40 мм;
особый b>45 мм.

Карты районирования страны приводятся в .

Гололед обуславливает дополнительные механические нагрузки на все элементы ВЛ. При значительных гололедных отложениях возможны обрывы проводов, тросов, разрушения арматуры, изоляторов и даже опор ВЛ. Гололед может откладываться по фазным проводам достаточно неравномерно. Стрелы провеса проводов с гололедом и без гололеда могут отличаться на несколько метров. Такая разрегулировка стрел провеса, а также неодновременный сброс гололеда при его таянии, вызывающий «подскок» отдельных проводов, могут привести к перекрытию воздушной изоляции. Гололед является одной из причин «пляски» проводов, способной привести к их схлестыванию.

На небольших участках ВЛ производится, как правило, механическое удаление гололеда. Для этой цели используются шесты, веревки и другие подручные средства. При механическом удалении гололеда без отключения ВЛ должны использоваться шесты из бакелита, стеклопластика и другого изоляционного материала.

Основным методом борьбы с гололедом при эксплуатации протяженных ВЛ является его плавка за счет нагревания проводов протекающим по ним током. Существует достаточно большое количество схем плавки гололеда, определяемых схемой электрической сети, нагрузкой потребителей, возможностью отключения линий и другими факторами.

Схема плавки гололеда переменным током искусственного короткого замыкания показана на рис. 5,а.

Рис. 5. Принципиальные схемы плавки гололеда переменным (а) и выпрямленным (б) током

ВЛ одним концом подключается к источнику питания, которым, как правило, служат шины 6 — 10 кВ подстанций или отдельный трансформатор, провода на другом конце ВЛ замыкаются. Напряжение и мощность источника выбираются таким образом, чтобы обеспечить протекание по проводам ВЛ тока в 1,5…2 раза превышающего длительно допустимый ток. Такое превышение допустимого длительного тока оправдано кратковременностью процесса плавки (~1 ч), а также более интенсивным охлаждением провода в зимний период. Следует помнить, что допустимые длительные токи приводятся в справочной литературе для температуры воздуха 25°С.

Ориентировочные величины токов при различной продолжительности плавки гололеда переменным током приведены а табл. 3, в последнем столбце которой указан ток, предупреждающий образование гололеда на проводах.

Для ВЛ напряжением 220 кВ и выше с проводами сечений 240 мм и более плавка гололеда переменным током требует очень больших мощностей источника питания (десятки MB*А). Для параметров проводов ВЛ такого класса справедливо соотношение R » X . Полная мощность источника увеличивается за счет большой и бесполезной для плавки гололеда реактивной нагрузки. На таких ВЛ плавка гололеда осуществляется выпрямленным током.

Таблица 3

Марка провода

Ток плавки, А, при продолжительности, мин

Ток предупр., А

АС 50

АС 70

АС 95

АС 120

АС 150

АС 185

АС 240

Принципиальная схема плавки гололеда выпрямленным током показана на рис. 5,б. Выпрямитель UZ подключается к шинам 6 — 10 кВ подстанций или отдельному трансформатору. Используются, как правило, две схемы плавки гололеда выпрямленным током: «фаза-фаза» и «фаза — две фазы».

Параметры выпускаемых отечественной промышленностью нерегулируемых выпрямительных блоков, подключаемых к переменному напряжению 10 кВ:
выпрямленное напряжение 14 кВ;
выпрямленный ток 1200 А;
мощность на выходе 16800 кВт.

Для получения большей мощности выпрямительные блоки можно включать последовательно или параллельно.

ОАО НИИПТ разработана на базе управляемого трехфазного мостового выпрямителя установка для плавки гололеда, подключаемая к серийному силовому трансформатору или шинам соответствующего напряжения (до 35 кВ). В отличие от нерегулируемых выпрямительных блоков эта установка позволяет при плавке гололеда плавно изменять выходные параметры в диапазоне:
выпрямленное напряжение 0… 50 кВ;
выпрямленный ток 0… 1200 А;
мощность на выходе 0… 60000 кВт.

Эксплуатационный персонал ВЛ должен контролировать процесс гололедообразования и обеспечивать своевременное включение схем плавки гололеда. ВЛ, на которых производится плавка гололеда, должны
быть оснащены сигнализаторами гололеда, работоспособность которых должна проверяться ежегодно перед наступлением зимнего периода.

Следует отметить, что плавка гололеда должна проводиться в районах интенсивного гололедообразования ( b > 20 мм) с частой пляской проводов. В других случаях применение плавки гололеда должно обосновываться технико-экономическими расчетами.

Мероприятия по борьбе с гололедом

Основные мероприятия по борьбе с гололедом на линиях электропередач делятся на активные и пассивные.

1) Пассивные методы включают те противогололедные меры, которые способствуют уменьшению размеров гололедных отложений и прочности их сцепления с проводами и тросами.

В качестве примера применения таких мер и методов можно назвать установку на ВЛ ограничителей закручивания проводов, применяемых для уменьшения налипания мокрого снега, а также для образования на проводах односторонних гололедных гребешков, которые раньше, чем концентрические гололедные муфты, сбрасываются при повышении температуры окружающей среды или собственно провода.

К категории пассивных способов можно отнести применение закрепляемых на проводах колец или спиралей, наличие которых способствует сбросу мокрого снега при его скольжении по наружному повиву провода, что в совокупности с ограничителями кручения проводов позволяет снизить размеры и массу наледи, а также приводит к ускоренному сбросу отложений в форме мокрого снега, гололеда или изморози.

В качестве пассивной меры борьбы с гололедом на проводах линий электропередач, могут использоваться различные провода повышенной прочности. провод гололед электропередача кабель

К данному типу проводов относятся провода АССС(Aluminum Conductor Composite Core)-Алюминиевый Проводниковый Провод с Композитным Сердечником компании Composite Technology Corp.’s, который представляет собой набор алюминиевых проводов вокруг углеволоконного и стекловолоконного эпоксидного ядра и провода ACCR(Aluminum Conductor Composite Reinforced) -Алюминиевый Проводящий Композитный Усиленный провод. В проводах ACCR используется сердечник из металлокомпозита, в обертке из высокотемпературных алюминий-цирконидных(Al-Zr) проводов. Характерной особенностью этих проводов является то, что и конструкция и композитный сердечник, и наружные пучки AL-Zr вносят свой вклад в прочность провода и повышение проводимости.

Новые высокотехнологичные провода для линий электропередачи 110 — 1150 кВ. Эти провода, получившие название Aero-Z®, представляют собой полностью связанные между собой проводники, которые состоят из одного или нескольких концентрических слоев круглых проволок (внутренние слои) и проволок в виде буквы «Z» (внешние слои). Каждый слой провода имеет скрутку по длине, выполненную с определенным шагом.

Внутренняя часть провода аналогична обычному проводу типа АС за исключением того, что внутренние проводники могут быть изготовлены не только из стали, но и из алюминия или алюминиевых сплавов. Более того, один или несколько проводников могут быть полыми и содержать внутри оптические волокна. Внешние же слои провода выполняются из алюминиевых проводников, имеющих форму буквы «Z»., причем проводники очень плотно прилегают друг к другу.

Таким образом, за счет более плотной скрутки проводников и более гладкой внешней поверхности возможно использование более тонких и более легких проводов (без стального сердечника).

Провод Aero-Z®, обладая более высоким сопротивлением кручению, практически не поворачивается, что приводит к самосбросу излишнего снега под действием силы тяжести.

2) Активными мерами борьбы с гололедом является удаление его с проводов и тросов путем плавки электрическим током, профилактический нагрев проводов (увеличением тока нагрузки) до температур, при которой образование гололеда на проводах не происходит, а также механическое удаление. Применяется несколько способов плавки гололеда на ВЛ: током КЗ, постоянным током от специального источника, током нагрузки. Для плавки гололеда на грозозащитных тросах последние подвешивают на изоляторах.

Схемы плавки гололеда:

а-в — током КЗ; г — по способу встречного включения фаз; д- постоянным то-ком ВЛ одним концом подключается к источнику питания, которым, как правило, служат шины 6 — 10 кВ подстанций или отдельный трансформатор, провода на другом конце ВЛ замыкаются. Напряжение и мощность источника выбираются таким образом, чтобы обеспечить протекание по проводам ВЛ тока в 1,5…2 раза превышающего длительно допустимый ток. Такое превышение допустимого длительного тока оправдано кратковременностью процесса плавки (~1 ч), а также более интенсивным охлаждением провода в зимний период.

Для ВЛ напряжением 220 кВ и выше с проводами сечений 240 мм и более плавка гололеда переменным током требует очень больших мощностей источника питания (десятки MB*А). Для параметров проводов ВЛ такого класса справедливо соотношение R » X . Полная мощность источника увеличивается за счет большой и бесполезной для плавки гололеда реактивной нагрузки. На таких ВЛ плавка гололеда осуществляется выпрямленным током.

Плавка гололеда токами высокой частоты.

Токи высокой частоты, в отличие от постоянного тока, не распределяются равномерно по сечению проводника, а концентрируются в очень тонком слое его поверхности, толщина которого при частоте f > 10 кГц составляет уже доли миллиметра, а сопротивление проводов возрастает в сотни раз.

Отключать от электрической сети потребителей не придётся — высокочастотный сигнал к ним не проникнет.

Способ позволяет не допускать появления гололёда на проводах, а не начинать с ним бороться после того, как ледяная «шуба» их окутает. Поскольку провода можно нагревать всего на 10—20°С, то по сравнению с плавкой, требующей нагрева проводов до 100—130°С, значительно уменьшается расход электроэнергии.

Так как сопротивление проводов токам высокой частоты по сравнению с промышленной (50 Гц) резко возрастает, коэффициент преобразования электрической энергии в тепловую оказывается велик. Это в свою очередь приводит к снижению требуемой мощности.

Для механической очистки проводов и тросов от гололеда могут быть применены следующие способы:

  • — сбивание гололеда деревянными, бакелитовыми, стеклопластиковыми шестами;
  • — срезание гололеда металлическим крюком (например, четырехгранным), протаскиваемым по проводу с помощью двух шестов;
  • — срезание гололеда металлическим тросиком, перекинутым через провод или трос, концы которого тянут два человека, идущие вдоль ВЛ;
  • — очистка гололеда с помощью деревянной рогатки, которая накидывается на провод или трос и протаскивается вдоль очищаемого пролета с помощью верейки. Удаление гололеда с провода может производиться как на отключенной ВЛ, так и на ВЛ, находящейся под напряжением. В последнем случае используются шесты и канаты из изоляционного материала.

10.3 Экономическая эффективность плавки гололеда

Технико-экономический расчет плавки гололеда питающей сети подстанции «Илекская 110/35/10кВ».

Вариант 1: плавка гололеда не ведется.

Ожидаемые затраты на 1 км линии в гололедно-ветровых режимах:

Зг1= ГЛ + ГЛУг(88)

где Г – вероятное годовое число гололедно-ветровых аварий при отсутствии плавки, отнесенное к 1 км линии, Г = 0,011;

Г1 – вероятное годовое число гололедно-ветровых аварий, отнесенному к 1 км. линии, связанное с разрушением опор;

Зв1 – значительные ежегодные затраты на восстановление 1 км поврежденной линии;

Г2 = Г – Г1 – вероятное число гололедно-ветровых аварий, отнесенных к 1 км линии, связанное только с обрывом проводов;

Зв2 – незначительные ожидаемые затраты на восстановление 1 км. поврежденной линии;

Уг1, Уг2 – средний ущерб в результате отключения потребителей, вызванного повреждением участка рассматриваемой линии длиной в 1 км. соответственно с разрушением и без разрушения опор.

Для вероятных значений аварийности линии в гололедно-ветровых режимах, общей и связанной с восстановлением разрушенных опор:

где А – отношение длины поврежденных участков, связанных с восстановлением опор, к общей длине поврежденных участков, А = 0,8;

Тогда:

где Л – длина линий, км.

Эквивалентные затраты на восстановление 1 км поврежденной линии, учитывающие повреждения различного характера и соответственно эквивалентные ущербы от отключения потребителей в результате повреждения 1 км. линии:

Исходные данные:

А = 0,8 – за последние 5 лет;

Г = 0,011 – на основе статистических данных;

Зв1 = (15000 – 25000) руб/км., принимаем 25000 руб/км;

Зв2 = 20 % * Зв1= 5000 руб/км.;

Л = 50,61 км.;

Уг= 22000 руб/км

Зг1= 0,011·50,61 · + 0,011·22000·50,61 =

= 23938,5 тыс.руб.

Вариант 2. Плавка гололеда ведется.

Приведенные затраты, связанные с плавкой составят:

Зг2= Кп. сум.(Рн+ Ра+ Рэ) + П(Ип+ Уп) (89)

где Кп. сум.– первоначальные капитальные вложения, для обеспечения плавки гололеда.

Кп. сум.= КпЛ

где Кп– капитальные вложения для плавки 1 км линии, руб/км.

Рн, Ра– соответственно, нормативные и амортизационные отчисления от капитальных вложений;

Рэ– ежегодные издержки на эксплуатацию плавки гололеда;

П – количество плавок за сезон на одной линии;

Ип– ежегодные издержки на покрытие определенных затрат электроэнергии при проведении каждой плавки, руб/км;

Уп– ущерб при отключении потребителей на время плавки, руб/км.

Кп= (300 – 1000) руб/км, принимаем 650 руб/км;

Кп. сум.= 65050,61 = 32896,5 руб;

Рн= 0,12;

Ра= 0,045;

Рэ= 0,045;

П = 20

П (Ип+ Уп) = (8 – 22) руб/км;

Учитывая незначительное влияние изменения издержек на величину приведенных затрат, можно принимать их равными 16 руб/км.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *