Фоторезисторы устройство и принцип действия

Приемники ИК диапазона

В электронике инфракрасное излучение наиболее широко применяется в фотоприемниках, где величина тока изменяется в зависимости от степени облучения их чувствительного слоя.

К ним относятся:
— Фоторезисторы.
— Фотодиоды.
— Фототранзисторы.
— Пироэлектрические датчики.
— Электронно-оптические преобразователи (прибор ночного виденья).

Фоторезисторы.

Прибор, электрическое сопротивление которого уменьшается под действием облучения его чувствительного слоя при увеличении освещенности.

Встречаются фоторезисторы сернисто-кадмиевые (CdS), селено-кадмиевые (CdSe) и их разновидности — сернисто-селенокадмиевые.

Нужно отметить что фоторезисторы обладают достаточно узким спектральным диапазоном в ИК области и большей инертностью при очень высокой чувствительности к изменению освещенности, сопротивление может изменятся от десятков мегаом (10 МОм) при затемнении до единиц килоом (8 кОм) при средней освещенности.

Резкое изменение освещенности фоторезистора вызывает плавное изменение его сопротивления, с определенной задержкой, которая может составлять несколько миллисекунд при сильной освещенности и может превысить секунду при слабой освещенности.

Хотя фоторезисторы и позволяют интересные эксперименты в области ИК излучения, их использование сводится к весьма простым приложениям.

Описанные недостатки фоторезисторов отсутствуют у фотодиодов и фототранзисторов чем и обусловлено их широкое применение в современных приборах.

Фотодиоды.

Каждый кремниевый диод, по сути, уже является фотодиодом. Достаточно слегка стереть черную краску, обычно защищающую от света некоторые диоды, изготовленные в стеклянном корпусе, чтобы получить простейший фотодиод.

Фотодиод включается в схему в обратном направлении, катодом к положительному полюсу источника питания.

При затемнении фотодиод проводит очень маленький ток — около 1 нА который может возрасти до 1 мА если его засветить.

При обратной полярности включения, между областями P и N, возникает потенциальный барьер, изолирующий их друг от друга. Проникая в полупроводниковый слой, свет создает положительные и отрицательные заряды. Поскольку диод включен в обратном направлении (анод под отрицательным напряжением), а противоположные заряды притягиваются, то к аноду идут положительные заряды, а к катоду — отрицательные.

Свет создает эти заряды и в случае, если к диоду не подведено напряжение. Тогда на выходах диода появляется разность потенциалов, и он работает как фотоэлемент, такая схема включения фотодиода в схему называется фотогальваническая.

При обратном включении фотодиода с приложенным смещающим напряжением, фотоэлектрический ток строго пропорционален освещенности, что позволяет использовать их для измерения яркости, а также для передачи сигналов с частотой до десятков мегагерц (МГц) и даже гигагерц (ГГЦ) так как в такой схеме включения снижается собственная емкость фотодиода до единиц (пф) и повышается быстродействие.

Фототранзисторы.

Фототранзистор содержит два p-n перехода (Б-З и К-Б), образованные двумя эквивалентными диодами, один из которых (К-Б) включен обратно.

Если осветить полупроводниковый кристалл транзистора, то можно получить высокочувствительный приемник. Высвобождая электрически заряды в P — области, падающий свет вызывает ток базы, который создает усиленный в ? раз ток коллектора Ic.

Как и диоды, каждый транзистор является фоточувствительным элементом, именно по этому транзисторы, так же как и интегральные схемы, покрывают не прозрачным материалом, если не помещают в металлический корпус. В последнем случае достаточно вырезать отверстие в корпусе, чтобы преобразовать маломощный транзистор в мощнейший фототранзистор. Так или иначе , удаление защитного слоя может привести к сокращению срока службы транзистора. Настоящий фототранзистор разработан для оптимального приема света и часто снабжен линзой для концентрации падающего света.

Фототранзистор целесообразно применять при работе на частотах не превышающих 100 кГц.

Выпускаются фототранзисторы как в двухвыводном так и в трехвыводном варианте, базу используют очень редко, поскольку это приводит к снижению чувствительности и используется в для настройки. Фототранзистор можно вывести из рабочего режима, подведя к базе достаточно большой ток, который приведет к ее перенасыщению. При наличии выводов только базы и коллектора можно использовать фототранзистор в качестве фотодиода, благодаря чему улучшается частотная характеристика.

Характеристика чувствительности к освещенности фототранзистора менее линейная чем у фотодиода.

Пироэлектрические приемники.

Пироэлектрические приемники реагируют на изменения температуры, а значит и на изменения освещенности чувствительного слоя. Чтобы пироэлектрический приемник среагировал, достаточно разности температуры между объектом и окружающей средой в 5 ?С.

Чувствительным элементом датчика, преобразующего тепловое излучение в заряд является пироэлектрический элемент. Пироэлектрический приемник является пассивным приемником ИК излучения, он не нуждается в искусственном источнике излучения подсветки. Почти все пироэлектрические приемники, встречающиеся в продаже, имеют встроенный усилитель сигнала датчика.

Датчик с пироэлектрическими приемниками используются в системах сигнализации, автоматическом включении освещения, открытия дверей, кранов, включения сушилок для рук, наблюдения за животными и т.д.

Пироэлектрические приемники способны работать в широком спектральном диапазоне излучения: от ультрафиолетового до волн длиной 0,3 мм. Наиболее часто в датчиках используется оптический диапазон 6-16 мкм.

Спектр рабочих длин волн ограничивается путем установки оптического фильтра перед пироэлектрическим приемником, который ведет себя как конденсатор, заряжающийся менее чем на 1 мВ при изменении температуры чувствительного слоя под воздействием падающего излучения. Поскольку необходимо, чтоб эти изменения происходили как можно быстрее, чувствительные элементы изготавливают в виде очень тонких пластинок или пленок. Тем не менее требуется несколько десятых долей секунды для того, чтобы выходное напряжение приемника достигло максимального значения после изменения температуры. В действительности напряжение конденсатора никогда не достигает теоретического максимума, так как конденсатор разряжается из-за проводимости своего диэлектрика. Таким образом, изменение температуры запоминается лишь на несколько секунд.

Герман Шрайбер Инфракрасные лучи в электронике.

Как применять фоторезисторы, фотодиоды и фототранзисторы

Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.

Основные виды фотоэлектронных приборов. Общие сведения

Фотоприёмник в общем смысле – это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.

Фоторезисторы – изменяют сопротивление при освещении

Фоторезистор – фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее освещенность чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.

Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.

Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора

Интересно:

Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.

Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.

На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф – темнота, а Ф3 – это яркий свет. Она линейна. Еще одна важная характеристика – это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.

Темновое сопротивление – это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв – это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.

У фоторезисторов есть существенный недостаток – его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд – 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.

Фотодиод – преобразует свет в электрический заряд

Фотодиод – элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.

Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.

По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.

Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие – это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.

У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием – 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.

В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).

Когда диод не освещается светом – в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света – тем больше ток.

Фототок Iф равен:

Iф=Sинт*Ф,

где Sинт – интегральная чувствительность, Ф – световой поток.

Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен – в обратном направлении по отношению к источнику питания.

Другой режим – генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает работу элементов солнечной батареи, но имеют малую мощность.

Фототранзисторы – открываются от количества падающего света

Фототранзистор – это по своей сути биполярный транзистор у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.

Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения – с плавающей базой, когда базовый вывод остаётся незадействованным.

В схему включают фототранзисторы подобным образом.

Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.

Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.

В советское время радиолюбители делали фототранзисторы своими руками – делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.

Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.

Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» — до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.

Области применения фотоэлектронных приборов

В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.

Схема, изображенная выше – это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 – он открывается, и открывает еще один транзистор – VT2. Эти два транзистора – это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.

Диод VD2 – нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока – фаза или ноль).

У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление – тем меньше света нужно для включения схемы.

Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.

Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.

В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.

В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.

Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.

Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.

В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.

Применение для передачи сигналов в электронных схемах

Оптоэлектронные приборы – это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.

Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.

Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.

Рассмотрим пару примеров использования таких приборов.

Управление симистором с помощью микроконтроллера

Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет – на пин микроконтроллера попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.

Обратная связь с помощью оптопары

В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.

В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.

Выводы

Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.

Алексей Бартош

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *