Дифференциальный ток

Содержание

Что такое дифференциальный ток?

  1. This (этот, эта, это), that (тот, та, то), such (такой, такая, такое, такие).
  2. XIII. Дифференциальный диагноз
  3. А. человеку надо поручить такое задание, которое требовало бы максимума усилий, но не вредило бы здоровью
  4. Брэнд не знает, что такое границы
  5. Выключатель дифференциальный.
  6. Выло в ней что то этакое, в этой Либби. Она сидела на диване в полном
  7. Геймплей и все такое.
  8. Глава 23. ЧТО ТАКОЕ СВЯТИЛИЩЕ?
  9. Глава 5. Что такое современность?
  10. Диагноз и дифференциальный диагноз
  11. Диагноз? Клинические симптомы, подтверждающие диагноз. Дифференциальный диагноз? Какие осложнения беременности и родов может вызвать это заболевание? Лечение и дальнейшая тактика?
  12. ДИФФЕРЕНЦИАЛЬНЫЙ ДИАГНОЗ

Это довольно распространенный вопрос- чем отличается УЗО от дифавтомата ?

Напомню как расшифровывается: УЗО-устройство защитного отключения, дифавтомат-дифференциальный автоматический выключатель.

Даже судя по названию можно сказать: УЗО- защищает нас с вами от электрического тока, а вы все знаете и помните что электрический ток не имеет ни цвете, ни вкуса ни запаха и этим он очень коварен.

Защищает- значит устроено таким образом, что не дает электрическому току к нам прикоснуться, отключает электропроводку от напряжения.

Дифавтомат же судя по названию это — автоматический выключатель. Только не простой, а дифференциальный, но это слово мы пока оставим в сторонке, поговорим позже.

А для чего предназначен автоматический выключатель? Правильно! Для защиты проводов, кабелей и подключенного электрооборудования от недопустимого тока- короткого замыкания и перегрузки.

Значит и дифавтомат то же судя по названию производит автоматическое отключение при КЗ, перегрузке.

Да, на самом деле так оно и есть. Но кроме этого он еще и выполняет функции УЗО- автоматически отключается при появлении дифференциального тока или тока утечки.

Если коротко, то:

Дифавтомат- это автоматический выключатель и УЗО в одном корпусе

Что такое дифференциальный ток?

Это не ток, протекающий по проводу, а разница токов. В случае с УЗО это разница токов, протекающих по фазному и нулевому рабочему проводу.

Если взять токоизмерительные клещи и обхватить ими провод допустим у утюга- то они покажут полный ноль. При условии что утюг конечно исправный)))

Но почему ноль? Ведь утюг мощностью 2 кВт потребляет ток около 8-9 ампер.

А все потому, что в проводе полный балланс или равновесие токов- допустим 8 ампер идут по фазному проводу от розетки к утюгу и эти же 8 ампер возвращаются от утюга к розетке обратно.

В итоге 8-8=0. И что бы измерить потребляемый утюгом ток надо замерять клещами только на одном проводе- без разницы на каком, тогда клещи и покажут 8 ампер.

А появится дифференциальный ток тогда, когда этого балланса токов не станет, например изоляция у спирали внутри утюга испортилась и ток начал проходить на металлическую поверхность утюга и дальше- через какое-нибудь сопротивление- в землю.

В этом случае допустим по фазному проводу к утюгу ток будет 8 ампер, а обратно по нулевому- 7,5.

8-7,5=0,5 ампер или 500 миллиампер.Это и есть

главный параметр УЗО и дифавтомата- дифференциальный ток отключения, ток утечки

Так же УЗО можно отличить от дифавтомата по маркировке номинального тока. Если перед цифрой стоит буква B,C или D- например С16- то это дифавтомат. Если просто цифра 16- это УЗО.

Размеры у дифавтоматов больше- корпус шире, особенно у трехфазных- четырехполюсных.

На фото ниже- маркировка дифференциального автомата.

Конструктивные особенности, принцип действия и схема дифавтомата

Рассматривая обозначение устройства по ГОСТ, несложно выделить конструктивные элементы защитного аппарата.

К основным стоит отнести:

  • Дифференциальный трансформатор;
  • Группа расцепителей (тепловой и электромагнитный).

Каждый из элементов выполняет определенные задачи. Рассмотрим их подробнее.

Дифтрансформатор — устройство с несколькими обмотками, число которых напрямую зависит от количества полюсов.

В его задачу входит сравнение нагрузочных токов в каждом из проводников. В случае расхождения показателей появляется ток утечки, который направляется в пусковой орган.

Если параметр выше определенного уровня устройство отключает электрическую цепь посредством разделения силовых контактов дифавтомата.

Для проверки работоспособности предусмотрена специальная кнопка, чаще всего подписываемая, как «TEST». Она подключена через сопротивление, которое подключается двумя способами:

  • Параллельно одной из существующих обмоток;
  • Отдельной обмоткой на трансформатор.

После срабатывания кнопки пользователь искусственно формирует ток небаланса. Если дифавтомат исправен, он должен отключить цепь. В противном случае делаются выводы о неисправности аппарата.

Следующий элемент дифавтомата — электрический расцепитель. Конструктивно он имеет вид электрического магнита с сердечником.

Назначением элемента является воздействие на отключающий механизм. Срабатывание электромагнита происходит при увеличении нагрузочного тока выше установленного уровня.

Чаще всего это бывает при появлении КЗ в низковольтной сети. Особенность расцепителя заключается в срабатывании без выдержки времени. На отключение питания уходят доли секунды.

В отличие от электромагнитного, тепловой расцепитель защищает не от КЗ в цепи, а от перегрузок. В основе узла лежит биметаллическая пластинка, через которую протекает нагрузочный ток.

Если он выше допустимого значения (номинального тока дифавтомата), происходит постепенная деформация этого элемента. В определенный момент пластина из биметалла постепенно изгибается.

В определенный момент она воздействует на отключающий орган защитного устройства. Задержка времени теплового расцепителя зависит от тока и температуры в месте установки. Как правило, эта зависимость имеет прямо пропорциональный характер.

На кожухе дифавтомата прописывается нижний предел (указывается в мА). Кроме тока утечки, указывается и номинальный ток расцепителя. Более подробно о маркировке аппарата поговорим ниже.

Как расшифровать обозначения на корпусе?

Выше уже отмечалось, что на корпусе дифференциального автомата можно найти всю необходимую информацию.

Изучив основные параметры, легче принимать решение — подходит ли прибор под решения конкретных задач.

К наиболее важным обозначениям стоит отнести:

  • АВДТ — аббревиатура, сокращенный вариант полного названия («автоматический выключатель дифференциального тока»).
  • С25 — номинальный параметр тока. Здесь C — характеристика зависимости времени и тока, а 25 — предельный ток дифавтомата, превышение которого недопустимо.
  • 230 В — номинальное напряжение, при котором допускается применение аппарата (для бытовой сети).
  • In 30mA — параметр тока утечки. При достижении 30 мА работает УЗО.
  • Специальный знак, который подтверждает наличие функции УЗО и тип АВДТ. По наличию обозначения делается вывод о способности дифференциального автомата реагировать на постоянный или переменный пульсирующий ток.

Также на корпусе защитного изделия нанесена принципиальная схема. Обычному обывателю она может ничего не рассказать, поэтому на нее не обязательно обращать внимание.

Также на внешней части устройства предусмотрена кнопка «ТЕСТ», необходимая для периодического контроля исправности устройства в части УЗО. Об особенностях проверки с помощью этого элемента мы уже говорили выше.

Как подключить устройство?

Перед тем как подключить дифавтомат, стоит разобраться с типом электрической проводки.

Здесь возможны следующие варианты:

  • Тип сети — однофазная или трехфазная. В первом случае номинальное напряжение составит 220 Вольт, а во втором — 380.
  • Наличие заземления — существуют сети с заземлением или без него.
  • Место для монтажа. Чаще всего АВДТ устанавливается в квартире, но возможен монтаж на каждую отдельную группу проводников.

С учетом рассмотренных условий необходимо определиться, как подключать защитный аппарат. Стоит помнить, что дифавтомат может иметь ряд конструктивных отличий.

Рассмотрим основные способы подключения в щитке:

  1. Простейший вариант. Популярный способ — установка одного дифференциального автомата, который защищает всю цепочку. При выборе такого варианта желательно покупать дифавтомат с большим номинальным током, чтобы учесть нагрузку всех потребителей в квартире. Главный минус схемы заключается в сложности поиска места повреждения при срабатывании защиты. По сути, проблема может скрываться на любом из участков проводки.В приведенной схеме видно, что «земля» идет отдельно и объединяется с шиной заземления. К ней же подключаются все проводники (PE) от электрических приборов. Ключевое значение имеет подключение «нуля», который выведен из дифавтомата. Его объединение с другими «нулями» электрической сети запрещено. Это объясняется разницей величин токов, проходящих по каждому из нулевых проводников, из-за чего дифференциальный автомат может срабатывать.
  2. Надежная защита. Это улучшенный вариант подключения защитного аппарата, благодаря применению которого удается повысить надежность сети и упростить задачу поиска повреждения. Особенность заключается в монтаже отдельного дифавтомата на каждую группу проводов. Следовательно, защитный аппарат будет работать только в той ситуации, когда проблема возникнет на контролируемом участке цепи. Другие участки продолжат работать в обычном режиме. В отличие от прошлой схемы, найти неисправность в случае КЗ, появления утечки или перегрузки в сети много проще. Но имеется и недостаток — большие финансовые затраты, связанные с необходимостью покупки нескольких дифавтоматов.
  3. Схема без заземления. Рассмотренные выше варианты подключения дифавтомата подразумевают наличие защитной «земли». Но в некоторых домах или на дачном участке контур заземления отсутствует вовсе. В таких сетях применяется однофазная сеть, где присутствует только фаза и «ноль». В этой ситуации защитный аппарат (АВДП) подключается по другому принципу. Если у вас в низковольтной сети также нет «земли», перед установкой дифавтомата желательно полностью поменять проводку в доме. В противном случае в сети может быть ток утечки, из-за которого будет срабатывать УЗО.
  4. Схема для 3-х фазной сети. В случаях, когда требуется монтаж дифференциального аппарата в цепи тремя фазами (например, в современной квартире, в доме или в гараже), требуется соответствующий АВДП. Принципа построения здесь такой же, как и в прошлом случае. Разница в том, что на входе и на выходе нужно подключать четыре жилы.

По каким причинам может сработать дифавтомат?

В процессе эксплуатации защитного устройства важно понимать, в каких случаях оно может сработать.

С учетом этих нюансов стоит принимать решение о причине проблемы (короткое замыкание, ток утечки и прочие).

Рассмотрим каждый из вариантов более подробно:

Срабатывание без нагрузки.

В старых домах с плохой проводкой имеют место серьезные проблемы с изоляцией.

Последняя изношена и высок риск появления токов утечки, величина которых может меняться с учетом многих параметров — наличия рядом животных уровня влажности и так далее.

В такой ситуации АВДП может срабатывать ложно.

Причиной проблемы может быть:

  • Поврежденная изоляция;
  • Наличие скруток;
  • Просчеты в расположении распредкоробок;
  • Электрофурнитура.

Для выявления причины требуется ревизия проводки. Начинать необходимо с диагностики места повреждения.

Например, если дифавтомат выбивает при включении лампочки, проблему необходимо искать в осветительной цепи.

Если АВДП срабатывает после подключения какого-то либо устройства в розетку, стоит убедиться, что это устройство исправно.

При замыкании «нуля» и «земли».

Если по какой-либо причине провода N и PE касаются друг друга, высок риск срабатывания дифференциального автомата. Распространенные места замыканий — в распредкоробке или в коробе под розетку.

Читайте по теме — эффективные способы защиты электроприборов с помощью специальных устройств.

Логика срабатывания построена на принципе действия устройства. Если «ноль» и «земля» объединены, ток разделяется между двумя проводниками. Соответственно, в дифтрансформаторе нет равенства токов, и он воспринимает этот факт, как утечку.

С проблемой часто сталкиваются начинающие мастера, которые не имеют должного опыта в вопросе обслуживания дифавтомата.

  1. В момент включения нагрузки. Если АВДП работает при подключении нагрузки, проблему необходимо искать в изоляции. Использовать проводку при такой неисправности небезопасно, поэтому рекомендуется вызвать специалиста и разобраться с проблемой. Если же ее игнорировать, высок риск попадания под напряжение кого-либо из членов семьи или возникновения пожара.
  2. При скачках напряжения. Логика дифавтомата построена таким образом, что отключение может происходить в случае повышения напряжения. Правда, такой опцией обладают не все устройства, а только имеющие электронную схему. Кроме того, защита может работать при КЗ внутри потребителя, ведь дифавтомат умеет отключаться при таком виде аварии.

Читайте по теме — как действует электрический ток на организм человека.

Особенности и назначение дифавтомата

Если об обычных электрических автоматах известно практически всем, то, услышав слово «дифавтомат», многие спросят: «А это что такое?» Если говорить упрощенно, дифференциальный автоматический выключатель – это устройство защиты цепи, отключающее питание при любых неполадках, способных привести к повреждению лини или поражению людей током.

Аппарат состоит из нескольких основных частей:

  • Пластиковый корпус, устойчивый к плавлению и возгоранию.
  • Один или два рычага подачи и отключения питания.
  • Маркированные клеммы, к которым подключаются входящие и выходящие кабели.
  • Кнопка «Тест», предназначенная для проверки исправности прибора.

В последних моделях этих автоматов устанавливается также сигнальный индикатор, позволяющий дифференцировать причины срабатывания. Благодаря ему можно определить, из-за чего отключился прибор – из-за утечки тока или по причине перегрузки линии. Такая функция облегчает поиск неисправности.

Наглядно про устройство дифавтомата на видео:

Автоматические защитные выключатели дифференциального тока могут устанавливаться и в однофазных, и в трёхфазных линиях. Они предназначены для:

  • Защиты электросети от сверхтоков КЗ и чрезмерного напряжения.
  • Предотвращения утечки электротока, которая может привести к пожару или поражению электричеством людей и домашних животных.

Выключатель дифференциального тока для бытовых линий с одной фазой и рабочим напряжением 220В имеет два полюса. В промышленных сетях на 380В устанавливается трехфазный четырехполюсный дифференциальный автомат. Четырехполюсники занимают в распределительном щитке больше места, поскольку вместе с ними устанавливается блок дифференциальной защиты.

Внешний вид дифавтомата

При взгляде на УЗО и дифференциальный АВ можно заметить, что они очень похожи по конструктивному исполнению и размерам. Даже кнопка «Тест» имеется на обоих аппаратах. Но это не значит, что они полностью одинаковы. Устройство защитного отключения не является самостоятельным прибором и не должно, как было сказано выше, монтироваться в цепь без защитного автоматического выключателя. Дифавтомат же объединяет в себе УЗО и АВ, поэтому в установке дополнительных аппаратов не нуждается.

Чтобы не путать УЗО и дифференциальный защитный выключатель, большинство отечественных производителей маркируют свою продукцию соответствующей аббревиатурой – УЗО или АВДТ. Импортные приборы можно различить по другим признакам. Например, номинал тока устройства защитного отключения обозначается цифрой и буквой «А» (Ампер) после нее – например, 16А. Токовый номинал дифавтомата пишется по другому: впереди ставится латинский литер, соответствующий характеристике встроенных расцепителей. После него идет цифра, означающая величину номинального тока – к примеру, С16.

Защита от перегрузок и короткого замыкания

Теперь поговорим о том, как работает дифференциальный защитный автомат при возникновении в цепи короткого замыкания и при значительном росте напряжения. В этих случаях его принцип действия аналогичен тому, по которому функционирует обычный автоматический выключатель.

В составе АВДТ имеется два расцепителя, работающих независимо друг от друга. Каждый из них предназначен для обесточивания сети при появлении разных нарушений.

На видео внутреннее устройство дифавтомата:

Защиту от перегрузок линии обеспечивает тепловой расцепитель, роль которого выполняет пластина из двух металлов с разным коэффициентом расширения (биметаллическая).

Когда напряжение в цепи превышает величину номинального, пластинка начинает нагреваться, что приводит к ее изгибанию в сторону отключающего элемента. Касаясь его, она вызывает срабатывание АВ.

От сверхтоков короткого замыкания сеть защищена электромагнитным расцепителем, который представляет собой соленоид с сердечником. При резком росте силы тока, свойственной КЗ, возникает электромагнитный импульс. Под его воздействием в течение долей секунды расцепитель вызывает срабатывание выключателя и прекращение подачи электроэнергии в линию.

Когда неисправность будет устранена, прибор можно снова включить вручную. Следует, однако, помнить, что если параметры сети после отключения АВ нормализовались очень быстро, устройству нужно дать немного времени на полное остывание. Если включать нагретый аппарат, это отрицательно повлияет на срок его службы.

Заземление АВДТ

Заземлять нулевой кабель следует только перед прибором дифференциальной защиты. Неправильное подключение приведет к тому, что дифавтомат будет отключаться даже при подаче незначительной нагрузки.

Если несколько дифференциальных автоматов подключены параллельно, то менять местами нулевые проводники на их выходах или подключать их к общей нулевой шине нельзя. Это также приведет к сбою в работе устройств.

Ноль АВДТ следует подсоединять в паре со своей фазой. Использовать его в качестве нулевого проводника для аппаратов с другим источником фазы нельзя.

Чтобы не перепутать нули, рекомендуется пользоваться промаркированными кабелями.

Для перемычек и соединений необходимо использовать проводник, сечение которого соответствует сетевой нагрузке.

Если автомат оборудован индикатором неисправности, то причина срабатывания будет ясна сразу. При отсутствии «маячка» причину сбоя придется искать методом «научного тыка». Если АВДТ начал срабатывать после подключения в сеть дополнительной нагрузки, то, скорее всего, прибор неисправен или при его подсоединении была допущена ошибка.

В этом материале мы рассказали о том, что такое дифавтомат, для чего он нужен и по какому принципу работает, а также разобрались с важными нюансами его подключения. Если вы собираетесь устанавливать АВДТ самостоятельно, перед этим тщательно изучите порядок монтажа, а во время работы строго соблюдайте технику безопасности.

Что такое дифференциальный ток

Схема работы тока

Во всех отраслях науки под дифференциалом понимается разница некой величины. Почему это так? Начнём с простейшего. Допустим, у нас имеется некий график. Пусть это будет всем известная парабола. В математике имеет большую важность нахождение так называемых критических точек функции. В них производные первого или второго порядка имеют строго определённые значения или меняют свой знак. Благодаря этому их свойству удаётся оптимизировать производственные и многие другие процессы в повседневной и профессиональной деятельности.

Но для нас важно то, что процесс нахождения производных функции называется дифференцированием. Для этого берётся бесконечно малый отрезок по вертикальной оси и делится на столь же малый промежуток по горизонтальной. А чтобы описать границы, используется разница между началом и концом интервала. Вот из-за этого разность часто и называется дифференциалом. Хотя это и не совсем правильно.

В применении к электрическому току находят разницу между входным и выходным значением в цепи. Допустим, что прибор потребляет 250 Вт. При номинальном значении напряжения в цепи 220 В ток составит 250/220 = 1,136 А. Вы удивитесь, но обратно на землю (нулевой провод розетки) должно уходить ровно столько же. Это прямо следует из одного из законов Кирхгофа. Правило гласит, что ток в последовательной цепи один и тот же. В данном случае наша цепь образована:

  1. Источником на подстанции.
  2. Автоматом защиты.
  3. Прибором, потребляющим ток (например, стиральной машиной).
  4. Цепью нулевого провода, который уходит на землю (в грунт).

Схема дифференциального тока

Схема может быть немного иной, но суть остаётся той же: сколько вошло электрического тока в квартиру, столько из неё и должно выйти. Соответственно, в нормальном состоянии разница равна нулю. В этом случае говорят, что дифференциальный ток отсутствует.

Каким образом дифференциальный ток помогает защитить нас и нашу квартиру

Допустим, что где-то в цепи существует утечка. Это вызвано обычно нарушением изоляции, хотя могут быть и другие причины. В этом случае баланс нарушается. И входной ток уже не равен выходному. В этом случае ситуаций может быть как минимум две:

  • Из-за нарушения изоляции электрический ток немедленно начинает утекать в землю. Например, в случае водонагревателя путём может послужить канализация. Заряды пойдут в землю, даже если трубы пластиковые. Средой будет служить жидкость. Вода сама по себе не проводит электрический ток, но в канализации растворено множество солей, которые и сыграют роль электролита. В этом случае утечка будет немедленно замечена, и подключение дифференциального автомата позволит избежать неприятностей.
  • Нарушенная изоляция не контактирует с проводящей средой. Поэтому утечки не образуется немедленно. Место аварии ждёт своего случая. В этом случае контакт человека с поражённым участком может стать смертельным. Как только кто-то возьмётся одной рукой за струю воды, а другой за место электрического контакта, ток потечёт прямо по телу. При напряжении 220 В это смертельно опасно. Мы здесь не будем приводить значения, при которых начинают рваться сухожилия и мышцы, просто поверьте нам на слово. И отсутствие автомата защиты может стать причиной фатального исхода.

Читайте также: Как мультиметром проверить сопротивление

Что такое дифференциальный автомат

УЗО часто путают с дифференциальным автоматом

Из сказанного должно быть уже понятно, что дифференциальный автомат помогает отследить утечки. Для этого определяется разница между входным и выходным током. Как это делается? Внутри прибора стоит специальное реле. Это различного рода катушки с магнитными сердечниками. Чем-то такая конструкция напоминает весы, где на одной чаше лежит величина входного тока, а на другой выходного. Пока все в порядке, существует баланс. Но лишь только возникает утечка, как чаши весов клонятся на сторону. Это и вызывает срабатывание защитного отключения.

Наконец, самое главное: чем отличается дифференциальный автомат от УЗО. Ключевое слово здесь – автоматический. Это относится к перегрузке по току. Говоря проще, УЗО постоянно отслеживает дифференциальный ток, но от короткого замыкания не спасёт. В последнем случае потребление будет резко нарастать, пока что-нибудь не сгорит. Это может быть, например, обмотка двигателя стиральной машины или проводка в квартире. Таким образом, в дополнение к УЗО требуется включить ещё одну ступень защиты. Например, это могут пробки в подъездном щитке, рассчитанные на некоторый потребляемый ток.

Вот тем дифференциальный автомат и отличается, что в его составе эта ступень уже имеется. И если УЗО в некоторых случаях может сгореть, то рассматриваемый нами класс приборов от этого застрахован. Отличие от пробок в том, что защита по перегрузке обычно многоразовая. Это не предохранитель, где сгорает внутренняя жила. Что именно ставить в ванной комнате, каждый решает сам, но для полной безопасности нужен именно дифференциальный автомат, а не УЗО.

Итак, подытожим. Дифференциальный автомат обеспечивает полную защиту цепи по перегрузке и току утечки. Что освобождает хозяина от необходимости беспокоиться на этот счёт дополнительно. В сочетании же с УЗО нужно предусмотреть методы защиты от перегрузки по току. Что касается покупки, то ещё в магазине нужно осмотреть корпус. Дифференциальный автомат обычно имеет надпись, где фигурирует слово «автоматический». Что и указывает на способность защищать сети от перегрузки по короткому замыканию.

Характеристики дифференциального автомата

Главными характеристиками дифференциальных автоматов являются следующие:

  1. Номинальный рабочий ток. Это то значение, при котором будет работать наше оборудование в нормальном режиме. Обычно берётся потребление установленной бытовой техники и создаётся запас в 1,5 – 2 раза. Например, для предыдущего примера это будет порядка 2,5 А. То есть любой дифференциальный автомат на 4 А полностью подходит.
  2. Дифференциальный ток срабатывания защиты. Это та самая величина утечки. Для примера считается очень чувствительным дифференциальный автомат, срабатывающий при разности на входе и выходе в 30 мА. При помощи такого можно контролировать другие ступени защиты. Подобные изыски в повседневной жизни обычно излишни.
  3. Время срабатывания дифференциального автомата показывает, как быстро произойдёт отключение. Здесь помимо целевого назначения (возникновения утечки) выделяют ещё две составляющие: электромагнитную и тепловую. Первая прямо указывает на величину тока перегрузки (не дифференциального, а потребления), при которой произойдёт отключение. Например, для автомата на 16 А это может быть четырёхкратное превышение (порядка 60 А). Срабатывание происходит почти мгновенно. Тепловая составляющая работает на гораздо более низких токах, которые не являются критическими. Например, это может быть 25 А. При этом быстро растёт перегрев, который и вызывает отключение дифференциального автомата. Именно эти две составляющие и являются отличительной особенностью. УЗО таких цепей автоматического отключения не имеет.

Читайте также: Как выбрать дрель

Конструкция дифференциального автомата не так важна, как знание о том, как его правильно использовать. Что. Да-да, очень важно использовать дифференциальный автомат правильно, чтобы не случилось, как в басне Крылова про мартышку и очки.

Как правильно подключить дифференциальный автомат

Подключение дифференциальных автоматов в распределительном щите будет неплохой заменой обычным предохранителям (пробкам). В этом случае под контроль берётся сразу вся квартира. Не секрет, что линий на каждую семью обычно существует две. Но учитывая тот факт, что нагрузка на них обычно разная, выбрать подходящий дифференциальный автомат достаточно сложно. Проводка часто проложена несимметрично. То есть на одной пробке может висеть, к примеру, освещение залы, а на другую приходится вся остальная нагрузка.

При типовом потреблении 5 кВт на квартиру не всегда можно будет поставить два дифференциальных автомата на 16 А. По указанной выше причине. При максимальном суммарном токе порядка 22 А будет разумнее выбрать один, но более мощный прибор. Что касается прочих вариантов установки, то многие монтируют защиту прямо в ванной комнате. На дифференциальном автомате обычно присутствует кнопка проверки работоспособности, и не каждый захочет бежать на площадку перед очередным включением водонагревателя. Этот вопрос также необходимо обдумать заранее. Разумеется, неработоспособный дифференциальный автомат использовать запрещается.

Схема подключения дифференциального автомата обычно указано на его корпусе. Вы увидите на ней входную и выходную цепи. Разводка предельно проста:

  1. Буквой N помечена так называемая нейтраль. Это нулевой провод.
  2. Фаза нумеруется цифрами 1 и 2. Со стороны входной и выходной цепи, соответственно.

Как найти нулевой провод? Для этого существует специальный инструмент. Например, отвёртка с индикатором в виде лампочки поможет с решением вопроса со стороны розетки. Если дотронуться шлицем до фазы, то будет свечение. Что касается стороны бытового прибора, то ему нет разницы, где находится нулевой провод. Поэтому подключение ведётся без различения. Что будет, если перед тем, как подключить дифференциальный автомат, не произвести указанной операции, и все выйдет наоборот? Мы полагаем работоспособность будет нарушена. В противном случае не было бы необходимости так жёстко вести маркировку на соответствие тех или иных выводов дифференциального автомата фазе и нулевому проводу.

Ещё хотелось бы заметить, что по европейским стандартам все оборудование подключается с цепью заземления. Это боковые клеммы на вилке и приёмной части розетки. Зачем это нужно? В идеале именно такой подход уберегает от нештатных ситуаций, потому что при пробое изоляции лишний ток уходит на землю. Дело в том, что подобные меры обычно используются там, где вода, в этом случае очень часто удаётся локализовать неисправность заранее. Допустим, что ТЭН водонагревателя пробило на корпус, но заземление отсутствует. Тогда какое-то время ничего не будет происходить с большой долей вероятности. Но как только хозяин откроет кран, последует резкий скачок потребления тока.

Имеется некоторая опасность поражения, хотя и в течение очень короткого времени. Ну, а второй причиной, по которой необходимо подключать заземление, это корректная работа входных фильтров. Часто ток пульсаций уходит именно в эту ветвь. И если заземление отсутствует, то функциональность входной фильтрации нарушается, а прибор подвергается помимо нестабильности повышенному риску поломки. Особенно это касается чувствительных электронных компонентов. Если заземление отсутствует в доме, то нужно эту цепь занулить. То есть посадить на нейтраль. Это не совсем правильно, но от части неприятностей уберегает.

Из сказанного читатели должны понять, что УЗО в отличие от дифференциального автомата используется там, где нет опасности возникновения перегрузки по короткому замыканию. Если говорить откровенно, то в применении к бытовой технике это не очень актуально. То есть в любом случае лучше ставить дифференциальный автомат.

Дифференциальный Ток Электрический. Что Это.

Тема — Дифференциальный Ток Электрический. Что Это Такое.

Само название «дифференциальный» произошло от английского слова «different», что означает — отличный, другой, а в русском языке прижилось прочно название «электрический ток утечки». Так обозначают электрический ток, который стекает прямо в землю либо же на иные токопроводящие части (металлические основания и корпуса электроприборов) в неповрежденной электроцепи.

Такой электрический ток не протекает по воздуху, ему обязательно необходим электрический проводник, и, обычно, подобным проводником выступает само человеческое тело. Появление подобных электрических токов — совсем не редкость, и возникают они в результате электрического пробоя диэлектрической изоляции кабелей и проводов, плохих соединений и т.д. В итоге прямых (прямое прикосновение фазного электрического проводника) или косвенных (контактирования с токопроводящим корпусом бытовых электроприборов, находящихся под напряжением по причине случайного пробоя электрического провода) контактов человеческое тело может получить серьёзную травму либо даже летальный исход.

При нормальной работе электрической сети приходящий поток электронов (ток на одной жиле токонесущего провода при варианте однофазной сети) будет приравниваться уходящему потоку электронов (ток на второй жиле двухпроводного кабеля). То есть, разница между силой тока в этих двух проводах будет равна нулю. При аварийном возникновении электрического пробоя проводника появляется замыкание его на токопроводящий корпус. Если человек случайно прикоснётся к этому корпусу (на котором находится фазное напряжение) образуется новая электрическая цепь, в которой человеческое тело пропускает через себя часть тока, идущего на землю. Это вызовет протекание дифференциального тока.

В данном случае, ток, приходящий по одному проводу уже не будет равен электрическому току уходящему, то есть, разница между ними (а именно — дифференциал) и будет являться величиной тока утечки. Эта утечка будет представлять собой дифференциальный ток. Электрическим проводником для дифференциального тока может быть не только человек. Это могут быть любые токопроводящие части, которые электрически соединены с землёй. К примеру, устаревшая электропроводка, у которой нарушена изоляция. В случае, когда соседи сверху Вас затопили и намокли стены, где заложена ветхая проводка. В данном случае влага контактирует с оголённым участком проводки и замыкает её на землю.

Дифференциальные токи в любом случае представляют собой негативный фактор. В случае контактирования токонесущих частей с телом человека, возникает опасность для самого человека. Если дифференциальный ток возникает по причине неисправной электрической проводки или иных подобных электрически проводящих частей контактирующих с землёй возникает опасность появления как минимум потери электроэнергии, а как максимум, это большая вероятность пожара.

Для борьбы с нежелательным дифференциальным током существуют специальные электротехнические устройства. Они называются дифференциальной защитой. Их принцип действия основан на простом действии. Внутри этих устройств имеется своеобразный датчик (дифференциальный трансформатор), который отслеживает разность входящих и выходящих токов, проходящих через данное устройство защиты. Если всё работает в нормальном режиме, и нет никаких утечек на землю, то значит, значения силы тока на двух проводах будут равны, а, следовательно, разницы между ними тоже не будет (дифференциального тока).

Но как только происходит контакт с землёй (будь, то из-за человека или электросистемы) в дифференциальном трансформаторе на отслеживающей обмотке появляется разностное напряжение, которое передаётся усилительному и исполнительному устройству. Как только поступил сигнал о наличии дифференциального тока, сразу же срабатывает устройство защиты и разрывает электрические контакты между источником электроэнергии и непосредственным потребителем. В результате такого аварийного отключения обеспечивается надёжная защита от поражения человека электрическим током и от вероятного возникновения пожара из-за чрезмерного перегрева электропроводки.

Узнал что-то Новое?
Поставь Свой Плюс»

Принцип действия

Схема, поясняющая принцип работы УДТ УДТ в разобранном виде

Главным компонентом УДТ является дифференциальный трансформатор, который предназначен для обнаружения дифференциального тока. Если дифференциальный ток превысит значение отключающего дифференциального тока или равен ему произойдёт размыкание электрической цепи.

Внутреннее устройство УДТ, подключаемого в разрыв провода

На фотографии показано внутреннее устройство одного из типов УДТ. Данное УДТ предназначено для установки в разрыв провода. Линейный и нейтральный проводники от источника питания подключаются к контактам (1), главная цепь УДТ подключается к контактам (2).

При нажатии кнопки (3) контакты (4) (а также ещё один контакт, скрытый за узлом (5)) замыкаются, и УДТ пропускает ток. Соленоид (5) удерживает контакты в замкнутом состоянии после того, как кнопка отпущена.

Вторичная обмотка (6), к которой подключён расцепитель дифференциального тока. В нормальном состоянии ток линейного проводника, равен току нейтрального проводника, однако эти токи противоположны по направлению. Таким образом, токи взаимно компенсируют друг друга и в катушке дифференциального трансформатора ЭДС отсутствует.

Ток замыкания на землю приводит к нарушению баланса в дифференциальном трансформаторе: через линейный проводник протекает больший ток, чем по нейтральному проводнику (часть тока протекает через тело человека, то есть в обход трансформатора). Дифференциальный ток в первичной обмотке дифференциального трансформатора приводит к появлению ЭДС во вторичной обмотке. Эта ЭДС сразу же регистрируется следящим устройством (7), которое отключает питание соленоида (5). Отключённый соленоид больше не удерживает контакты (4) в замкнутом состоянии, и они размыкаются под действием силы пружины.

Устройство спроектировано таким образом, что отключение происходит за доли секунды, что значительно снижает тяжесть последствий от поражения электрическим током.

Кнопка проверки (8) позволяет проверить работоспособность устройства путём пропускания небольшого тока через оранжевый тестовый провод (9). Тестовый провод проходит через сердечник дифференциального трансформатора, поэтому ток в тестовом проводе эквивалентен нарушению баланса токонесущих проводников, то есть УДТ должно отключиться при нажатии на кнопку проверки. Если УДТ не отключилось, значит оно неисправно и должно быть заменено.

История

Первый патент (патент Германии № 552678 от 08.04.28) на УДТ был получен в 1928 году германской фирмой RWE (Rheinisch — Westfälisches Elektrizitätswerk AG). Первый действующий образец устройства защиты был изготовлен этой же фирмой в 1937 году. В качестве датчика использовался маленький дифференциальный трансформатор, а исполнительным элементом служило поляризованное реле с чувствительностью 0,01 ампер и быстродействием 0,1 с.

Чувствительность прототипа устройства была 80 мА дальнейшее повышение чувствительности тормозилось отсутствием материалов с нужными магнитными свойствами. В 1958 году доктором Биглмайером из Австрии было предложено новое схемное решение конструкции УДТ. Сейчас такие УДТ маркируются буквой G. В конструкции были устранены ложные срабатывания от грозовых разрядов и увеличена чувствительность до 30 мА.

Граничные кривые переменного тока и физиологическое действие тока на организм человека были установлены путём тестов в 1940—1950 годы в университете Berkeley американским учёным Чарльзом Дальцилом. В ходе тестов добровольцы подвергались воздействию электрического тока с известным напряжением и силой тока.

В начале 1970-х годов большинство УДТ выпускались в корпусах типа автоматических выключателей. С начала 1980-х годов в США большинство бытовых УДТ были уже встроенными в розетки.

В СССР первые эксперименты по проектированию УДТ начались в 1964 году. Первое серийное УДТ для укомплектования трёхфазного электрифицированного инструмента было изготовлено в 1966 г. Выборгским заводом «Электроинструмент» по разработке ВНИИСМИ. Первое бытовое УДТ в СССР было разработано в 1974 году, но в серию не пошло. Серийное бытовое УДТ производилось с 1988 года в значительных количествах (до 200 тысяч штук в год). Типичный вид УДТ того времени — удлинитель с розеткой на шнуре. С 1982 года всё учебное электротехническое оборудование, поступавшее в школы, в обязательном порядке оснащалось УДТ, которое получило наименование «школьное». Серийность изделия доходила до 60 тыс. штук в год. Для нужд промышленности и сельского хозяйства выпускались защиты ИЭ-9801, ИЭ-9813, УЗОШ 10.2 (ещё выпускается), РУД-0,5.

В настоящее время используются преимущественно УДТ для монтажа в электрощите на DIN-рейку, а встроенные УДТ пока широкого распространения не получили.

Классификация

По способу управления

  • УДТ без вспомогательного источника питания
  • УДТ со вспомогательным источником питания:
    • выполняющие автоматическое отключение при отказе вспомогательного источника с выдержкой времени и без неё:
      • производящие автоматическое повторное включение при восстановлении работы вспомогательного источника
      • не производящие автоматическое повторное включение при восстановлении работы вспомогательного источника
    • не производящие автоматическое отключение при отказе вспомогательного источника:
      • способные произвести отключение при возникновении опасной ситуации после отказа вспомогательного источника
      • не способные произвести отключение при возникновении опасной ситуации после отказа вспомогательного источника

По виду установки

  • стационарные с монтажом стационарной электропроводкой
  • переносные с монтажом гибкими проводами с удлинителями

По числу полюсов

  • двухполюсные;
  • четырёхполюсные.

По возможности регулирования отключающего дифференциального тока

  • нерегулируемые;
  • регулируемые:
    • с дискретным регулированием;
    • с плавным регулированием.

По стойкости при импульсном напряжении

  • допускающие возможность отключения при импульсном напряжении;
  • стойкие при импульсном напряжении.

По условиям функционирования при наличии составляющей постоянного тока

УДТ типа АС: УДТ, срабатывание которого обеспечивается дифференциальным синусоидальным переменным током путём или внезапного его приложения, или при медленном нарастании.

УДТ типа А: УДТ, срабатывание которого обеспечивается и синусоидальным переменным, и пульсирующим постоянным дифференциальным током путём или внезапного приложения, или медленного нарастания.

УДТ типа В: УДТ, которое гарантирует срабатывание как устройство типа А и дополнительно срабатывает:

  • при дифференциальном синусоидальном переменном токе частоты до 1000 Гц;
  • при дифференциальном синусоидальном переменном токе, наложенном на сглаженный постоянный ток;
  • при дифференциальном пульсирующем постоянном токе, наложенном на сглаженный постоянный ток;
  • при дифференциальном пульсирующем выпрямленном токе от двух или более фаз;
  • при дифференциальном сглаженном постоянном токе, приложенном внезапно или постепенно возрастающем, вне зависимости от полярности.

УДТ типа F: УДТ, которое гарантирует срабатывание как устройство типа А в соответствии с требованиями МЭК 61008-1 и МЭК 61009-1 и дополнительно срабатывает:

  • при составном дифференциальном токе, приложенном внезапно или постепенно возрастающем между фазой и нейтралью или фазами и средним заземлённым проводником;
  • при дифференциальном пульсирующем постоянном токе, наложенном на сглаженный постоянный ток.

По наличию задержки по времени (в присутствии дифференциального тока)

  • УДТ без выдержки времени — тип для общего применения;
  • УДТ с выдержкой времени — тип S для обеспечения селективности.

Примечания

  1. В нормативных документах наряду с термином «устройство дифференциального тока» применяют устаревший термин «устройство защитного отключения»
  2. ГОСТ IEC 60050-442—2015. Международный электротехнический словарь. Часть 442. Электрические аксессуары
  3. ГОСТ Р 50571.3—2009. Электроустановки низковольтные. Часть 4-41. Требования для обеспечения безопасности. Защита от поражения электрическим током.
  4. 1 2 Гуревич В. И. Электрические реле. Устройство, принцип действия и применения. Настольная книга электротехника. Серия «Компоненты и Технологии». — М.: СОЛОН-Пресс, 2011. — С. 341.
  5. 1 2 Штепан Ф. Устройства защитного отключения, управляемые дифференциальным током. — Прага, 2004. — С 10.
  6. Штепан Ф. Устройства защитного отключения, управляемые дифференциальным током. — Прага, 2004. — С. 13—16.
  7. Развитие и современное состояние УЗО в СССР и России / Ю. Водяницкий // Автоматизация и производство. — 1996. — № 3.
  8. Развитие и современное состояние УЗО в СССР и России / Ю. Водяницкий // Автоматизация и производство. — 1996. — № 4.
  9. 1 2 ГОСТ IEC 61008-1—2012. Выключатели автоматические, управляемые дифференциальным током, бытового и аналогичного назначения без встроенной защиты от сверхтока. Часть 1. Общие требования и методы испытаний
  10. 1 2 ГОСТ IEC 62423—2013. Автоматические выключатели, управляемые дифференциальным током, типа F и типа В со встроенной и без встроенной защиты от сверхтока бытового и аналогичного назначения

Литература

  • IEC/TR 60755:2008. General requirements for residual current operated protective devices. Edition 2.0 — Geneva: IEC, 2008‑01.
  • IEC 60947-2:2016. Low-voltage switchgear and controlgear. Part 2: Circuit-breakers. Edition 5.0. — Geneva: IEC, 2016‑06.
  • IEC 61008‑1:2013. Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs). Part 1: General rules. Edition 3.2. — Geneva: IEC, 2013‑09.
  • IEC 61009-1:2013. Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs). Part 1: General rules. Edition 3.2. — Geneva: IEC, 2013‑09.
  • IEC 61540:1999. Electrical accessories. Portable residual current devices without integral overcurrent protection for household and similar use (PRCDs). Edition 1.1. — Geneva: IEC, 1999‑03.
  • IEC/TR 62350:2006. Guidance for the correct use of residual current-operated protective devices (RCDs) for household and similar use. First edition. — Geneva: IEC, 2006‑12.
  • IEC 62423:2009. Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses. Edition 2.0. — Geneva: IEC, 2009‑11.
  • IEC 60050-442:1998. International Electrotechnical Vocabulary. Part 442: Electrical accessories. Edition 1.0. — Geneva: IEC, 1998‑11.
  • ГОСТ Р МЭК 60755-2012. Общие требования к защитным устройствам, управляемым дифференциальным (остаточным) током.
  • ГОСТ IEC 61009-1-2014. Выключатели автоматические, срабатывающие от остаточного тока, со встроенной защитой от тока перегрузки, бытовые и аналогичного назначения. Ч. 1. Общие правила.
  • ГОСТ Р 51328-99 (МЭК 61540-97). Устройства защитного отключения переносные бытового и аналогичного назначения, управляемые дифференциальным током, без встроенной защиты от сверхтоков (УЗО-ДП). Общие требования и методы испытаний.
  • Харечко Ю. В. Защитные устройства модульного исполнения. — М.: ООО «АББ Индустри и Стройтехника», 2008. — 336 с.
  • Харечко Ю. В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 4// Приложение к журналу «Библиотека инженера по охране труда». — 2015. — № 6. — 160 c.
  • Гуревич В. И. Ложные срабатывания УЗО: кто виноват и что делать? / Владимир Гуревич (к. т. н.) // Силовая электроника. — 2013. — № 5. — С. 48 — 54.

Основы: несимметричная и дифференциальная передачи сигналов

Во-первых, нам нужно изучить некоторые основы того, что означает несимметричная передача сигналов, прежде чем мы сможем перейти к дифференциальной передаче сигналов и ее характеристикам.

Несимметричная передача сигналов

Несимметричная передача сигналов – это простой и распространенный способ передачи электрического сигнала от отправителя к приемнику. Электрический сигнал передается с помощью напряжения (часто с помощью изменяющегося напряжения), которое измеряется относительно фиксированного потенциала, обычно узел 0 В, называемый «землей».

Один проводник переносит сигнал, и один проводник переносит общий опорный потенциал. Ток, связанный с сигналом, поступает от отправителя к приемнику и возвращается к источнику питания через соединение земли. Если передается несколько сигналов, схема потребует по одному проводнику для каждого сигнала плюс одно общее соединение земли; таким образом, например, 16 сигналов могут быть переданы с помощью 17 проводников.

Топология несимметричной передачи сигналов

Дифференциальная передача сигналов

Дифференциальная передача сигналов, являющаяся менее распространенной по сравнению с несимметричной передачей, использует два двухтактных сигнала напряжения для передачи одного информационного сигнала. Таким образом, один информационный сигнал требует пары проводников; первый переносит сигнал, а второй переносит инвертированный сигнал.

Обобщенные временные диаграммы несимметричной передачи сигналов и дифференциальной передачи сигналов

Приемник извлекает информацию, обнаруживая разность потенциалов между инвертированным и неинвертированным сигналами. Два сигнала напряжения «симметричны», что означает, что они имеют равную амплитуду и противоположную полярность относительно синфазного напряжения. Обратные токи, связанные с этими напряжениями, также сбалансированы и, таким образом, компенсируют друг друга; по этой причине можно сказать, что дифференциальные сигналы имеют (в идеале) нулевой ток через соединение земли.

При дифференциальной передаче сигналов отправитель и получатель необязательно должны иметь общую опорную точку земли. Однако использование дифференциальной передачи не означает, что различия потенциалов земли у отправителя и получателя не влияют на работу схемы.

Если передается несколько сигналов, то для каждого сигнала требуется два проводника, и часто необходимо или, по крайней мере, полезно включить соединение земли, даже если все сигналы являются дифференциальными. Так, например, для передачи 16 сигналов потребуется 33 проводника (для несимметричной передачи было необходимо 17). Это демонстрирует очевидный недостаток дифференциальной передачи сигналов.

Топология дифференциальной передачи сигналов

Преимущества дифференциальной передачи сигналов

Однако существуют важные преимущества дифференциальной передачи сигналов, которые могут более чем компенсировать увеличение количества проводников.

Нет обратного тока

Поскольку у нас (в идеале) нет обратного тока, опорная земля становится менее важной. Потенциалы земли у отправителя и получателя могут даже различаться или изменяться в пределах допустимого диапазона. Тем не менее, вы должны быть осторожны, потому что дифференциальная передача сигналов со связью по постоянному току (например, USB, RS-485, CAN) обычно требует общего потенциала земли, чтобы сигналы оставались в пределах максимально и минимально допустимого синфазного напряжения.

Устойчивость к внешним электромагнитным помехам и перекрестным помехам

Если электромагнитные помехи (ЭМП) или перекрестные помехи (т.е. электромагнитные помехи, создаваемые соседними сигналами) вводятся извне относительно дифференциальных проводников, то они равномерно добавляются к инвертированному и неинвертированному сигналам. Приемник реагирует на разность напряжений между двумя сигналами, а не на несимметричное (т.е. относительно земли) напряжение, и, таким образом, схема приемника значительно уменьшит амплитуду внешних и перекрестных помех.

Вот почему дифференциальная передача сигналов менее чувствительна к внешним электромагнитным помехам, перекрестным помехам или любым другим шумам, которые добавляются к обоим сигналам дифференциальной пары.

Уменьшение исходящих электромагнитных помех и перекрестных помех

Быстрые переходы, такие как нарастающий и спадающий фронты цифровых сигналов, могут генерировать значительные количества электромагнитных помех. И несимметричная передача сигналов, и дифференциальная передача сигналов генерируют электромагнитные помехи, но два сигнала в дифференциальной паре будут создавать электромагнитные поля, которые (в идеале) равны по амплитуде, но противоположны по полярности. Это в сочетании с технологиями, которые сохраняют маленькое расстояние между этими двумя проводниками (например, использование кабеля с витой парой), гарантирует, что излучения от этих двух проводников будут в значительной степени компенсировать друг друга.

Работа с низким напряжением

Несимметричные сигналы должны поддерживать относительно высокое напряжение для обеспечения достаточного отношения сигнал/шум (С/Ш, SNR). Наиболее распространенными напряжениями несимметричных интерфейсов являются 3,3 В и 5 В. Благодаря своей повышенной устойчивости к шуму дифференциальные сигналы могут использовать более низкие напряжения, поддерживая соответствующее отношение сигнал/шум. Кроме того, отношение сигнал/шум автоматически увеличивается в два раза по сравнению с эквивалентной несимметричной реализацией, поскольку динамический диапазон в дифференциальном приемнике в два раза выше динамического диапазона каждого сигнала в дифференциальной паре.

Возможность успешно передавать данные с использованием более низких напряжений сигналов имеет несколько важных преимуществ:

  • могут использоваться более низковольтные источники питания;
  • меньшие изменения напряжения во время переходов:
    • уменьшаются излучаемые электромагнитные помехи;
    • снижается потребление электроэнергии;
    • допускается работа на более высоких частотах.

Высокое или низкое логическое состояние и точная синхронизация

Вы когда-нибудь задумывались над тем, как именно мы решаем, находится ли сигнал в состоянии высокого или низкого логического уровня? В несимметричных системах мы должны учитывать напряжение питания, пороговые характеристики схемы приемника и, возможно, значение опорного напряжения. И, конечно же, существуют вариации и допуски, которые вызывают дополнительную неопределенность в вопросе о высоком или низком логическом уровне.

В дифференциальных сигналах определение логического состояния является более простым. Если напряжение неинвертированного сигнала выше напряжения инвертированного сигнала, то у вас высокий логический уровень. Если неинвертированное напряжение ниже инвертированного напряжения, то у вас низкий логический уровень. Переход между этими двумя состояниями – это точка, в которой пересекаются неинвертированный и инвертированный сигналы, т.е. точка пересечения.

Это одна из причин, из-за которой важно согласовывать длины проводов или трасс, передающих дифференциальные сигналы. Для максимальной точности синхронизации необходимо, чтобы точка пересечения точно соответствовала логическому переходу; но когда два проводника в паре не равны по длине, разница в задержке распространения приведет к смещению точки пересечения.

Основные технологии разводки дифференциальных проводников на печатных платах

Наконец, давайте рассмотрим основы того, как дифференциальные проводники разводятся на печатных платах. Разводка дифференциальных сигналов может быть немного сложной, но есть некоторые основные правила, которые делают процесс более простым.

Длина и согласование длин – сохраняйте их равными!

Дифференциальные сигналы (в идеале) равны по амплитуде и противоположны по полярности. Таким образом, в идеальном случае через землю не будет протекать никакой обратный ток. Это отсутствие обратного тока – хорошо, поэтому мы хотим сохранить всё как можно более идеальным, и это означает, что нам нужны одинаковые длины двух проводников в дифференциальной паре.

Чем выше время нарастания/спада вашего сигнала (не путать с частотой сигнала), тем больше вы должны следить за тем, чтобы проводники имели одинаковую длину. Ваша программа разводки печатных плат может включать в себя функцию, которая поможет вам точно отрегулировать длину проводников для дифференциальных пар. Если вам трудно достичь равной длины, то можете использовать технику «серпантина».

Пример серпантина проводников

Ширина и интервал между проводниками – сохраняйте их постоянными!

Чем ближе дифференциальные проводники друг к другу, тем лучше будет связность сигналов. Сгенерированные электромагнитные помехи будут более эффективно компенсироваться, а принимаемые электромагнитные помехи будут более равномерно накладываться на оба сигнала. Поэтому старайтесь разводить проводники ближе друг к другу.

Вы должны разводить проводники дифференциальной пары как можно дальше от соседних сигналов, чтобы избежать помех. Ширина и расстояние между вашими проводниками должны выбираться в соответствии с целевым импедансом и должны оставаться постоянными по всей длине проводников. Поэтому, если это возможно, эти проводники должны оставаться параллельными, пока они проходят по печатной плате.

Импеданс – сведите изменения к минимуму!

Одной из наиболее важных вещей, которые необходимо сделать при проектировании печатной платы с дифференциальными сигналами, является выяснение целевого импеданса для вашего приложения, а затем разводка в соответствии с ним ваших дифференциальных пар. Кроме того, сохраняйте изменения импеданса минимальными, насколько возможно.

Импеданс вашей дифференциальной линии зависит от таких факторов, как ширина проводника, связь между проводниками, толщина меди, материал и слои печатной платы. Рассмотрите каждый из них, чтобы избежать чего-либо, что изменит импеданс вашей дифференциальной пары.

Не разводите высокоскоростные сигналы через разрывы между медными областями на слое металлизации, так как это также влияет на импеданс. Старайтесь избегать разрывов на слоях земли.

Рекомендации к компоновке – прочитайте, проанализируйте и обдумайте их!

И последнее, но не менее важное: есть одна очень важная вещь, которую вы должны выполнить при разводке дифференциальных проводников: найдите техническое описание и/или примечания к применению микросхемы, которая отправляет или принимает дифференциальный сигнал, прочитайте рекомендации по компоновке и проанализируйте их. Таким образом, вы сможете реализовать наилучшую возможную компоновку платы в рамках ограничений конкретного проекта.

Дифференциальная передача сигналов позволяет передавать информацию с более низкими напряжениями, хорошим отношением сигнал/шум, улучшенной помехоустойчивостью к шуму и с более высокими скоростями передачи данных. С другой стороны, увеличивается количество проводников, и система будет нуждаться в специализированных передатчиках и приемниках вместо стандартных цифровых микросхем.

В настоящее время дифференциальные сигналы являются частью многих стандартов, в том числе LVDS, USB, CAN, RS-485 и Ethernet, и поэтому мы должны быть знакомы с этой технологией. Если вы разрабатываете печатную плату с дифференциальными сигналами, не забудьте ознакомиться с соответствующими техническими описаниями и примечаниями к применению и, если необходимо, снова прочитать эту статью!

Сохранить или поделиться

Датчики дифференциального тока

Мы занимаемся обслуживанием оборудования Socomec по всей России — установкой, наладкой и ремонтом

Компания «Юниджет»:

  • Осуществляет поставки энергетического оборудования ведущих производителей на территории Российской Федерации
  • Реализует разработку индивидуальных инженерных проектов высокой степени сложности под нужды заказчиков
  • Осуществляет пуско-наладочные работы (ПНР), ремонт и сервисное обслуживание электрооборудования

Для того, чтобы купить датчики дифференциального тока и иное электрооборудование, а также получить консультацию о сроках поставки оборудования и проведения инженерных работ, свяжитесь с нами по телефонам: +7 (812) 247-06-60 и +7 (499) 702-07-60

Мы являемся официальным поставщиком электротехнического оборудования Socomec на территории Российской Федерации

Установка защиты систем электропитания или сигнализирующих средств, таких как реле контроля тока утечки на землю, включает использование датчиков дифференциального тока. В них входят активные проводники, обеспечивая дифференциальное суммирование векторных токов и разоблачающего тока утечки.

  • Базовые преобразователи баланса DLD, предложенные SOCOMEC, удовлетворяют требования для измерительной чувствительности и адаптированы к RESYS M20/M40/P40 дифференциальные реле.
  • Закрытые (серия W, WR и TFR) или открытые (серийный WS) типы удовлетворяют всем конфигурациям проводного соединения.
  • Специальный диапазон предложен для RESYS B470/B 471 и B 420 реле.

Установка защиты систем электропитания или сигнализирующих средств, таких как реле контроля тока утечки на землю, включает использование датчиков дифференциального тока. В них входят активные проводники, обеспечивая дифференциальное суммирование векторных токов и разоблачающего тока утечки. >Соответствие стандартам и сертификаты

Соответствие стандартам:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *