Электрические генераторы

Графическое представление результатов измерений

Для наглядного представления взаимной связи физических величин и их закономерного изменения результата наблюдений представляют графически.

Чаще всего используют прямоугольную систему координат. По оси абсцисс в произвольном масштабе откладывают независимую переменную, т.е. величину, значения которой задает сам экспериментатор. а по оси ординат ту величину, которую он при этом определяет. При выборе масштаба нужно исходить из следующих соображений: I) экспериментальные точки не должны сливаться друг с другом, т.е. они должны располагаться с разумным интервалом; 2) масштаб должен быть удобным. Проще всего, если I см соответствует 1,2,5,10,100,0.1 и т.д. единицам измеренной величины.

На осях координат следует указывать название или символ величины. Обязательно нужно также указывать единицы измерений, причем десятичный множитель следует отнести к единице измерения. Тогда деления на графике можно помечать цифрами 1,2,3… или 10,20.30 …, а не 10000, 20000 … и т.д. или 0.0001, 0,0002 и т.д. Экспериментальные данные следует отмечать «жирными», хорошо выделяющимися точками. По полученным на плоскости точкам проводят «наилучшую » плавную (неломаную) кривую (рис-6), которая может проходить не через все отмеченные точки, а близко к ним. Такая кривая дает нам возможность проводить графическим путем интерполяцию, т.е. находить значения У даже для таких значений X, которые непосредственно не наблюдались.

Если полученные данные не образуют прямой на линейной (миллиметровой) графической бумаге, то можно попытаться построить график в логарифмических координатах (или наносить логарифмы значений Х и У на линейную графическую бумагу). В логарифмических координатах график простой, но важной функции

(62)

имеет вид прямой. Переходя к логарифмам, действительно, получаем уравнение прямой:

где К и а — постоянные.

Имеется также третий тип графической бумаги -полулогарифмическая, когда одна шкала является лога-рифмической, а другая -линейной. В этом случае получается прямая, если данные подчиняются закону

Рис.6

(64)

После преобразований этой функции имеем

(65)

Чтобы получилась прямая, шкала по оси У должна быть логарифмической, а по оси х – линейной.

Лабораторная работа 102 измерение линейных размеров оптиметром икг

Цель работы: ознакомиться с устройством горизонтального оптиметра ККГ, провести измерение толщины алюминиевой фольги и статистическую обработку результатов прямого измерения.

Назначение и устройство ИКГ. Оптиметр — оптикомеханический прибор, который служит для измерения линейных размеров абсолютным (в пределах шкалы) или относительным (сравнением о концевой мерой мины) методами. На горизонтальном оптиметре можно производить измерения толщины пластинок, диаметра шариков, внутренних диаметров.

ИКГ состоит из массивного штатива I (рио.1), на котором укреплены предметный столик 2, оптическая труба 3 с оптическим отсчетным устройством. В левой части трубы укреплен штифт 4, соприкасающийся с поверхностью измеряемого изделия. Отсчеты при измерении снимают по шкале окуляра 5,6 — пиноль-металлическая труба, внутри которой помещается стержень 9 с пружиной. Стержень может перемещаться вдоль оси вращением винта 7,

а положение наконечника 9 закрепляется винтом 8. Составной частью оптиметра является проекционное устройство ПН-6.

Рис. I

Оптическая труба оптиметра — основная часть прибора (рис.2). Световой поток источника S , отражаясь от зеркала 3 и призмы П1 (явление полного внутреннего отражения), освещает шкалу Ш, которая находится в фокальной плоскости объектива ОБ и через окуляр ОК не видна, так как она закрыта призмой П1. Пройдя через призму П2 и объектив ОЕ, лучи падают на зеркало З2, в котором изображается шкала Ш. При отражении лучей от зеркала З2 изображение шкалы И по принципу автоколлимации создается объективом рядок с самой шкалой Ш так, что нулевой штрих совпадает с неподвижным указателем у .

Наблюдение ведется через окуляр ОК. Если совпадения нет, то его можно добиться смещением штифта 4 винтом 7 (см-рис.1). Измеряемая деталь, помещенная между наконечниками 4 и 9 (см.рис. I и 2), приведет к поступательному перемещению штифта 4, который повернет плоское зеркало З2 на угол φ .Изображение шкалы И смещается параллельно шкале Ш; величина смещения отсчитывается относительно неподвижного указателя.

Рис. 2

Механические и оптические соотношения системы оптиметра подобраны так, что видимое в окуляр смещение изображения шкалы на одно деление соответствует осевому перемещению штифта на один микрон, т.е. цена деления прибора — I мк.

§ 37. Генерирование электрической энергии

Глава 5. Производство, передача и использование электрической энергии

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света и т. д. Переменный ток в отличие от постоянного имеет то преимущество, что напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии. Такие преобразования необходимы во многих электро- и радиотехнических устройствах. Но особенно необходима трансформация напряжения и тока при передаче электроэнергии на большие расстояния.

Электрический ток вырабатывается в генераторах — устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи1, солнечные батареи и т. п. Исследуются возможно сти создания принципиально новых типов генераторов. Например, разрабатываются так называемые топливные элементы, в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно превращается в электрическую.

    1 В термобатареях используется свойство двух контактов разнородных материалов создавать ЭДС за счет разности температур контактов.

Область применения каждого из перечисленных типов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но не способны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика.

Основную роль в наше время выполняют электромеханические индукционные генераторы переменного тока. В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

В дальнейшем, говоря о генераторах, мы будем иметь в виду именно индукционные электромеханические генераторы.

Генератор переменного тока. Принцип действия генератора переменного тока уже был рассмотрен в § 31.

В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС (в рассмотренной модели генератора это вращающаяся рамка). Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу ее витков. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток (см. § 31).

Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, изготовленных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе с обмоткой вращают вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока вектора магнитной индукции.

В изображенной на рисунке 5.1 модели генератора вращают проволочную рамку, которая является ротором (но без железного сердечника). Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной.

В больших промышленных генераторах вращается именно электромагнит, являющийся ротором, а обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки (рис. 5.2). Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Вопросы к параграфу

1. Какими преимуществами обладает переменный ток по сравнению с постоянным?

2. На каком принципе основана работа генераторов переменного тока?

Гипермаркет знаний>>Физика и астрономия>>Физика 11 класс>> Генерирование электрической энергии

Глава 5. ПРОИЗВОДСТВО, ПЕРЕДАЧА И ИСПОЛЬЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света и т. д.

Переменный ток в отличие от постоянного имеет то преимущество, что напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии. Такие преобразования необходимы во многих электро- и радиотехнических устройствах. Но особенно необходима трансформация напряжения и тока при передаче электроэнергии на большие расстояния.
§ 37 ГЕНЕРИРОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
Электрический ток вырабатывается в генераторах — устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи1, солнечные батареи и т. п. Исследуются возможности создания принципиально новых типов генераторов.
1 В термобатареях используется свойство двух контактов разнородных материалов создавать ЭДС за счет разности температур контактов.
Напримep, разрабатываются так называемые топливные элементы, в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно прекращается в электрическую.

Область применения каждого из перечисленных типов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но не способны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика.

Основную роль в наше время выполняют электромеханические индукционные генераторы переменного тока. В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

В дальнейшем, говоря о генераторах, мы будем иметь в виду именно индукционные электромеханические генераторы.

Генератор переменного тока. Принцип действия генератора переменного тока уже был рассмотрен в § 31.

В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС (в рассмотренной модели генератора это вращающаяся рамка). Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу ее витков. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток (см. § 31).

Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, изготовленных из электротехнической стали. Обмотки, создающие магнитное поле,

размещены в назах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе с обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшсим для увеличения потока вектора магнитной индукции.

В изображенной на рисунке 5.1 модели генератора вращается проволочная рамка, которая является ротором (по без железного сердечника). Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно бьию бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной.

В больших промышленных генераторах вращается именно электромагнит, являющийся ротором, а обмотки, в которых наводится ЭДС, уложены в назах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки (рис. 5.2). Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным па том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.


1. Какими преимуществами обладает переменный ток по сравнению с постоянным!
2. На каком принципе основана работа генераторов переменного тока!

Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.

Планирование уроков по физике онлайн, задачи и ответы по классам, домашнее задание по физике 11 класса

Історія

До відкриття зв’язку між магнетизмом та електрикою, було винайдено електростатичні генератори. Вони працювали на електростатичних принципах, з використанням рухомих електрично заряджених стрічок, пластин і дисків, що несли заряд до високовольтного електроду. Заряд створювався з застосуванням будь-якого з двох способів: електростатичної індукції або трибоелектричного ефекту. Такі генератори виробляють дуже високу напругу і низький струм. Через їх неефективність та складності ізолювання машин (дуже високі напруги), а також, низьку номінальну потужність, електростатичні генератори ніколи не використовувалися для вироблення доцільно значущих обсягів електроенергії. Їх єдиними практичними застосуваннями, були перші рентгенівські трубки, а згодом деякі пошвидшувачі атомних частинок.

Фарадеївський дисковий генератор

Принцип роботи електромагнітних генераторів, було виявлено у 1831-1832 роках, Майклом Фарадеєм. Принцип, який пізніше назвали законом Фарадея, полягає у тому, що в електричному провіднику, який оточує мінливий магнітний потік, виникає електрорушійна сила.

Він також побудував перший електромагнітний генератор, званий фарадеївським диском; типу гомополярного

Диск Фарадея був першим електричним генератором. Магніт у формі підкови (А) створював магнітне поле крізь диск (D). Коли диск обертався, це викликало радіальний електричний струм, ззовні від центру до краю. Поточний струм, проходить крізь пружинний контактний ковпачок m по зовнішньому колу і назад у центр диска крізь вісь.

генератора, з використанням мідного диска, що обертається між полюсами підковоподібного магніту. Це давало невелику напругу постійного струму.

Ця будова була неефективною через протидію самонавідних струмів у ділянках диска, які не перебували під впливом магнітного поля. У той час як струм індукувався безпосередньо під магнітом, зворотний струм протікав в областях, які були поза впливом магнітного поля. Ця протитечія, обмежувала вихідну потужність на знімних дротах та викликала нагрів мідного диска. У пізніших гомополярних генераторах, цю проблему було вирішено, використанням декількох магнітів, розташованих навколо периметра диска, щоби підтримувати стійкий вплив поля в одному напрямку потоку.

Іншою вадою було те, що вихідна напруга була дуже низькою через одиничний струм крізь магнітний потік. Дослідники виявили, що використання декількох витків дроту у котушці, може привести до більш високих і більш корисних напруг. Оскільки вихідна напруга пропорційна кількості витків, генератори можуть бути легко спроектовані для отримання будь-якої бажаної напруги шляхом зміни кількості витків. Дротяні обмотки стали основною особливістю всіх наступних будов генератора.

Єдлик та явище самозбудження

Незалежно від Фарадея, угорець Аньош Єдлик, 1827 року, почав досліджувати електромагнітні обертові пристрої, які він назвав електромагнітними саморегуляторами. У прототипі однополюсного електричного стартера (завершений між 1852 і 1854 роками), обидві — нерухома і обертова частини, були електромагнітними.

Будова та спосіб дії

Електричний генератор складається з двох основних частин: рухомої — ротора й нерухомої — статора. Одна з цих

Анімація, що показує принцип роботи синхронного генератора змінного струму. Кільця на валу передають змінну напругу у зовнішнє коло.

частин, індуктор, використовується для створення магнітного поля, на іншій (якорі) намотані обмотки, з яких знімається електричний струм. Для створення магнітного поля використовуються постійні магніти, або електромагніти. Згенерований великий струм зручніше знімати з нерухомої обмотки, тому в генераторах змінного струму магніти змонтовані здебільшого на роторах.

Для усіх електричних генераторів, які використовують електричну індукцію, принцип перетворення механічної

Пульсова напруга постійного струму (колектор на кривошипній осі)

потужності на електроенергію, однакові. Механічна потужність подається на генератор у вигляді обертання механічного валу. Перетворення засновано на силі Лоренца, яка діє на рухомі електричні заряди у магнітному полі. Якщо провідник рухається поперек (перпендикулярно) до магнітного поля, сила Лоренца діє на заряди у провіднику у напрямку цього провідника і, таким чином, приводить їх у рух. Цей зсув заряду, викликає різницю потенціалів і генерує електричну напругу між кінцями провідника. У суміжній анімації має значення лише зміщення провідника (або двох відповідних секцій котушки) перпендикулярного магнітному полю. Це показується червоною областю. Чим більше змінюється площа за час зміни, тим вище напруга. Для збільшення напруги використовуються кілька провідників, з’єднаних послідовно у вигляді котушки.

Цей спосіб роботи, слід відрізняти від принципу електростатичних генераторів, в яких зсув електричних зарядів відбувається електричним, а не магнітним полем.

Спеціалізовані види генераторів

Постійний струм

Гомополярний генератор

Гомополярний генератор являє собою електричний генератор постійного струму, що містить електропровідний диск або циліндр, який обертається у площині, перпендикулярній до однорідного статичного магнітного поля. Різниця потенціалів створюється між центром диска та ободом (або кінцями циліндра), електричною полярністю залежно від спрямованості обертання та орієнтації поля.

Він також відомий як однополярний генератор, ациклічний генератор, дискове динамо або диск Фарадея. Напруга зазвичай невелика, порядку декількох вольт у разі невеликих демонстраційних моделей, але великі дослідницькі генератори можуть виробляти сотні вольт, а деякі системи мають кілька генераторів послідовно, задля створення ще більшої напруги. Вони незвичайні у тому, що можуть виробляти величезний електричний струм, більше ніж на мільйон ампер, тому що гомополярний генератор може мати дуже низький внутрішній опір.

МГД-генератор

Магнітогідродинамічний генератор витягує електричну енергію безпосередньо, з рухомих гарячих газів крізь магнітне

поле, без використання обертових електромагнітних складових. Від самого початку, МГД-генератори були розроблені, тому що плазма на виході МГД-генератора є полум’ям, здатним нагрівати котли парової електростанції. Першим практичним проектом був AVCO Mk. 25, розроблений 1965 року. Уряд США профінансував істотний розвиток МГД, кульмінацією якого, 1987 року, став демонстраційний агрегат потужністю 25 МВт. У колишньому Радянському Союзі з 1972 року до кінця 1980-х років, МГД-установка потужністю 25 МВт, знаходилася у постійній комерційній експлуатації в Московській енергосистемі, та була найбільш потужною, на той час, у світі. Станом на 2007 рік, МГД-генератори, що працюють у якості оборотного циклу, стали менш ефективними, за газові турбіни комбінованого циклу.

Змінний струм

Індукційний генератор

Індукційні двигуни змінного струму, можуть використовуватися як генератори, шляхом перетворення механічної енергії на електричний струм. В індукційних генераторах ротор механічно обертається швидше, за синхронну швидкість, що дає негативне ковзання. Звичайний асинхронний двигун змінного струму, може використовуватися як генератор без будь-яких внутрішніх удосконалень. Індукційні генератори корисні для таких застосувань, як міні-електростанції, вітряні турбіни або для зменшення потоків газу високого тиску до більш низького тиску, оскільки вони можуть відновлювати енергію за допомогою відносно простих елементів керування. Вони не вимагають схеми збудження, тому що обертове магнітне поле, забезпечується індукцією з кола статора. Вони також, не вимагають регулятора швидкості, оскільки за своєю суттю, працюють на частоті приєднаної мережі.

Для роботи, індукційний генератор повинен бути збуджений підвідною напругою; це, як правило, здійснюється приєднанням до електромережі, або іноді вони самозбуджуються за допомогою фазових конденсаторів.

Лінійний генератор

Лінійний генератор (також званий індукційним або шейкерним генератором) в його простій формі, може бути втілений за допомогою двигуна Стельзера. У цьому разі, на обох боках вільного ходу є котушка, в яку занурено кінець поршня, на котрому розташовано магніт. Частота виробленої змінної напруги, залежить від частоти вільного ходу поршня та змінюється залежно від навантаження.

Двигун Стельзера

Окремим прикладом застосування цього способу, є ліхтарі Schüttel. Струшування, призводить до того, що сильний неодимовий магніт, переміщається крізь котушку. Виробленої напруги, досить для зарядки двошарового конденсатора (від 1 до 2 Фарад та від 3 до 4 вольт), який згодом може живити одну або кілька світлодіодних ламп протягом тривалого періоду часу. Іншим прикладом застосування лінійних генераторів, є накопичувачі, оснащені ним (наприклад, у розмірі AA або AAA), які можуть використовуватися повсюдно для подібних ощадних пристроїв.

Синхронний генератор

Майже усі сучасні генератори меншої потужності, є трифазними асинхронними машинами, у той час як великі генератори (приблизно від 0,1 МВт), та й генератори в автомобілях і на велосипедах, це синхронні електромашини. Лише синхронні генератори, здатні забезпечити не лише активну, але й реактивну потужність, потрібну для електростанцій.

Назва синхронний генератор означає, що частота напруги, котра ним виробляється, відповідає швидкості обертання ротора. Ротор, який також називається полюсним колесом, має електричні обмотки, котрі забезпечують магнітне поле. Ротор живиться за допомогою постачання електрики з зовнішнього джерела постійного струму. Це може бути генератор постійного струму, встановлений на валу основного генератора (самонамагнічення) або окремий випрямляч (DC) на основі напівпровідникової технології. Ротор створює обертове магнітне поле, і це викликає напругу в обмотках статора. Обмотки у статорі встановлюються в канавки з внутрішнього боку і приєднуються до зовнішньої електричної мережі. Обмотки статора, також називаються якірними секціями. Залежність між числом пар полюсів на полюсному колесі, геометричним розташуванням якірних секцій і швидкістю обертання ротора, визначають частоту напруги та фазовий зсув.

Для прикладу, щодо частоти 50 герц: вважається, що парова турбіна найефективніше працює за 3000 обертів на хвилину, число полюсів генератора, дорівнює двом (північний та південний); для дизельного двигуна, який застосовується на дизельних електростанціях, найкращий режим роботи — 750 обертів на хвилину, тоді генератор повинен мати 8 полюсів (4 пари); важкі та тихохідні гідравлічні турбіни на великих гідроелектростанціях, працюють зі швидкістю 150 обертів на хвилину, тож генератор може мати 40 (20 пар) полюсів.

Статор великого турбогенератора AEG-Turbinenfabrik, Берлін, 1955. Зверніть увагу, що обмотки посідають всю протяжність статора — це називається розподіленою обмоткою. Такий різновид намотування генератора, є одним з декількох способів, спрямованих на те, щоби напруга на виході генератора, була якнайбільше синусоїдальною.

В сучасних енергосистемах, паралельно приєднано сотні або тисячі генераторів. Таким чином, як напруга, так і частота окремих генераторів, в основному визначаються іншими машинами в енергосистемі. Для розподільної мережі дуже важливо, що синхронні машини, географічно розділені сотнями кілометрів, працюють з однаковою частотою. Проте всі основні генератори, повинні мати регулятор швидкості та напруги, щоби частота і напруга енергосистеми, були досить постійними. Хоча один генератор являє собою лише дуже невелику частину продуктивності системи, всі пристрої, повинні підтримувати постійну частоту та швидкість обертання . Виняток, становлять невеликі генератори на переносних електростанціях, які можуть бути спрощеними і дешевшими без цих регуляторів.

Великі енергосистеми, виграють від того, що можуть мати високу надійність, проте загальна запасна потужність, не повинна бути невідповідно великою. Резервна потужність, означає складові системи — (генератори або лінії електропередач), які не працюють (часто звані «холодним» запасом) або використовуються не на повну потужність (обіговий «гарячий» запас). Це вигідно під час досягнення перевантаження, але, натомість, сприяє поганому використанню інвестованого капіталу. Різні джерела енергії можуть застосовуватися на великій географічній території, наприклад, практично вся Північна Америка приєднана до єдиної енергосистеми. Електростанції часто дуже складні та дорогі, тому заощадження за рахунок їх об’єднання, привабливе для використання в обширній взаємозалежній системі, де джерелами енергії, є величезні електростанції.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *