Фильтр в электронике

Электрические фильтры. Понятие об электрических фильтрах. 1)Определение, 2)классификация, 3)полоса пропускания и 4)задерживание электрических фильтров.

⇐ ПредыдущаяСтр 10 из 10

61.1 Электрический фильтр – это четырехполюсник, пропускающий из входной цепи в выходную определенный диапазон частот сигналов в виде напряжения или тока.

61.2 Классификация:

1) ФНЧ (фильтр нижних частот) — пропускает сигналы с частотой от 0 до fв(wв/2p).

2) ФВЧ (фильтр верхних частот) — пропускает сигналы с частотой от fн до ¥

3) ФПП (полосовой фильтр) — пропускает сигналы с частотой от fн до fв.

4) РФ (режекторный фильтр) — не пропускает сигналы заданной частоты или полосы частот

5) ГПФ (гребенчатый фильтр) — фильтр, имеющий несколько полос пропускания.

6) РГФ (режекторный гребенчатый фильтр) — фильтр, имеющий несколько полос подавления

61.3 Границы полос пропускания (wв , wн) определяются по частотам, на которых коэффициент усиления Ко уменьшается в 2-1/2 «0,7 раз.

61.4 диапазон частот, пропускаемых с большим затуханием, называется полосой затуханияили полосой задерживания.Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.

Электрические фильтры. Частотные характеристики, рабочее затухание, входное сопротивление фильтров. Применение фильтров в технике связи.

Электрические фильтры.

Электрическим фильтром называется четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.

Часть электрической цепи, имеющей две пары зажимов одна из которых является входной, а другая — выходной, называется четырехполюсником.

Диапазон частот, пропускаемых фильтром без затухания (с малым затуханием), называется полосой пропусканияили полосой прозрачности;диапазон частот, пропускаемых с большим затуханием, называется полосой затуханияили полосой задерживания.Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.

Фильтры применяются как в радиотехнике и технике связи, где имеют место токи достаточно высоких частот, так и в силовой электронике и электротехнике.

В качестве пассивных фильтров обычно применяются четырехполюсники на основе катушек индуктивности и конденсаторов. Возможно также применение пассивных RC-фильтров, используемых при больших сопротивлениях нагрузки.

Частотные характеристики, рабочее затухание, входное сопротивление фильтров.

Частотные характеристики фильтра

По виду частотной характеристики фильтры подразделяются на:

· Фильтр низких частот — пропускает низкие частоты сигнала.

· Фильтр высоких частот — пропускает высокие частоты сигнала.

· Полосовой фильтр — пропускает ограниченную полосу частот сигнала.

· Режекторный фильтр пропускает все частоты, кроме определённой полосы.

· Фазовый фильтр пропускает все частоты сигнала, но изменяет его фазу.

Полосовые и режекторные фильтры могут быть сконструированы путём последовательного соединения фильтров низких и высоких частот.

рабочее затухание фильтра

Действительная часть ap носит название рабочего затухания, а мнимая часть bp — рабочего фазового сдвига. Рабочее затухание определяет уменьшение полной (кажущейся) мощности, напряжения или тока на выходе четырехполюсника по отношению к входу в неперах (N) или децибелах (дБ):

или

входное сопротивление фильтров.

Входное сопротивление четырехполюсника есть отношение входного напряжения к входному току

Применение фильтров в технике связи.

применение в радиовещании, телекоммуникациях, спутниковой связи. Применяются для точного разделения частот.

Понятие о переходных процессах. Причины возникновения переходных процессов. Законы коммутации. Независимые начальные условия

Процессы, возникающие в электрической цепи при переходе от одного установившегося режима к другому, называются переходными.

Переходные процессы возникают при всех изменениях режима электрической цепи: подключении и отключении цепи, при изменении нагрузки, при возникновении аварийных режимов (коротком замыкании, обрыве провода, ударе молнии в линию электропередачи) и т. п.

Первый закон коммутации

Ток через индуктивный элемент L непосредственно до коммутации равен току во время коммутации и току через этот же индуктивный элемент непосредственно после коммутации , так как ток в катушке мгновенно измениться не может:

Второй закон коммутации

Напряжение на конденсаторе С непосредственно до коммутации равно напряжению во время коммутации и напряжению на конденсаторе непосредственно после коммутации , так как невозможен скачок напряжения на конденсаторе:

Примечание

1. — время непосредственно до коммутации

2. t=0 — непосредственно во время коммутации

3. — время непосредственно после коммутации

Начальные значения (условия) — значения токов и напряжений в схеме при t=0.

Напряжения на индуктивных элементах и резисторах, а также токи через конденсаторы и резисторы могут изменяться скачком, то есть их значения после коммутации чаще всего оказываются не равными их значениям до коммутации .

Независимые начальные значения — это значения токов через индуктивные элементы и напряжений на конденсаторах, известные из докоммутационного режима

Зависимые начальные значения — это значения остальных токов и напряжений при в послекоммутационной схеме, определяемые по независимым начальным значениям из законов Кирхгофа.

1. 73.Переходные процессы в RL-цепи первого порядка. Включение RL-цепи на постоянное напряжение. Короткое замыкание RL-цепи. Законы изменения тока и напряжения. Постоянная времени RL-цепи. Длительность процесса. Энергетический процесс.

15.3. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ПРОСТЕЙШЕЙ RL-ЦЕПИ

Процессы в RL-цепи с последовательным соединением элементов (рис. 15.4, а) рассчитываются аналогично.

Рис. 15.4

Дифференциальное уравнение для тока имеет вид

L di/dt + Ri = u0(t).

Оно не требует преобразования, так как сам ток i является переменной состояния. Запишем общее решение уравнения в виде суммы вынужденной и свободной составляющих

Характеристическое уравнение

имеет корень  = – R/L, поэтому общее решение однородного уравнения будет иметь вид

где  = L/R — постоянная времени индуктивной цепи.

Вид частного решения i’ зависит от характера напряжения источника.

1. Включение к источнику постоянного напряжения (u0(t) = U0 = const). В этом случае при t  в цепи устанавливается постоянный ток, падение напряжения на индуктивности становится равным нулю, и все напряжение источника приложено к резистору. Поэтому этот ток будет равным i’ = U0/R. Теперь для определения значений постоянной A в общем решении

используем, как и выше, закон коммутации — условие непрерывности тока в цепи в момент коммутации. Так как до замыкания i(– 0) = 0, то

и A = – U0/R. Это приводит к окончательным выражениям для тока в цепи и напряжения на индуктивности

Характер зависимостей тока и напряжения на катушке от времени (рис. 15.4, б) аналогичен кривым для uC(t) и i(t) в RC-цепи.

2. Замыкание цепи RL накоротко. Процессы при коротком замыкании цепи, в которой ранее протекал ток I0 (рис. 15.5, а), описываются однородным уравнением (u0(t) = 0);

Рис. 15.5

общее решение для тока в цепи имеет лишь свободную составляющую

Из начального условия имеем i(0) = I0 = A, поэтому окончательно

а напряжение на катушке равно

Соответствующие кривые изображены на рис. 15.5, б. Ток после замыкания катушки сохраняет направление, а напряжение принимает скачком в момент коммутации значение – I0R, после чего спадает по экспоненте. При большом значении сопротивления цепи разряда начальный скачок может вызвать перенапряжение на элементах цепи. Так, если закорачивающая ветвь сама имеет большое значение сопротивления R0 >> R (изображено штриховой линией на рис. 15.5, а), модуль начального напряжения возрастет до значения I0(R + R0), что может привести к повреждению элементов цепи.

2. 74.Переходные процессы в RС-цепях первого порядка. Включение RС-цепи на постоянное напряжение. Короткое замыкание RС-цепи. Законы изменения тока и напряжения. Постоянная времени RC-цепи. Реакция при нулевом входе и нулевом начальном состоянии. Длительность процесса. Энергетический процесс.

15.2. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ПРОСТЕЙШЕЙ RC-ЦЕПИ

При анализе подключения RC-цепи к источнику напряжения u0(t) (рис. 15.1, а), согласно сказанному выше, из уравнений, составленных для цепи после коммутации, —

Рис. 15.1

при замкнутом ключе

исключим ток и сведем их к одному уравнению относительно переменной состояния uC:

Общее решение полученного неоднородного дифференциального уравнения имеет вид суммы частного решения неоднородного и общего решения однородного уравнений

Для нахождения второго из них составим характеристическое уравнение RC + 1 = 0, корнем которого является = – 1/RC. Общее решение однородного уравнения — свободная составляющая напряжения u»C — соответствует цепи с исключенным источником

где A — пока неопределенная константа;  = RC — величина, имеющая размерность времени, характеризующая скорость протекания переходного процесса, так называемая постоянная времени.

Характер частного решения — вынужденной составляющей u’C — определяется видом воздействующего на цепь напряжения источника u0(t). В простейших случаях подключения цепи к постоянному источнику u0(t) = U0 = const и замыкания конденсатора на резистор, когда u0(t) = 0, составляющую u’C можно найти, руководствуясь следующими соображениями. Вид общего решения uC = u’C + A e–t/ показывает, что u’C представляет собой значение напряжения на конденсаторе, которое будет достигнуто в установившемся режиме после окончания переходного процесса. Действительно, при t  uC(t)  u’C, так как свободная составляющая u»C с течением времени затухает. Рассмотрим перечисленные случаи.

Короткое замыкание в R-C цепи

В схеме на рис. 8.5 в результате коммутации рубильник замыкается, и образуется замкнутый на себя R-C контур.
До коммутации емкость полностью зарядилась до напряжения, равного ЭДС источника питания, то есть uc(0-) = E. После коммутации емкость полностью разряжается, следовательно, принужденный ток в R-C цепи и принужденное напряжение на конденсаторе равны нулю.

В цепи существует только свободный ток за счет напряжения заряженного конденсатора.
Запишем для R-C контура уравнение по второму закону Кирхгофа
.

Рис. 8.5

Ток через конденсатор .

Получим дифференциальное уравнение

. (8.3)

Решение этого уравнения .

Подставим значение свободного напряжения и производной от напряжения

в уравнение (8.3).

Уравнение называется характеристическим.

— корень характеристического уравнения;

— постоянная времени переходного процесса;

Переходный ток и переходное напряжение на конденсаторе по показательному закону уменьшаются до нуля (рис. 8.6).

Подключение R-C цепи к источнику постоянной ЭДС

Полагаем, что до коммутации конденсатор не заряжен, напряжение на нем uc(0-) = 0.
В результате коммутации рубильник замыкается, и конденсатор полностью заряжается (рис. 8.7).
Принужденное напряжение на емкости равно ЭДС источника питания ucпр= E.

Переходное напряжение

В момент коммутации .

Постоянная интегрирования .

В соответствии со вторым законом коммутации

. .
Рис. 8.7

Переходное напряжение

Переходный ток

Электрическим фильтром называется четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.

Диапазон частот, пропускаемых фильтром без затухания (с малым затуханием), называется полосой пропускания или полосой прозрачности; диапазон частот, пропускаемых с большим затуханием, называется полосой затухания или полосой задерживания. Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.

В качестве пассивных фильтров обычно применяются четырехполюсники на основе катушек индуктивности и конденсаторов. Возможно также применение пассивных RC-фильтров, используемых при больших сопротивлениях нагрузки.

Фильтры применяются как в радиотехнике и технике связи, где имеют место токи достаточно высоких частот, так и в силовой электронике и электротехнике.

Для упрощения анализа будем считать, что фильтры составлены из идеальных катушек индуктивности и конденсаторов, т.е. элементов соответственно с нулевыми активными сопротивлением и проводимостью. Это допущение достаточно корректно при высоких частотах, когда индуктивные сопротивления катушек много больше их активных сопротивлений ( ), а емкостные проводимости конденсаторов много больше их активных проводимостей ( ).

Фильтрующие свойства четырехполюсников обусловлены возникающими в них резонансными режимами – резонансами токов и напряжений. Фильтры обычно собираются по симметричной Т- или П-образной схеме, т.е. при или (см. лекцию №14). В этой связи при изучении фильтров будем использовать введенные в предыдущей лекции понятия коэффициентов затухания и фазы.

Классификация фильтров в зависимости от диапазона пропускаемых частот приведена в табл. 1.

Таблица 1. Классификация фильтров

Название фильтра

Диапазон пропускаемых частот

Низкочастотный фильтр (фильтр нижних частот)

Высокочастотный фильтр (фильтр верхних частот)

Полосовой фильтр (полосно-пропускающий фильтр)

Режекторный фильтр (полосно-задерживающий фильтр)

и , где

В соответствии с материалом, изложенным в предыдущей лекции, если фильтр имеет нагрузку, сопротивление которой при всех частотах равно характеристическому, то напряжения и соответственно токи на его входе и выходе связаны соотношением

. . (1)

В идеальном случае в полосе пропускания (прозрачности) , т.е. в соответствии с (1) , и . Следовательно, справедливо и равенство , которое указывает на отсутствие потерь в идеальном фильтре, а значит, идеальный фильтр должен быть реализован на основе идеальных катушек индуктивности и конденсаторов. Вне области пропускания (в полосе затухания) в идеальном случае , т.е. и .

Рассмотрим схему простейшего низкочастотного фильтра, представленную на рис. 1,а.

Связь коэффициентов четырехполюсника с параметрами элементов Т-образной схемы замещения определяется соотношениями (см. лекцию № 14)

или конкретно для фильтра на рис. 1,а

; (2)
; (3)
. (4)

Из уравнений четырехполюсника, записанных с использованием гиперболических функций (см. лекцию № 14), вытекает, что

Однако в соответствии с (2) — вещественная переменная, а следовательно,

. (5)

Поскольку в полосе пропускания частот коэффициент затухания , то на основании (5)

Так как пределы изменения : , — то границы полосы пропускания определяются неравенством

,

которому удовлетворяют частоты, лежащие в диапазоне

. (6)

Для характеристического сопротивления фильтра на основании (3) и (4) имеем

. (7)

Анализ соотношения (7) показывает, что с ростом частоты w в пределах, определяемых неравенством (6), характеристическое сопротивление фильтра уменьшается до нуля, оставаясь активным. Поскольку, при нагрузке фильтра сопротивлением, равным характеристическому, его входное сопротивление также будет равно , то, вследствие вещественности , можно сделать заключение, что фильтр работает в режиме резонанса, что было отмечено ранее. При частотах, больших , как это следует из (7), характеристическое сопротивление приобретает индуктивный характер.

На рис. 2 приведены качественные зависимости и .

Следует отметить, что вне полосы пропускания . Действительно, поскольку коэффициент А – вещественный, то всегда должно удовлетворяться равенство

. (8)

Так как вне полосы прозрачности , то соотношение (8) может выполняться только при .

В полосе задерживания коэффициент затухания определяется из уравнения (5) при . Существенным при этом является факт постепенного нарастания , т.е. в полосе затухания фильтр не является идеальным. Аналогичный вывод о неидеальности реального фильтра можно сделать и для полосы прозрачности, поскольку обеспечить практически согласованный режим работы фильтра во всей полосе прозрачности невозможно, а следовательно, в полосе пропускания коэффициент затухания будет отличен от нуля.

Другим вариантом простейшего низкочастотного фильтра может служить четырехполюсник по схеме на рис. 1,б.

Схема простейшего высокочастотного фильтра приведена на рис. 3,а.

Для данного фильтра коэффициенты четырехполюсника определяются выражениями

; (9)
; (10)
. (11)

Как и для рассмотренного выше случая, А – вещественная переменная. Поэтому на основании (9)

Данному неравенству удовлетворяет диапазон изменения частот

. (12)

Характеристическое сопротивление фильтра

, (13)

изменяясь в пределах от нуля до с ростом частоты, остается вещественным. Это соответствует, как уже отмечалось, работе фильтра, нагруженного характеристическим сопротивлением, в резонансном режиме. Поскольку такое согласование фильтра с нагрузкой во всей полосе пропускания практически невозможно, реально фильтр работает с в ограниченном диапазоне частот.

Вне области пропускания частот определяется из уравнения

(14)

при . Плавное изменение коэффициента затухания в соответствии с (14) показывает, что в полосе задерживания фильтр не является идеальным.

Качественный вид зависимостей и для низкочастотного фильтра представлен на рис. 4.

Следует отметить, что другим примером простейшего высокочастотного фильтра может служить П-образный четырехполюсник на рис. 3,б.

Полосовой фильтр формально получается путем последовательного соединения низкочастотного фильтра с полосой пропускания и высокочастотного с полосой пропускания , причем . Схема простейшего полосового фильтра

приведена на рис. 5,а, а на рис. 5,б представлены качественные зависимости для него.

У режекторного фильтра полоса прозрачности разделена на две части полосой затухания. Схема простейшего режекторного фильтра и качественные зависимости для него приведены на рис.6.

В заключение необходимо отметить, что для улучшения характеристик фильтров всех типов их целесообразно выполнять в виде цепной схемы, представляющей собой каскадно включенные четырехполюсники. При обеспечении согласованного режима работы всех n звеньев схемы коэффициент затухания такого фильтра возрастает в соответствии с выражением , что приближает фильтр к идеальному.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Каплянский А. Е. и др. Электрические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. -М.: Высш. шк., 1972. -448с.

Контрольные вопросы и задачи

  1. Для чего служат фильтры?
  2. Что такое полосы прозрачности и затухания?
  3. Как классифицируются фильтры в зависимости от диапазона пропускаемых частот?
  4. В каком режиме работают фильтры в полосе пропускания частот?
  5. Почему рассмотренные фильтры нельзя считать идеальными?
  6. Как можно улучшить характеристики фильтра?
  7. Определить границы полосы прозрачности фильтров на рис. 1,а и 3,а, если L=10 мГн, а С=10 мкФ.
  8. Ответ: , .

Электрический частотный фильтр необходим в цепи для пропуска лишь желаемого диапазона частот, сигналов в виде тока или напряжения. Он представляет собой четырехполюсник.

Классификация электрических фильтров

Определяют такие виды электрических фильтров:

— Высокочастотные. Пропускают частоты: от частоты среза до бесконечности. Устройство предполагает параллельное подключение индуктивности и последовательное расположение емкости.


— Низкочастотные. Пропускают частоты: от нуля до частоты среза. Конструкция предполагает параллельное размещение емкости и последовательное расположение индуктивности.

— Заграждающие. Не пропускают лишь определенные частоты, а остальные пропускают. При параллельном подключении высокочастотных и низкочастотных фильтров и соблюдении технических условий формируется заграждающий фильтр.

— Полосовые. Пропускают только определенный диапазон частот. Это может быть совокупность низкочастотных и высокочастотных фильтров, включенных каскадно (при соблюдении определенных условий — настроенных на необходимые частоты).

— Комбинированные. Комбинация нескольких типов электрофильтров.

Учитывая схемы звеньев, электрические фильтры могут быть одно- и многозвенными. Выполняя классификацию по типам элементам, устройства делятся на: безындукционные (включают в себя элементы C и R), реактивные (включают в себя элементы C и L) и прочие.

Рисунок — Схемы частотных фильтров (Г и Т образные)

Электрические фильтры. Классификация и основные параметры

Электрический фильтр — это устройство, предназначенное для выделения или подавления электрических сигналов заданных частот.

По характеру полосы пропускаемых частот фильтры делятся на шесть типов:

1) ФНЧ (фильтр нижних частот) — пропускает сигналы с частотой от 0 до fв (fв=ωв/2π).

2) ФВЧ (фильтр верхних частот) — пропускает сигналы с частотой от fн до ∞

3) ФПП (полосовой фильтр) — пропускает сигналы с частотой от fн до fв.

4) РФ (режекторный фильтр) — не пропускает сигналы заданной частоты или полосы частот

5) ГПФ (гребенчатый фильтр) — фильтр, имеющий несколько полос пропускания.

6) РГФ (режекторный гребенчатый фильтр) — фильтр, имеющий несколько полос подавления.

Основные характеристики электрических фильтров — это полоса пропускания и избирательность.

Границы полос пропускания (ωв, ωн) определяются по частотам, на которых коэффициент усиления Ко уменьшается в √2≈0,7 раз.

Избирательность — мера, характеризующая способность фильтра разделять две группы колебаний с близкими частотами. Она определяется крутизной спада коэффициента передачи К(ω) на переходном участке от полосы пропускания к полосе подавления. Обычно крутизна спада оценивается в логарифмических единицах, Дб/окт: Δ=20Lg(K(ω2)/K(ω1)), где ω2=2ω1.

Фильтры бывают пассивные — состоящие только из пассивных элементов (резистор, конденсатор, катушка индуктивности) и активные — в состав которых входят усилительные элементы.

Пассивные фильтры используют только энергию фильтруемого сигнала, активные — используют дополнительно подведенную энергию.

Для понимания того, как рассчитываются фильтры вспомним уравнения, связывающие напряжение и ток для пассивных элементов.

1) Резистор: u(t)=R*i(t), в операторной форме U(S)=R*I(S), W(S)=R

2) Конденсатор: i(t)=C*d(u(t))/dt, в операторной форме U(S)=I(S)*1/CS, W(S)=1/CS

3) Индуктивность: u(t)=L*d(i(t))/dt, в операторной форме U(S)=LS*I(S), W(S)=LS

Рассмотрим последовательно соединенные L, C, R звенья:

Если считать, что входное сопротивление нагрузки много больше сопротивления фильтра, то i2=0, i1=i. В действительности это не так, но мы рассматриваем идеальный вариант.

Тогда (для данной схемы) можно считать Uвых(S)=I(S)*R, Uвх(S)=I(S)*(LS+1/CS+R),

отсюда коэффициент усиления: K(S)=Uвых(S)/Uвх(S)=R/(LS+1/CS+R).

Подставив в эту формулу S=jω, можно получить зависимости:

K(ω) — АЧХ фильтра и j(ω) — ФЧХ фильтра.

Необходимо помнить, что чем более неравномерны АЧХ и ФЧХ фильтра на рабочем участке, тем более сильно искажается форма отфильтрованного сигнала.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *