Дифференциальная защита трансформаторов

Дифференциальная защита трансформатора

Принцип действия дифференциальной защиты построен на применении первого закона Киргофа. Защищаемый объект принимается за узел, ток фиксируется полностью на всех ветвях, соединяющих объект с внешней электрической сетью. При повреждении на отходящей ветви, сумма токов, входящих и отходящих из узла, равна нулю.

При повреждении объекта, в случае КЗ, сумма токов в ветвях будет равна токам короткого замыкания.

Дифференциальная токовая защита трансформатора отличается от дифференциальной защиты высоковольтных линий и генераторов наличием неравенства первичных токов разных обмоток трансформаторов и несовпадением по фазе.

Дифференциальная защита трансформаторов применяется для предотвращения аварийных и ненормальных режимов работы при возникновении короткого замыкания между фазами, межвитковых КЗ и замыкания одной или более фаз на землю. Дифзащита применяется как основный вид автоматического отключения для мощных трансформаторов и для трансформаторов меньшей мощности, в случае если другие виды защиты не обеспечивают требуемого быстродействия.

Как работает дифзащита трансформатора

Дифференциальная защита работает на сравнении величин токов в начале и в конце защищаемого участка, например и начале и конце обмоток силового трансформатора, генератора и т. п. В частности, участок между трансформаторами тока, установленными на высшей и низшей сторонах силового трансформатора, считается защищаемой зоной.

Рис 1. Дифференциальная защита трансформатора: а — токораспределение при нормальном режиме, б — то же при коротком замыкании в трансформаторе

Действия при срабатывании дифференциальной защиты трансформатора поясняется рис.1.

С обеих сторон трансформатора устанавливаются трансформаторы тока TT1 и ТТ2, вторичные обмотки которых включены последовательно. Параллельно им подключается токовое реле Т. Если характеристики трансформаторов тока будут одинаковы, то в нормальном режиме, а также при внешнем коротком замыкании токи во вторичных обмотках трансформаторов тока будут равны, разность их будет равна нулю, ток через обмотку токового реле Т протекать не будет, следовательно, защита действовать не будет.

При коротком замыкании в трансформаторе и в любой точке защищаемой зоны, например в обмотке трансформатора, по обмотке реле Т будет протекать ток, и если его величина будет равна току срабатывания реле или больше его, то реле сработает и через соответствующие вспомогательные приборы произведет двустороннее отключение поврежденного участка. Эта система будет действовать при междуфазных и межвитковых замыканиях.

Дифференциальная защита обладает высокой чувствительностью и является быстродействующей, так как для нее не требуется выдержки времени, она может выполняться с мгновенным действием, что и является ее главным положительным свойством. Однако она не обеспечивает защиты при внешних коротких замыканиях и может вызывать ложные отключения при обрыве в соединительных проводах вторичной цепи.

Рис. 2. Дифференциальная защита двух параллельно работающих трансформаторов

Зона действия дифференциальной защиты трансформатора (ДЗТ) ограничивается местом установки трансформаторов тока, и включает в себя ошиновку СН, НН и присоединение ТСН, включённого на шинный мост НН.

Ввиду её сравнительной сложности, дифференциальная защита устанавливается в следующих случаях:

  • на одиночно работающих трансформаторах (автотрансформаторах) мощностью 6300 кВА и выше;
  • на параллельно работающих трансформаторах (автотрансформаторах) мощностью 4000 кВА и выше;
  • на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности при КЗ на выводах высшего напряжения ( kч < 2 ), а максимальная токовая защита имеет выдержку времени более 0,5 сек.

Видео: Дифференциальная защита

Общие принципы работы дифференциальной защиты. Особенности выполнения защит отдельных элементов электрической сети: кабельной линии, трансформатора, генератора, сборных шин. Защиты ЛЭП-110 кВ: направленная с вч блокировкой, диффазная.

Читайте так же:

  • Газовая зашита трансформатора
  • РПН мощных силовых трансформаторов

19. Дифференциальная защита асинхронного двигателя

  • Общие сведения
  • Электрическая схема соединений
  • Перечень аппаратуры
  • Описание электрической схемы соединений
  • Указания по проведению эксперимента

Общие сведения
Защита от КЗ между фазами является основной защитой электродвигателей. В качестве такой защиты на мощных электродвигателях 2000 кВт и больше, имеющих шесть выводов, может применяться дифференциальная токовая защита. На электродвигателях
5000 кВт и более установка дифференциальной защиты является обязательной.
Дифференциальная защита дает возможность получить значительно большую чувствительность, чем максимальная токовая защита, так как броски тока от электродвигателя при внешних КЗ и токи пуска и самозапуска, от которых отстраивается максимальная токовая защита, в схеме дифференциальной защиты оказываются сбалансированными.

В данном эксперименте моделируется асинхронный двигатель М (см. рис.), питающийся от сети через выключатель Q и кабельную линию электропередачи L. Трансформаторы тока включены в две фазы на нулевых выводах двигателя и у начала кабельной линии.

Короткое замыкание можно устраивать на выводах двигателя или на линии (на рисунке не показана), соединяющей выключатель с источником питания.
На компьютере с помощью специальной программы смоделирована дифференциальная защита, реагирующая на превышение разностью токов I1 и I2 в одноименных фазах значения уставки и воздействующая на выключатель Q. Защита может работать с торможением от тока внешнего КЗ или без него.
При правильно собранной схеме и корректно выбранных уставках защита должна реагировать на короткие замыкания на выводах двигателя и не работать при КЗ вне зоны ее действия.

^ Перечень аппаратуры

Обозначение Наименование Тип Параметры
G1 Трехфазный источник питания 201.2 400 В ~; 16 А
G2 Преобразователь угловых перемещений 104 6 выходных
сигналов
A1 Трехфазная трансформаторная группа 347.1 3 х 80 ВА;
230 (звезда) /
242, 235, 230, 126, 220, 133, 127 В
А2, А4 Модель линии электропередачи 313.2 400 В ~; 3  0,5 А
А3, A11 Трехполюсный выключатель 301 400 В ~; 10 А
А5, А6 Блок измерительных трансформаторов
тока и напряжения
401.1 600 В / 3 В
(тр-р напряж.)
0,3 А / 3 В
(тр-р тока)
A7 Терминал 304 6 розеток с
8 контактами;
68 гнезд
A8 Блок ввода/вывода цифровых сигналов 331 8 входов типа «сухой контакт»;
8 релейных выходов
А9 Коннектор 330 8 аналог. диф. входов;
2 аналог. выхода;
8 цифр. входов/
выходов
А10 Персональный компьютер 310 IBM совместимый, Windows 9*,
монитор, мышь, клавиатура,
плата сбора информации
PCI 6024E
M1 Машина переменного тока 102.1 50 Вт; 230 В ~;
cos  = 1;
1500 мин1
Р1 Указатель частоты вращения 506.2 0…2000 мин1

^ Описание электрической схемы соединений
Машина переменного тока M1, включенная как асинхронный двигатель с короткозамкнутым ротором, питается от трехфазного источника G1 через последовательно соединенные трехфазную трансформаторную группу А1, линии электропередачи А2 и А4 и трехполюсный выключатель А3.
Токи фаз А и С за выключателем А3 и в нейтрали двигателя М1 фиксируются с помощью включенных в схему измерительных трансформаторов тока блоков А5 и А6 соответственно.
Трехполюсный выключатель А11 может подключаться как короткозамыкатель к различным точкам схемы внутри и вне зоны действия моделируемой дифференциальной защиты.
Вторичные обмотки трансформаторов тока блоков А5 и А6 подключены к аналоговым входам коннектора А9, соединенного гибким шлейфом с платой ввода/вывода PCI6024E персонального компьютера А10.
Розетка «УПР.» трехполюсного выключателя А3 гибким кабелем подключена к розетке терминала А7, гнезда которого соединены с гнездами блока А8 ввода-вывода цифровых сигналов согласно электрической схеме соединений.
^ Указания по проведению эксперимента

  • Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
  • Соберите электрическую схему соединений тепловой защиты машины переменного тока (стр. 12).
  • Соедините гнезда защитного заземления «» устройств, используемых в эксперименте, с гнездом «РЕ» источника G1.
  • Соедините аппаратуру в соответствии с электрической схемой соединений.
  • Выключатель А11 подключите к точкам К1, К2 схемы.
  • Переключатель режима работы трехполюсного выключателя А3 установите в положение «АВТ.», выключателя А11 – в положение «РУЧН.». Номинальное вторичное фазное напряжение трехфазной трансформаторной группы А1 выставьте равным 230 В. Параметры линии электропередачи А2 переключателями установите, например, следующими: R = 0 Ом, L/RL=0,6/16 Гн/Ом, С1=С2=0 мкФ; линии электропередачи А4 — следующими: R = 0 Ом, L/RL=0,3/8 Гн/Ом, С1=С2=0 мкФ.
  • Включите источник G1. О наличии напряжений на его выходе должны сигнализировать светящиеся лампочки.
  • Включите выключатели «СЕТЬ» выключателей А3, А11, блока А8 ввода-вывода цифровых сигналов, указателя частоты вращения Р1.
  • Приведите в рабочее состояние персональный компьютер А10, войдите в соответствующий каталог и запустите прикладную программу «Дифзащита двигателя.exe».
  • Задайте уставки защиты, нажав на соответствующую виртуальную кнопку. Например, используйте уставки, заданные по умолчанию.
  • Начните запись, введите защиту. После того, как двигатель развернется, смоделируйте короткое замыкание вне зоны действия защиты, включив выключатель А11.
  • Через 1-2 секунды отключите выключатель А11, выведите защиту, остановите запись. Проанализируйте записанные программой осциллограммы токов схемы.
  • Подключите выключатель А11 к точкам U1, W1 схемы.
  • Вновь начните запись, введите защиту и смоделируйте короткое замыкание в зоне ее действия, включив выключатель А11.
  • После отключения защитой выключателя А3 проанализируйте записанные программой осциллограммы токов.
  • При работе с программой следует пользоваться ее возможностями:

  • Масштабирование осциллограмм производится путем нажатия на графике левой клавиши мыши и, не отпуская ее, перемещения манипулятора слева направо и сверху вниз. Возврат к начальному масштабу осуществляется обратным перемещением манипулятора – справа налево и снизу вверх.
  • Двигать график осциллограмм относительно осей координат можно путем нажатия и удержания на нем правой кнопки мыши и ее одновременного перемещения в нужную сторону.
  • Для удобства определения значений величин по графикам на экране отображаются текущие координаты указателя мыши.
  • На экране также отображается состояние выключателя А3.
  • Программы позволяет моделировать дифференциальную защиту с торможением от тока внешнего короткого замыкания.
  • Погрешность трансформаторов тока можно задать в главном меню программы в пункте «Настройки».
  • Запись электромагнитных процессов в схеме производится программой в циклический буфер. Параметры буфера, а именно его полную длину и длину «эпилога» (фактически – время записи после свершения интересующего события, в данном случае – срабатывания защиты) можно изменять в пункте меню «Настройки». Например, если срабатывание защиты ожидается через две секунды после начала короткого замыкания, то для того, чтобы увидеть предаварийный режим, режим короткого замыкания и режим после отключения повреждения длину буфера в целом можно принять равной 5 секундам, а длину эпилога (по сути, это длина записи режима после отключения КЗ) – 0,5–1 секунде.
  • По завершении экспериментов отключите источник G1 и выключатели «СЕТЬ» блоков А3, А8, А11, P1.

Продольная дифференциальная защита

Принцип действия

Дифференциальная защита силового трансформатора

Принцип действия продольной дифференциальной защиты основан на сравнении токов фаз, протекающих через участки между защищаемым участком линии (или защищаемом аппаратом). Для измерения значения силы тока на концах защищаемого участка используются трансформаторы тока (TA1, TA2). Вторичные цепи этих трансформаторов соединяются с токовым реле (KA) таким образом, чтобы на обмотку реле попадала разница токов от первого и второго трансформаторов.

В нормальном режиме (1) значения величины силы тока вычитаются друг из друга, и в идеальном случае ток в цепи обмотки токового реле будет равен нулю. В случае возникновения короткого замыкания (2) на защищаемом участке, на обмотку токового реле поступит уже не разность, а сумма токов, что заставит реле замкнуть свои контакты, выдав команду на отключение поврежденного участка.

В реальном случае через обмотку токового реле всегда будет протекать ток отличный от нуля, называемый током небаланса. Наличие тока небаланса объясняется рядом факторов:

  • Трансформаторы тока имеют недостаточно идентичные друг другу характеристики. Чтобы снизить влияние этого фактора, трансформаторы тока, предназначенные для дифференциальной защиты, изготавливают и поставляют попарно, подгоняя их друг к другу ещё на стадии производства. Кроме того, при использовании дифференциальной защиты, например, трансформатора, у измерительных трансформаторов тока изменяют число витков, в соответствии с коэффициентом трансформации защищаемого трансформатора.
  • Некоторое влияние на возникновение тока небаланса может оказывать намагничивающий ток, возникающий в обмотках защищаемого трансформатора. В нормальном режиме этот ток может достигать 5 % от номинального. При некоторых переходных процессах, например при включении трансформатора с холостого хода под нагрузку, ток намагничивания на короткое время может в несколько раз превышать номинальный ток. Для того, чтобы учесть влияние намагничивающего тока, ток срабатывания реле принимают большим, чем максимальное значение намагничивающего тока.
  • Неодинаковое соединение обмоток первичной и вторичной стороны защищаемого трансформатора (например, при соединении обмоток Y/Δ) так же влияет на возникновение тока небаланса. В данном случае во вторичной цепи защищаемого трансформатора вектор тока будет смещён относительно тока в первичной цепи на 30°. Подобрать такое число витков у трансформаторов тока, которое позволило бы компенсировать эту разницу, невозможно. В этом случае угловой сдвиг компенсируют с помощью соединения обмоток: на стороне звезды обмотки трансформаторов тока соединяют треугольником, а на стороне треугольника соответственно звездой.

Следует отметить, что современные микропроцессорные устройства защиты способны учитывать эту разницу самостоятельно, и при их использовании, как правило, вторичные обмотки измерительных трансформаторов тока соединяют звездой на обоих концах защищаемого участка, указав это в настройках устройства защиты.

Дифференциальная защита трёхфазного трансформатора, обмотки которого соединены по схеме Y/Δ)

Область применения

Дифференциальная защита устанавливается в качестве основной для защиты трансформаторов и автотрансформаторов. Одним из недостатков такой защиты является сложность её исполнения: в частности, требуется наличие надёжной, помехозащищённой линии связи между двумя участками, на которых установлены трансформаторы тока. В связи с этим, дифференциальную защиту применяют для защиты одиночно работающих трансформаторов и автотрансформаторов мощностью 6300 кВА и выше, параллельно работающих трансформаторов и автотрансформаторов мощностью 4000 кВА и выше и на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не позволяет добиться необходимой чувствительности при коротком замыкании на выводах высокого напряжения, а максимальная токовая защита имеет выдержку времени более, чем 0,5 с.

Поперечная дифференциальная защита

Принцип действия поперечной дифференциальной защиты так же заключается в сравнении значений токов, но в отличие от продольной, трансформаторы тока устанавливаются не на разных концах защищаемого участка, а на разных линиях, отходящих от одного источника (например, на параллельных кабелях, отходящих от одного выключателя). Если произошло внешнее короткое замыкание, то данная защита его не почувствует, так как разность значений силы тока, измеряемых на этих линиях, будет практически равна нулю. В случае же короткого замыкания непосредственно на одном из защищаемых кабелей разница токов не будет равняться нулю, что даст основание для срабатывания защиты.

Данная защита устанавливается на ВЛ. Защита выбирает и отключает только одну поврежденную линию.

Защита состоит из пускового органа (токовое реле), которое включается также, как и в продольной дифференциальной защите с участка направления мощности, включенного на разность токов защищаемых линий и на напряжение шин подстанции.

Оперативный ток подается на реле защиты через последовательное соединение вспомогательных контактов защищаемых линий для того, чтобы защита автоматически выводилась из действия при отключении одной из линий, во избежание её не селективного действия при внешнем КЗ.

Значение и знак вращающего момента у реле направления мощности зависит от значения тока, напряжения и угла между ними.

При КЗ на линии 1 ток в линии 1 будет больше тока в линии 2, поэтому их разность, то есть ток в реле, будет иметь такое же направление, как и ток в линии 1. Реле направления мощности замкнет контакт KW1 и защита отключит поврежденную линию 1.

При повреждении на линии 2 ток в ней будет больше тока в линии 1, и ток в реле изменит направление на противоположное. Замкнется контакт KW2 и защита отключит поврежденную линию 2.

  • Голанцов Е. Б., Молчанов В. В. Дифференциальные защиты трансформаторов с реле типа ДЗТ-21 (ДЗТ-23). Москва, Энергоатомиздат, 1990
  • «Релейная защита распределительных сетей» Издание второе, переработанное и дополненное. Я. С. Гельфанд Москва. Энергоатомиздат 1987.
  • «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. Энергоатомиздат 1998
  • «Руководящие указания по релейной защите. Вып. 13А(Б). Релейная защита понижающих трансформаторов и автотрансформаторов 110—500 кВ» Составитель Т. Н. Дороднова: Энергоатомиздат 1985,-96 с., ил.

ПРИНЦИП ДЕЙСТВИЯ ДИФФЕРЕНЦИАЛЬНО-ФАЗНОЙ ВЫСОКОЧАСТОТНОЙ ЗАЩИТЫ

Принцип действия. Дифференциально-фазная ВЧЗ (ДФЗ) основана на сравнении фаз тока по концам защищаемой ЛЭП. Считая положительными токи, направленные от шин в ЛЭП, находим, что при внешнем КЗ в К1 (рис. 13.3, а) токи Im и In по концам защищаемой ЛЭП имеют различные знаки и, следовательно, их можно считать сдвинутыми по фазе на 180°. В случае же КЗ на защищаемой ЛЭП (рис. 13.3,6) токи на ее концах имеют одинаковые знаки и их можно принять совпадающими по фазе, если пренебречь сдвигом векторов ЭДС Еm и En по концам электропередачи и различием углов полных сопротивлений Zm и Zn .

Принцип действия. Дифференциально-фазная ВЧЗ (ДФЗ) основана на сравнении фаз тока по концам защищаемой ЛЭП. Считая положительными токи, направленные от шин в ЛЭП, находим, что при внешнем КЗ в К1 (рис. 13.3, а) токи Im и In по концам защищаемой ЛЭП имеют различные знаки и, следовательно, их можно считать сдвинутыми по фазе на 180°. В случае же КЗ на защищаемой ЛЭП (рис. 13.3,6) токи на ее концах имеют одинаковые знаки и их можно принять совпадающими по фазе, если пренебречь сдвигом векторов ЭДС Еm и En по концам электропередачи и различием углов полных сопротивлений Zm и Zn .

Таким образом, сравнивая фазы токов по концам ЛЭП, можно установить местоположение КЗ. В обычных схемах дифференциальных РЗ сравнение фаз токов осуществляется путем непосредственного сравнения токов, проходящих в начале и конце ЛЭП. В ВЧЗ (ДФЗ) сравнение фаз осуществляется косвенным путем посредством ВЧ-сигналов. Упрощенная схема, иллюстрирующая работу ДФЗ, и диаграмма, поясняющая принцип ее действия, приведены на рис. 13.4 и 13.5.

Рис 13.3. Принцип действия дифференциально-фазной ВЧЗ

Защита состоит из приемопередатчика (см. рис. 13.4), включающего в себя генератор ГВЧ, приемник ПВЧ, реле отключения РО, питающегося током приемника, и двух пусковых реле П01 и П02, одно из которых пускает ГВЧ, а второе контролирует цепь отключения ДФЗ.

Особенность ДФЗ заключается в том, что ВЧ-генератор управляется (манипулируется) непосредственно токами промышленной частоты при помощи специального трансформатора Т. Генератор включен так, что при положительной полуволне промышленного тока он работает, посылая в ЛЭП сигнал ВЧ, а при отрицательной запирается, и сигнал ВЧ прекращается. В то же время приемник выполнен таким образом, что при наличии сигналов ВЧ, поступающих в его входной контур, выходной ток, питающий реле РО, равен нулю, а при отсутствии ВЧ-сигнала появляется выходной ток, поступающий в РО. Таким образом, генератор ВЧ работает только в течение положительных полупериодов тока промышленной частоты, а приемник — при отсутствии ВЧ-сигналов.

Рис. 13.4. Упрощенная принципиальная схема дифференциально-фазной ВЧЗ

При внешнем КЗ (рис. 13.5, а) с учетом того, что фазы первичных токов по концам ЛЭП противоположны, генератор, на конце m — работает в течение первого полупериода промышленного тока, а на конце n — в течение следующего полупериода. Ток ВЧ протекает по ЛЭП непрерывно и питает приемники на обеих сторонах ЛЭП. В результате этого выходной ток в цепи приемника и реле РО отсутствует, и реле (ДФЗ) не работает.

Рис. 13.5. Диаграммы токов в дифференциальио-фазной ВЧЗ

При КЗ в зоне (рис. 13.5, б) передатчики на обоих концах ЛЭП работают одновременно, поскольку фазы токов по концам ЛЭП совпадают. Высокочастотные сигналы, поступающие при этом в приемники, будут иметь прерывистый характер с интервалами времени, равными полупериоду промышленного тока. В этом случае приемник работает в промежутки времени, когда ток ВЧ отсутствует, и заперт (не работает) во время его прохождения. В выходной цепи приемника появляется прерывистый ток, который сглаживается специальным устройством и подается в реле РО. Последнее срабатывает и отключает ЛЭП. Таким образом, сдвиг фаз между токами, проходящими по обоим концам ЛЭП, определяется по характеру ВЧ-сигналов (сплошные или прерывистые), на которые с помощью приемника реагирует реле РО.

По принципу своего действия ДФЗ не реагирует на нагрузку и качания, так как в этих режимах токи на обоих концах ЛЭП имеют разные знаки.

Дифференциальная защита — одна из самых быстродействующих. Для нее не требуется выдержки по времени, так как при возникновении прецедента для срабатывания уже точно известно, что короткое замыкание находится в контролируемой зоне. Дифференциальная защита имеет абсолютную селективность и действует на отключение без выдержки времени.

Принцип работы дифференциальной защиты

Основа принципа действия любой дифзащиты – контроль токов в начале и конце защищаемого участка электрической цепи. Для этого используются трансформаторы тока. При их расположении в пределах одного распределительного устройства они подключаются к устройству защиты напрямую с помощью кабелей. Если границы защищаемого участка расположены на большом удалении друг от друга, что характерно для кабельных или воздушных линий, используется два полукомплекта защиты, соединенные между собой вспомогательной кабельной линией.

Если эти токи в начале и конце защищаемого участка равны между собой и направлены в одну сторону, срабатывания не происходит. Так получается при протекании номинальных токов нагрузки или при коротком замыкании вне защищаемой зоны (токов внешнего КЗ).

Но если повреждение произошло в зоне, контролируемой защитой, мощность электрической сети протекает в точку КЗ. При одностороннем питании (для трансформаторов или генераторов) от источника в сторону защищаемого электроаппарата протекает больший ток, чем отдается им потребителю. При двухстороннем (на кабельной или воздушной линии, соединяющей между собой сети с независимыми источниками питания) токи на обоих концах линии сориентированы на точку повреждения.

Создается повод для работы защиты, которая дает команду на отключение объекта одновременно со всех сторон.

В зависимости от особенностей защищаемого объекта для реализации устройств выбираются соответствующие дифференциальные реле. Рассмотрим их особенности.

Подробно о принципе действия диф. защиты смотрите в видео:

Дифференциальная защита на реле РНТ

Реле состоит из двух элементов, объединенных в один корпус. Это быстронасыщающийся трансформатор, имеющий три стержня с обмотками, и выходное токовое реле, являющееся исполнительным органом.


Реле подключено к выводам вторичной обмотки, расположенной на крайнем стержне трансформатора. Две, а иногда и три первичные обмотки, располагаются на среднем стержне и связаны с трансформаторами тока. Имеются еще и дополнительные короткозамкнутые обмотки, предназначенные для гашения апериодической составляющей.

Настройка реле осуществляется переключением количества витков первичных обмоток, чтобы добиться равенства магнитных потоков в магнитопроводе. Также изменением сопротивлений резисторов в выходной и компенсирующей цепях выставляются требуемое торможение при переходных процессах, а также ток срабатывания выходного реле.

РНТ используется в основном для работы в составе РЗА силовых трансформаторов. В первый момент включения в сеть в их сердечнике возникают мощные намагничивающие токи. Они быстро затухают, но при этом создается прецедент для работы защиты: ведь мощность на намагничивание потребляется от источника и остается в трансформаторе.

Устройство РНТ позволяет отстроиться от намагничивающих токов. При резком броске тока сердечник трансформатора быстро намагничивается и реле перестает реагировать на подобное возмущение.

Но при этом при мощных сквозных КЗ реле может ложно сработать из-за токов небаланса. Этого недостатка лишено реле ДЗТ.

Полезное учебное пособие о расчету дифференциальной защиты для трансформаторов можно посмотреть и скачать по ссылке. (размер — 5.5Мб). Автор М.А. Александров — Санкт-Петербург, ПЭИПК.

Дифференциальная защита на реле ДЗТ

Внешне реле ДЗТ почти не отличается от РНТ. Но состав обмоток и их назначение меняется. Магнитопровод также имеет три стержня. Первичные обмотки находятся, как и у РНТ, на среднем стержне. А вот вторичная обмотка размещена одновременно на двух крайних, там же находится еще одна, выполняющая функцию тормозной.

Если КЗ произошло в зоне защиты, тока в тормозной обмотке реле нет, происходит его срабатывание. Если повреждение находится вне защищаемого участка, через трансформаторы протекает большой сквозной ток. Часть его поступает в тормозную обмотку, компенсируя в магнитопроводе потоки от обмоток на среднем его стержне.

В итоге во вторичной обмотке результирующий ток равен нулю. Защита не срабатывает.

Реле с успехом используется для защиты на линиях электропередач, но для силовых трансформаторов его использовать нежелательно. Имея лучшую отстройку от сквозных токов короткого замыкания, оно хуже отстраивается от токов намагничивания.

Ещё одно интересное видео о принципе работы диф. защиты шин:

Примеры расчета уставок дифференциальной защиты с торможением на понижающих трансформаторах

Пример 10. Выбираются уставки дифференциальной защиты с торможением (реле ДЗТ-11) двухобмоточного трансформатора мощностью 6,3 MB-А (115± 16%) кВ/ 11 кВ из примера 4 (рис. 2-10).

Решение. Рассчитываются токи КЗ (результаты расчета приведены на рис. 2-10). Определяются средние значения первичных и вторичных номинальных токов для всех сторон защищаемого трансформатора так же, как в предыдущем примере (табл.2-5).

Выбирается место установки тормозной обмотки обоих реле ДЗТ-11 (фаз А и С): плечо стороны НН (рис. 2-27).

Определяется первичный ток небаланса без учета составляющей I'»нб по выражениям (2-35), (2-39), (2-40): Iнб=(1*1*0,1+0,16) 410 = 106,5 А, где I(3)к.макс.вн= 410 А (рис. 2-10).

Ток срабатывания защиты выбирается только по условию (2-50) отстройки от броска тока намагничивания. Уточненное значение kн в выражении (2-50) определяется в следующем порядке. При uк.сp= 10,5 % сопротивление

При мощности трансформатора 6,3 MB-А (рис. 2-10)

При x 1с =15 Ом получаем хк=15 + 1,15*361=430 Ом.

Значение хб= 1152/6,3 = 2100, хк* = 430/2100= 0,2, значение kн = 2,1 — 3,7*0,2 = 1,36. Номинальный ток трансформатора равен 31,7 А (на стороне 110 кВ).

Ток срабатывания дифференциальной защиты по условию (2-50) Iс.з >=1,36-31,7 =43 А.

Определяются числа витков обмоток ДЗТ для выравнивания МДС, аналогично тому, как это выполнено в предыдущем примере.

Расчеты сведены в табл. 2-7. При этом надо иметь в виду, что на коммутаторе реле ДЗТ-11 можно подобрать практически любое число витков как рабочей, так и уравнительных обмоток. Расчет в табл.2-7 начинается с выбора числа витков для обмотки НТТ, включаемой в плечо ВН, поскольку это — сторона регулируемого напряжения, хотя и с меньшим вторичным током (табл. 2-5).

Определяется по выражению (2-48) число витков тормозной обмотки реле ДЗТ-11, необходимее для обеспечения бездействия защиты при внешнем трехфазном КЗ (точка К2 на рис. 2-10):

где ωт = 17,9 вит. — расчетное число витков рабочей обмотки на той же стороне НН, где включена тормозная обмотка (рис. 2-27); Iнб = 108,8(96,6/11) = 955 А, приведенным к стороне НН с помощью наименьшего значения коэффициента трансформации трансформатора, соответствующего крайнему «отрицательному» положению регулятора РПН, при котором определяются максимальные значения тока КЗ (§ 2-2); Iнб= 108,8 А (п.8 табл. 2-7).

Принимается ближайшее большее число витков тормозной обмотки (ωт = 11вит.); числа витков на тормозной обмотке реле ДЗТ-11 могут быть установлены следующие: 1, 3, 5, 7, 9, 11, 13, 18, 24.

Определяется по формуле (2-38) коэффициент чувствительности защиты при КЗ за трансформатором в зоне действия защиты, когда ток повреждения проходит только через трансформаторы тока стороны 110 кВ и торможение отсутствует. Из рис. 2-10 I <ыгз>(3) к.мин.вн = 230А. В соответствии с табл. 2-1 для схемы соединения обмоток трансформаторов тока в треугольник расчетный ток в реле При прохождении тока КЗ по стороне ВН ток срабатывания реле

Iс.р= 100/27 = 3,7 А. Коэффициент чувствительности 17,2 / 3,7 = 4,6 > 2.

Проверка чувствительности защиты при однофазном КЗ на стороне 110 кВ в зоне действия защиты и выбор тока срабатывания реле РТБ схемы автоматики отключения отделителя 110 кВ производятся так же, как в примере 9.

Расчетная проверка трансформаторов тока производится в соответствии с §1-5 так же, как в примере 4. Переход на nт = 150/5 не снижает чувствительности защиты.

Пример 11. Выбираются уставки дифференциальной защиты трехобмоточных трансформаторов 10 МВ-А, (115 ±4 * 2,5 %)кВ / (38,5 ± 2 * 25 ) кВ /11 кВ по данным, приведенным на рис.2-16. Трансформаторы работают раздельно на сторонах 35 и 10 кВ.

Решение. Определяются средние значения первичных и вторичных номинальных токов для всех плеч дифференциальной защиты (по номинальной мощности наиболее мощной обмотки трансформатора). Расчеты сводятся в табл. 2-8.

Определяются первичные токи небаланса без учета составляющей I'»нб по выражениям (2-35), (2-39), (2-40):

а) при КЗ на шинах 35 кВ (точка К2) Iнб=(1*1* 0,1 + 0,1 + 0,05) • 500= 125 А, где I(3)к.макс.вн=Iαк.макс=Iβк.макс= 500 А — максимальный ток, проходящий по регулируемой стороне ВН трансформатора при КЗ на стороне СН (рис. 2-16);

б) при КЗ на шинах 10 кВ (точка КЗ) Iнб= (1*1* 0,1 + 0,1) *330 = 66 А, где I(3)к.макс.вн=330 А — максимальный ток, проходящий по регулируемой стороне ВН трансформатора при КЗ на стороне НН (рис. 2-16).

Предварительный расчет показывает, что при выполнении дифференциальной защиты без торможения (§2-4) kч =1,4 при двухфазном КЗ на стороне НН (рис. 2-16). В случаях параллельно работы трансформаторов на одной из сторон (НН или СН) значения Iк.макс, Iнб и, следовательно, Iс.з возрастают, а значение kч становится меньше 1,4, так как проверка чувствительности должна производиться при одиночной работе трансформаторов, когда ток КЗ меньше, чем при параллельной работе. Поэтому дальнейший расчет производится для дифференциальной защиты с торможением с реле ДЗТ-11.

Определяется место включения тормозной обмотки реле ДЗТ-11. Рассматриваются три варианта.

а) Включение тормозной обмотки в плечо 35 кВ (рис. 2-28). При этом несрабатывание защиты при внешнем повреждении на шинах 10 кВ, когда торможение отсутствует, обеспечивается выбором тока срабатывания, так же как для защиты с реле серии РНТ, т. е. по выражению (2-36), в котором принимается наибольшее значение kн для реле серии ДЗТ-10 (1,5): Iс.з >= 1,5 • 66=99 А. По условию (2-50) Iс.з>= kн • Iном.тр=1,5 • 50=75 А, где Iном.тр берется из табл. 2-8.

Определяющим условием является (2-36), поэтому не производится уточнение коэффициента kн в выражении (2-50) по примеру 10. Коэффициент чувствительности

защит (предварительный) при двухфазном КЗ в точке КЗ (рис. 2-16) в минимальном режиме при Iс.з = 99 А и

k(2)ч =13/5,7 = 2,28. Поскольку kч >2, этот вариант может быть принят для дальнейших расчетов (числа витков обмоток ННТ указаны на рис. 2-28).

б) Включение тормозной обмотки в плечо 110 кВ, что позволило бы выбрать ток срабатывания защиты только по условию (2-50). Этот вариант требует дополнительной проверки надежности работы реле ДЗТ-11 (ДЗТ-1) по зависимостям, приведенным на рис. 2-26. В данном примере Iк.макс= 5000 А (точка К1 на рис. 2-16), I1* = 5000/150= 33. Предварительное значение Iнб = (0.1 +0.1 + 0.05) Iк.макс (КЗ на стороне 35 кВ). По формуле (2-48) По рис. 2-26, б при I1* =33 и ωт /ωp = 0,43 I2*=1,1, что значительно ниже нормируемых значений I2*. Следовательно, этот вариант не может быть принят.

в) Включение тормозной обмотки на сумму токов плеч 10 и 35 кВ (рис. 2-29). Очевидно, что последний вариант является наилучшим, так как позволяет выбрать ток срабатывания защиты только по условию (2-50), как и в варианте «б», и в то же время исключить влияние тормозной обмотки реле при КЗ в зоне действия защиты. Кроме того, на значение тока срабатывания в этом варианте не влияет неточность подбора числа витков уравнительных обмоток реле (составляющая I»‘нб влияет лишь на выбор

числа витков ωт).

Расчет чисел витков обмоток НТТ реле ДЗТ производится так же, как в предыдущих примерах. Выбранные числа витков указаны на рис. 2-29. Проверка по условию (2-44а) показывает, что числа витков рабочей и уравнительных обмоток выбраны правильно: Iном.вн * ωp = 2,88 • 17 = 49 А =Iном.сн *ωУРІ= 3,24 • 15 =48,6 А = Іном.нн * ωУРІІ = =4,39 *11 = 48,2 А, где значения вторичных номинальных токов плеч дифференциальной защиты берутся из табл.2-8.

Число витков тормозной обмотки выбирается большим из двух значений С0Х, вычисленных по формуле (2-48) для внешних КЗ в точках К2 и КЗ (рис. 2-16): ωт = 7 вит. Остальные расчеты выполняются также, как в предыдущих примерах.

| следующая лекция ==>
Дифференциальная токовая отсечка трансформатора. Принцип действия, пусковые органы, выбор основных параметров | Газовая защита трансформаторов, принцип действия, назначение, область применения.

Дата добавления: 2017-02-20; просмотров: 3718;

>Расчет дифференциальной токовой защиты трансформаторов

    1. Расчет дифференциальной защиты с реле рнт-565

Таблица 3.1 – Расчетная таблица ДЗТ с реле типа РНТ-565

п/п

Наименование величины, единица измерения

Обозначение расчетная и формула

Sт.н=63000 кВА

Числовое значение для сторон

115 кВ

37 кВ

10,5 кВ

Первичный ток на сторонах защищаемого трансформатора, соответствующий его номинальной мощности, А

Схема соединения трансформаторов тока, коэффициент схемы

kсх

1,73

Коэффициент трансформации трансформаторов тока

Вторичный ток в плечах защиты, соответствующий номинальной мощности защищаемого трансформатора, А

9,122

2,771

6,928

Первичный расчетный ток небаланса без учета составляющей, обусловленной неточностью установки расчетного числа витков реле, А

621,4

1203,28

2856,1

Продолжение таблицы 3.1

Первичный ток срабатывания защиты, А

По условию отстройки от максимального тока небаланса

По условию от броска тока намагничивания

kотс=1,3 – коэффициент отстройки реле

kотс=1,3 – коэффициент, используемый при отстройке защиты от броска тока намагничивания

807,82

410,8

1564,26

1277,9

3712,93

4503,2

Расчетное условие для выбора уставки реле, А

Iсзрас

Принимается большее из двух значений (Iсз1иIсз2)

807,82

1564,26

4503,2

Предварительная проверка чувствительности

1,783

1,764

2,014

Поскольку коэффициенты чувствительности меньше 2, рассчитаем ДЗТ-11.

    1. Расчет дифференциальной защиты с реле дзт-11

Таблица 3.21– Расчетная таблица ДЗТ с реле типа ДЗТ-11

п/п

Наименование величины, единица измерения

Обозначение расчетная и формула

Sт.н=63000 кВА

Числовое значение для сторон

115 кВ

37 кВ

10,5 кВ

Первичный ток на сторонах защищаемого трансформатора, соответствующий его номинальной мощности, А

Схема соединения трансформаторов тока, коэффициент схемы

kсх

1,73

Продолжение таблицы 3.2

Коэффициент трансформации трансформаторов тока

Вторичный ток в плечах защиты, соответствующий номинальной мощности защищаемого трансформатора, А

9,122

2,771

6,928

Сторона, к трансформаторам тока которой целесообразно присоединить тормозную обмотку.

На сумму токов СН и НН

Мин. ток СЗ по условию отстройки от броска тока намагничивания, А

Ток срабатывания реле для основной стороны (стороны с наибольшим вторичным током в плече защиты), приведенный к стороне ВН, А

13,68

Число витков обмотки НТТ реле для основной стороны:

расчетное

принятое

7,3

Уточненное значение тока срабатывания защиты, А

494,87 А

Число витков обмотки НТТ реле для не основной стороны:

расчетное

принятое

23,04 (ср)

9,21 (н)

Результирующий ток в тормозной обмотке, приведенной к расчетной стороне, А

Первичный расчетный ток небаланса с учетом составляющей Iнбрас:

, (3.1)

где ∆Uα,∆Uβ– принимаются равными половине используемого диапазона регулирования на соответствующей стороне;

kтокα,kтокβ– коэффициенты токораспределения, равны отношению слагающих тока расчетного внешнего КЗ, проходящих на сторонах, где производится регулирование напряжения к току на стороне, где рассматривается КЗ;

kтокI,kтокII– коэффициенты токораспределения, равны отношению слагающих тока расчетного внешнего КЗ, проходящих на сторонах, где используются соответственно числа витковWIиWIIобмоток НТТ реле, к току на стороне, где рассматривается КЗ.

Отсюда получаем первичный ток небаланса, А:

Число витков тормозной обмотки НТТ реле для неосновной стороны:

, (3.2)

Отсюда получаем для средней стороны:

Поскольку для средней стороны получили 12 витков, то по выражению ниже получаем 13 витков.

Рассчитаем чувствительность защиты при отсутствии торможения по выражению:

. (3.3)

Получаем: . Для расчета использовался самый низкий ток КЗ (ток КЗ на высокой стороне при минимальном режиме). Как видно из расчета, коэффициент чувствительности больше 2, поэтому проведем дальнейший расчет реле ДЗТ-11.

Проведем расчет чувствительности защиты, когда имеется торможение. Вторичный ток, подводимый к рабочей обмотке НТТ реле на стороне ВН, А:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *