Диэлектрические потери в диэлектриках

Методика расчета

Диэлектрические потери требуют измерения по достаточно сложной системе просчета. Эта система состоит из нескольких этапов. В первую очередь необходимо рассчитать мощность, которой обладает диэлектрик и что рассеивается в нем при переменном напряжении. Определяется она по формуле:

Pa=U*Ia

Ниже на рисунке изображены схемы последовательного (а) и параллельного (б) подключения конденсатора и активного сопротивления, а также векторные диаграммы токов в них.

Таким образом, можно определить активный ток, формула расчета которого будет следующая:

Вторая величина — это тангенс угла вектора полного значения тока до его емкости. Этот угол еще называют диэлектрический угол потерь. Ic — емкость диэлектрика.

Делая выводы из полученных данных, получается более развернутая формула для расчета мощности:

При этом ток рассчитывается по формуле: угловая частота*емкость конденсатора. Исходя из предоставленных формул, можно рассчитать мощность следующим образом:

Исходя из этой формулы видно, от каких факторов зависят качество и надежность такого устройства, как диэлектрик. Если смотреть по графику, то видно, что свойства возрастают при уменьшении угла.

Виды потерь

В газах

В газообразных веществах электропроводность маленькая и как результат диэлектрические утери также будут незначительными. При поляризации молекул газа ничего не случается. В таком случае применяется так называемая кривая ионизации.

Такая подчиненность свидетельствует о том, что при увеличении напряжения угол также будет повышаться. А это означает, что в изоляции существует включение газа. В случае большой ионизации, потеря газа будет значительной и как результат – нагревание и разрушение изоляции.

Поэтому изготавливая изоляцию очень важно учитывать тот факт, что вкрапления газа должны отсутствовать. Для этого используется особенная обработка. Суть ее заключается в следующем: в вакууме происходит сушка изоляции. Затем поры наполняются компаундом, который находится под напором и потом происходит обкатка.

В результате ионизации появляются окислы азота и озона, которые разрушают изоляцию. В моменты, когда эффект ионизации возникает на участке неравномерных полей, это при передаче приводит к снижению коэффициента полезного действия.

В твердых веществах

Твердый диэлектрик обладает определенными характеристиками, такими как состав, структура и поляризация, которые приводят к возникновению диэлектрических потерь. Например, в сере, парафине или полистироле они отсутствуют, поэтому данные вещества широко используют как высокочастотный диэлектрик.

Кварц, соль и слюда обладают сквозной электропроводностью, поэтому они характеризуются незначительной величиной данных потерь.

Диэлектрические потери не зависят от частоты (а), будут уменьшаться вместе с частотой поля по гиперболическому закону. Зато с температурой они зависят напрямую по экспоненциальному закону (б).

Кристаллический диэлектрик, такой как керамика или мрамор обладает характерным показателем этого значения. Это объясняется тем, что в их составе есть примеси полупроводников. Такой материал обладает отличительным свойством: диэлектрические потери напрямую связаны с окружающей средой и ее условиями. Поэтому в зависимости от смены факторов, которые окружают диэлектрик, величина одного материала может изменяться.

В жидкостях

В этом случае потери напрямую связаны с составом материала. Если в жидкостях отсутствуют какие-либо примеси, то она будет нейтральна и утери будут стремиться к нулю, так как электропроводность низкая.

Жидкости с полярностью или с наличием примесей используют для определенных технических целей, так как диэлектрические утери у них будут гораздо выше. Это объясняется тем, что такие жидкости обладают своими особенными свойствами, например, вязкость. А так как их устанавливает дипольная поляризация, то эти жидкости называют дипольными. При возрастании вязкости диэлектрические потери возрастают.

Помимо этого жидкости обладают определенной зависимостью потерь от температуры. Когда температурный режим увеличивается тангенс угла также увеличивается до максимального показателя. Затем опускается до минимального показателя и снова возрастает. Это объясняется тем, что под воздействием температуры изменяется электропроводность.

Обзор измерительных приборов

Существуют специальные приборы для измерения потерь. К ним относят прибор «ИПИ – 10», прибор фирмы Tettex, с его помощью изучаются диэлектрики твердых и жидких веществ. Автоматизированная установка с названием «Тангенс – 3М» используется для определения тангенса угла в жидких диэлектриках (на фото ниже). Также используют измеритель «Ш2 – 12ТМ».

Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, что собой представляют диэлектрические потери в диэлектриках, как производится их расчет и измерения. Надеемся, предоставленная информация была для вас полезной!

Также рекомендуем прочитать:

  • Для чего нужна изолирующая штанга
  • Причины потерь электроэнергии на больших расстояниях
  • Программы для расчета заземления

Общие представления об электропроводности диэлектриков

Сквозной ток Iскв обусловлен смещением свободных носителей заряда.

В момент включения или выключения постоянного электрического поля через диэлектрик электрического конденсатора протекает ток смещения — Iсм (рисунок 3.1), обусловленный быстрыми видами поляризации. Токи смещения очень кратковременны и их не удается зафиксировать прибором.

В полярных и неоднородных диэлектриках протекает также ток абсорбции — Iабс, возникающий за счет замедленных поляризаций.

При длительной работе диэлектрика под напряжением падение сквозного тока вызвано электрической очисткой в случае, когда проводимость материала обусловлена ионами посторонних примесей. В случае, когда проводимость материала обусловлена собственными ионами, при длительном приложении напряжения может наблюдаться старение диэлектрика (уменьшение электрического сопротивления).

Рис. 3.1. Временные зависимости токов, протекающих через неполярный диэлектрик при включении и выключении напряжения

При постоянном напряжении абсорбционные токи, меняя свое направление, проходят только в периоды включения и выключения напряжения (рисунок 3.2).

Рис. 3.2. Временные зависимости токов для диэлектрика, в котором возникают токи абсорбции

При переменном напряжении они имеют место в течение всего времени нахождения материала в электрическом поле.

При расчете сопротивления изоляции на постоянном напряжении необходимо расчет вести по току сквозной проводимости Iскв, исключая токи абсорбции.

Удельное объемное сопротивление (rv)- численно равно R куба с ребром в 1 м (мысленно выделенного из исследуемого материала), если ток проходит через 2 противоположные грани куба.

rv = Rv*S/h,

(3.1)

где Rv – сопротивление материала между электродами площадью S,

h- расстояние между электродами

Поверхностное сопротивление твердых диэлектриков

Удельное поверхностное сопротивление rs численно равно сопротивлению квадрата (мысленно выделенного на поверхности исследуемого материала), если ток проходит через 2 противоположные стороны этого квадрата

rs = Rs*d/l,

(3.2)

где Rs — поверхностное сопротивление материала между поставленными электродами шириной d и на расстоянии l.

Поверхностная электропроводность обусловлена наличием влаги, загрязнениями и различными дефектами поверхности диэлектрика.

Сильно увлажняются полярные и пористые диэлектрики. rs диэлектриков связано с величиной краевого угла смачивания и твердостью диэлектрика. Чем меньше краевой угол и выше твердость, тем ниже rs увлажненного диэлектрика.

К гидрофобным диэлектрикам относятся неполярные диэлектрики, чистая поверхность которых не смачивается водой, поэтому при помещении диэлектрика во влажную среду его поверхностная электропроводность практически не меняется.

К гидрофильным диэлектрикам относятся полярные и большинство ионных диэлектрики со смачиваемой поверхностью. При помещении диэлектрика во влажную среду его поверхностная электропроводность увеличивается. Кроме того, к поверхности полярных диэлектриков могут прилипать различные загрязнения, также приводящие к росту поверхностной проводимости.

К «промежуточным» диэлектрикам условно относят слабополярные диэлектрики (например, лавсан).

При нагревании увлажненной изоляции rs может расти с повышением температуры с последующим спадом после высушивания. При низких температурах rs высушенного материала имеет значительно более высокие значения (на 6-7 порядков выше).

Для увеличения значения rs диэлектриков пользуются различными приемами: промывкой в кипящей дистиллированной воде или растворителях в зависимости от вида диэлектрика, прогреванием до достаточно высокой температуры, покрытием поверхности влагостойкими лаками, глазурями, размещением изделий в защитных корпусах и оболочках и т.д.

Электропроводность газообразных диэлектриков

В области слабых электрических полей носители заряда в газах появляются в результате воздействия на нейтральные молекулы газа быстрых частиц, квантов света, радиоактивного, ультрафиолетового и других излучений.

В результате часть нейтральных молекул распадается на положительные ионы и электроны. Электроны в большинстве случаев захватываются другими нейтральными молекулами, образуя отрицательные ионы, которые участвуют в общем тепловом движении. Некоторая часть электронов, встречаясь с положительными ионами, рекомбинирует, образуя нейтральные частицы, при этом выделяется рекомбинационное излучение в виде квантов света.

Вольтамперная характеристика газообразного диэлектрика для слабых и средних полей (до 106 В/м) приведена на рисунке 3.3.

На участке ab приближенно соблюдается закон Ома j=g.E, так как концентрация носителей заряда сохраняет постоянное значение из-за равновесия между процессами ионизации и рекомбинации. Закон Ома выполняется в полях до значений Е<1 В/м.

Рис. 3.3. Вольт-амперная характеристика газообразного диэлектрика:

ab – область слабых полей, закон Ома;

bc – область средних полей, насыщение;

cd – область сильных полей, ударная ионизация.

На участке bc (насыщение) скорость носителей заряда возрастает настолько, что они не успевают рекомбинировать и почти все достигают электродов (jнас=10-14 — 10-16 А/м2). Разряд на участке abc называют несамостоятельным.

Несамостоятельная электропроводность осуществляется за счет ионов и электронов, образующихся в результате ионизации, вызванной внешним энергетическим воздействием, таким как космические и солнечные лучи, радиоактивное излучение Земли. На участке cd начинается ударная ионизация молекул электронами. Это область сильных полей (для воздуха Е>106 В/м). При напряженности Епр газ пробивается (самостоятельный разряд). Возрастание тока при Е > Екр (участок cd) обусловлено увеличением числа носителей заряда в результате электронной ударной ионизации, фотоионизации и холодной эмиссии электронов из катода. При Екр наступает пробой, в этом состоянии газ (воздух) утрачивает свои электроизоляционные свойства, так как между электродами образуется плазменный газоразрядный канал проводимости.

Электропроводность жидких диэлектриков

Неполярные и слабополярные жидкости: носители заряда в основном ионы, возникающие при диссоциации молекул примеси.

Степень диссоциации – это отношение числа диссоциированных молекул к общему числу молекул жидкости.

С увеличением e вещества возрастает степень диссоциации, которая также зависит от концентрации примеси.

Диссоциация молекул жидкости с ионным характером связи приводит к собственной электропроводности.

Электронная электропроводность может наблюдаться в сильных полях при эмиссии электронов с катода в очищенных от примесей жидкостях.

Молионная электропроводность – характерна для масел с включениями влаги (воды) и для лаков с мелкодисперсными наполнителями.

Если e коллоидной частицы > e основ.вещества , то знак заряда частицы положительный

Если e коллоидной частицы < e основ.вещества , то знак заряда частицы отрицательный

Эти заряженные частицы называются молионами.

Удельное сопротивление жидкостей e уменьшается с ростом температуры по экспоненциальному закону

rv =B.exp(W/kT)

(3.3)

где B – константа, W – энергия диссоциации, k – постоянная Больцмана. По аналогичному закону изменяется и вязкость жидкости.

Удельные проводимости неполярных, слабополярных и сильнополярных жидких диэлектриков приведены в таблице.

Материал

Особенности строения

r, Ом.м

e

Бензол

трансформаторное масло

неполярные

1010-1013

2.2

Совол

касторовое масло

Слабополярные

108-1010

4.5

4.6

дистилированная вода

этиловый спирт

ацетон

Сильнополярные

103-105

80

33

22

Закон Ома в жидкостях нарушается в сильных полях (Е = 0.05 – 0.06 МВ/м). Возможные причины: диссоциация молекул жидкости, приводящая к резкому росту концентрации ионов; увеличение подвижности; автоэлектронная эмиссия электронов с катода в тщательно очищенных жидкостях.

Электропроводность твердых диэлектриков

Для твердых диэлектриков наиболее характерна ионная электропроводность. В диэлектриках с атомной или молекулярной решеткой электропроводность весьма мала и только примесная.

Удельная электропроводность экспоненциально зависит от температуры

g = e.n.m = go.exp(-Wa/kT)

(3.4)

где Wa – суммарная энергия диссоциации и перемещения ионов, μ– подвижность заряда; n – концентрация носителей заряда .

В координатах ln g = f(1/T) эта зависимость представляется в виде прямой линии, либо в виде линии с изломом(рисунок 3.4), если имеются два различных механизма проводимости (примесный и собственный).

Электронная электропроводность не сопровождается переносом вещества. Ионная – сопровождается. Следовательно, так можно экспериментально определить вид электропроводности.

Рис. 3.4. Зависимость удельной проводимости диэлектриков от обратной температуры:

1 – низкотемпературная область;

2 – высокотемпературная область

В некоторых твердых неорганических диэлектриках, например в титаносодержащей керамике, возможна электронная или дырочная электропроводность.

Зависимость удельной электропроводности от напряженности электрического поля

В области слабых полей увеличение удельной проводимости (уменьшение сопротивления изоляции) с повышением приложенного напряжения можно объяснить, наряду с образованием объемных зарядов, плохим контактом между электродом и диэлектриком, изменением под действием поля формы и размеров включений влаги, ионизацией газовых включений и др.

В сильных полях 10 – 100 МВ/м зависимость удельной проводимости от напряженности Е хорошо описывается эмпирической формулой Пуля:

(3.5)

а в некоторых случаях (при Е близкой к пробивной) формулой Френкеля:

(3.6)

b и g0 в формулах — константы, характерные для данного диэлектрика.

Вопросы для самопроверки

Вопрос. В чем состоит природа сквозного тока (тока утечки)?

Ответ. Сквозной ток — Iскв (ток утечки) протекает по диэлектрику под воздействием постоянного напряжения и обусловлен наличием в диэлектриках свободных носителей заряда.

Вопрос. В чем состоит природа тока смещения?

Ответ. Ток смещения обусловлен быстрыми видами поляризации и возникает в диэлектрике в момент включения постоянного электрического поля.

Вопрос. В чем состоит природа тока абсорбции?

Ответ. Ток абсорбции обусловлен активными составляющими токов, связанных с установлением замедленных (релаксационных) поляризаций.

Вопрос. От каких факторов зависит удельное поверхностное сопротивление диэлектриков?

Ответ. Удельное поверхностное сопротивление диэлектриков зависит от природы диэлектрика, температуры, влажности, приложенного напряжения.

Вопрос. Какие диэлектрики называются неполярными?

Ответ. Неполярные диэлектрики состоят из неполярных молекул, у которых центры тяжести положительного и отрицательного зарядов совпадают.

Вопрос. Характер электропроводности для жидких диэлектриков?

Ответ. Основную роль играют два типа электропроводности: ионная и молионная.

Вопрос. Какой общей закономерности подчиняется изменение удельного сопротивления диэлектриков от температуры?

Ответ. Удельное сопротивление диэлектриков уменьшается с ростом температуры по экспоненциальному закону.

Вопрос. Что является в твердых диэлектриках носителями заряда?

Ответ. Для твердых диэлектриков наиболее характерна ионная электропроводность.

Вопрос. Какие диэлектрики относят к гидрофобным и гидрофильным?

Ответ. К гидрофобным диэлектрикам относятся неполярные диэлектрики. К гидрофильным диэлектрикам относятся полярные и большинство ионных диэлектриков.

Токи в диэлектриках

Виды электропроводности

Электропроводность диэлектриков – это состояние вещества, имеющего в наличие заряженные частицы, находящиеся в электрическом поле. Существует три основных вида электропроводности.

Электронная или металлическая электропроводность. Характерна для металлов и большинства твёрдых диэлектриков, носители зарядов – электроны.

Ионная или электролитическая электропроводность. Носители зарядов – ионы, характерный процесс – электролиз, в результате которого получаются новые вещества.

Молионная или электрофоретическая электропроводность. Носители зарядов группы молекул – молионы. Характерна для коллоидных растворов и суспензий. Результатом характерного процесса является изменение концентраций относительных слоёв жидкости.

В момент включения и выключения постоянного электрического поля через диэлектрик электрического конденсатора протекает обусловленный быстрыми видами поляризаций ток смещения Iсм за время около 10 — 15 с. В неполярных однородных диэлектриках затем устанавливается ток сквозной проводимости — Iскв. В начальный момент времени и при выключении постоянного поля через полярные и неоднородные диэлектрики протекает также ток абсорбции — Iабс, причиной которого являются замедленные (релаксационные) поляризации. Во многих диэлектриках, используемых в качестве электрической изоляции, Iскв устанавливается за время меньшее 1 мин. В переменном электрическом поле через диэлектрик протекают все, характерные для него виды токов.

Сквозной ток — Iскв (ток утечки) обусловлен наличием в диэлектриках указанных в таблице свободных носителей заряда различной природы.

В постоянном электрическом поле токи абсорбции могут устанавливаться в течение длительного времени в зависимости от типа диэлектрика и механизма поляризации. Уменьшение тока Iабс может наблюдаться в течение минут или даже часов. После исчезновения тока абсорбции через диэлектрик будет протекать только ток Iскв. При расчете сопротивления изоляции на постоянном напряжении необходимо расчет вести по току сквозной проводимости Iскв, исключая токи абсорбции.

Основными характеристиками электроизоляционных материалов являются удельная объёмная проводимость gv и удельная поверхностная проводимость gs. Для их сравнительной оценки пользуются значениями удельного объемного сопротивления rv и удельного поверхностного сопротивления rs.

Удельное объемное сопротивления rv равно объемному сопротивлению куба с ребром в 1 м, мысленно выделенного из исследуемого материала, если ток проходит сквозь куб от одной его грани к противоположной (рис.1.13).

, .

Удельное поверхностное сопротивление rs равно сопротивлению прямоугольника, мысленно выделенного из поверхности материала, если ток проходит через него от одной его стороны к противоположной.

, ,

где b – расстояние между электродами, a – ширина электродов.

Rs – поверхностное сопротивление образца материала между параллельно поставленными электродами шириной a, отстоящих друг от друга на расстояние b.

; .

Полное сопротивление диэлектрика составит .

Удельная объёмная проводимость .

Удельная поверхностная проводимость .

Электропроводность зависит от состояния вещества (твёрдое, жидкое, газообразное), а также от влажности и температуры окружающей среды, наличия ионизирующего излучения.

Поверхностный ток – ток, обтекающий поверхность образца is. Он зависит от чистоты поверхности диэлектрика – загрязнения, влажности, коррозии.

Объемный ток – ток, протекающий внутри диэлектрика по всему объёму iv. Он зависит от свойств самого диэлектрика.

Диэлектрические потери

Смотреть что такое «Диэлектрические потери» в других словарях:

  • диэлектрические потери — потери Мощность, выделяющаяся в диэлектрике при воздействии на него электрического поля. диэлектрические потери потери в диэелектрике [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и электроэнергетике. 2 е издание… … Справочник технического переводчика

  • ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ — часть энергии перем. электрич. поля Е, к рая преобразуется в теплоту при переполяризации диэлектрика. Все движения частиц в веществе связаны с диссипацией части энергии, сообщённой частицам электрическим полем; в конечном счёте эта часть энергии… … Физическая энциклопедия

  • диэлектрические потери — диэлектрические потери; потери; отрасл. диэлектрическое рассеяние Электрическая мощность, затрачиваемая в диэлектрике, находящемся в электрическом поле … Политехнический терминологический толковый словарь

  • ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ — часть энергии переменного электрического поля, необратимо преобразующаяся в тепло в диэлектрике … Большой Энциклопедический словарь

  • диэлектрические потери — часть энергии переменного электрического поля, необратимо преобразующаяся в тепло в диэлектрике. * * * ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ, часть энергии электрического поля, необратимо преобразующаяся в теплоту в диэлектрике (см.… … Энциклопедический словарь

  • Диэлектрические потери — 60. Диэлектрические потери Потери Мощность, выделяющаяся в диэлектрике при воздействии на него электрического поля Источник: ГОСТ 21515 76: Материалы диэлектрические. Термины и определения оригинал документа Смотри также родственные терми … Словарь-справочник терминов нормативно-технической документации

  • диэлектрические потери — dielektriniai nuostoliai statusas T sritis Standartizacija ir metrologija apibrėžtis Kintamojo elektrinio lauko energijos dalis, dėl poliarizacijos dielektrike virstanti šiluma. Jei dielektriko molekulės polinės, tai kintant elektrinio lauko… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • диэлектрические потери — dielektriniai nuostoliai statusas T sritis chemija apibrėžtis Elektrinio lauko energijos dalis, išsisklaidanti dielektrike šilumos pavidalu. atitikmenys: angl. dielectric loss rus. диэлектрические потери … Chemijos terminų aiškinamasis žodynas

  • диэлектрические потери — dielektriniai nuostoliai statusas T sritis fizika atitikmenys: angl. dielectric loss vok. dielektrische Verluste, m rus. диэлектрические потери, f pranc. pertes diélectriques, f … Fizikos terminų žodynas

  • ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ — часть энергии перем. электрич. поля, необратимо преобразующаяся в теплоту в диэлектрике. Обусловлены как током смещения в диэлектрике, так и током проводимости. Д. п. увеличиваются с возрастанием напряжённости и частоты поля, а также при… … Большой энциклопедический политехнический словарь

Общетехнические дисциплины / Материаловедение технология конструкционных материалов / 9.2.3 Диэлектрические потери

Общие определения

Диэлектрическими потерями называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика. Если на диэлектрик воздействует переменное электрическое поле напряженностью Е и круговой частотой ω, то в нем возникают электрические токи двух видов: ток смещения или емкостной ток и ток проводимости (рис. 9.10).

Плотность тока смещения равна:

. (9.11)

Плотность тока проводимости определяется следующим образом:

, (9.11)

где – удельная, активная проводимость диэлектрика на угловой частоте ω.

Плотность общего тока (J) равна векторной сумме плотностей токов смещения и проводимости (рис. 9.9). Если бы диэлектрик был идеальным, т.е. без потерь (), ток был бы чисто реактивным и его плотность:

(см. рис. 9.10) была бы направлена по мнимой оси под углом 90° к вектору . Однако у реальных диэлектриков, с , отличной от нуля, суммарный ток сдвинут на угол относительно тока идеального диэлектрика (φ – угол сдвига фаз между током и напряжением). Чем больше , тем больше угол δ, характеризующий степень отличия реального диэлектрика от идеального.

Рис. 9.10. Векторная диаграмма (комплексная плоскость) плотности тока в диэлектрике

Угол δ между векторами плотностей переменного тока диэлектрика и тока смещения на комплексной плоскости называют углом диэлектрических потерь. Тангенс этого угла

(9.12)

является одним из важнейших параметров не только диэлектриков, но также конденсаторов, изоляторов и других электроизоляционных элементов. Или другими словами, угол диэлектрических потерь (δ) называют углом, дополняющим до 90° угол сдвига фаз (φ) между током и напряжением в емкостной цепи.

Мощность, рассеиваемая в единице объема вещества, т.е. так называемые удельные диэлектрические потери, равны:

или

, (9.13)

где Е – действующее значение напряженности переменного поля, В/м. Чем выше tgδ, тем больше нагрев диэлектрика в электрическом поле заданной частоты и напряженности. Введение безразмерного параметра tgδ удобно, потому что он не зависит от формы и размеров участка изоляции, а определяется лишь свойствами диэлектрического материала.

Если к конденсатору или другому электроизоляционному элементу приложено напряжение с угловой частотой (ω) и действующим значением U, то отношение проходящих тока проводимости

(где Ra – активное сопротивление элемента на частоте ) и тока смещения

(где С – емкость) можно выразить так:

Так как , a , где – геометрический размер, то

. (9.14)

Полные диэлектрические потери в участке изоляции емкостью С при приложении напряжения U (действующего значения) угловой частотой ω равны:

. (9.15)

Наряду с потерями tgδ характеризует добротность конденсатора (Q), а следовательно, и максимально возможную добротность контура с данным конденсатором:

. (9.16)

Таким образом, tgδ есть величина, обратная добротности.

Высокие диэлектрические потери приводят к разогреву и тепловому пробою диэлектриков в сильных электрических полях, снижению добротности и избирательности колебательных контуров. В связи с этим стремятся снизить tgδ диэлектрических материалов, что возможно, если известна природа диэлектрических потерь.

Виды диэлектрических потерь

Диэлектрические потери по их особенностями и физической природе можно разделить на пять основных видов:

1) обусловленные сквозной электропроводностью;

2) обусловленные релаксационными (медленными) видами поляризации;

3) обусловленные неоднородностью структуры (миграционные);

4) ионизационные;

5) резонансные.

Диэлектрические потери, обусловленные сквозной электропроводностью проявляются во всех без исключения диэлектриках как в постоянных, так и в переменных электрических полях. Часть диэлектрических потерь, обусловленных сквозным током диэлектрика, называют диэлектрическими потерями на электропроводность.

Потери на электропроводность ничтожно малы у электроизоляционных материалов с высоким удельным сопротивлением (у полиэтилена, политетрафторэтилена и т.п.), а на высоких и сверхвысоких частотах – практически у всех материалов. Однако их необходимо учитывать в изоляции, работающей при повышенных температурах (выше 100° С), а также при увлажнении и прочих условиях, приводящих к снижению удельного сопротивления.

Диэлектрические потери, обусловленные релаксационными (медленными) видами поляризации могут проявляться в полярных диэлектриках и только в переменных электрических полях.

Активная проводимость диэлектриков () при переменном токе обычно значительно больше, чем проводимость () при постоянном токе. Тангенс угла потерь, даже на высоких частотах, не падает ниже 10-4. Следовательно, существуют и другие механизмы диэлектрических потерь, кроме потерь, обусловленных током сквозной проводимости. Эти механизмы связаны с поляризацией диэлектрика.

Диэлектрические потери на поляризацию будут максимальны, когда период изменения электрического поля сравним со временем установления поляризации (τ).

Если частота поля , поляризация не успевает следовать за изменениями поля, поляризованность и диэлектрическая проницаемость станут ниже низкочастотных. В области частот наблюдается изменение диэлектрической проницаемости с увеличением частоты, называемое диэлектрической дисперсией.

Диэлектрическая дисперсия может носить релаксационный (ε монотонно снижается с ростом ω) или резонансный (ε с ростом частоты проходит через максимум и минимум) характер.

Значения ε и tgδ полярных диэлектриков сильно зависят от температуры (Т).

При высоких температурах снижение ε с ростом Т связано с дезориентирующим влиянием на дипольную поляризацию хаотического теплового движения, в результате чего при . При низких температурах ε падает до значения , потому что частота релаксации становится ниже частоты измерений. Чем выше частота измерений, тем выше температура падения ε(Т). При температурах падения ε(Т) наблюдаются релаксационные максимумы потерь. Таким образом, релаксационная дисперсия может наблюдаться при изменении не только частоты, но и температуры.

В полярных диэлектриках наблюдаемые потери представляют собой сумму из потерь на электропроводность и релаксационных потерь. Диэлектрические потери, обусловленные неоднородностью структуры, характерны для композиционных диэлектриков, а также для диэлектриков с различными (в том числе и проводящими) примесями.

Миграционная поляризация обусловлена миграцией зарядов в проводящих включениях и их накоплением на границах неоднородностей. Процесс миграционной поляризации устанавливается очень медленно и не успевает следовать за изменением величины и направления электрического поля высокой частоты. Поэтому миграционная поляризация уменьшается с ростом частоты, на низких частотах и в области частот ее дисперсии наблюдаются миграционные потери.

Ионизационные потери, или потери на частичные разряды, наблюдаются в пористых диэлектриках при повышении напряжения сверх определенного предела (), называемого порогом ионизации (рис. 9.11). При напряжениях выше в воздушных включениях или других дефектах внутри диэлектрика появляются частичные разряды, приводящие к рассеянию энергии электрического поля. Диэлектрические потери, обусловленные ионизацией диэлектрика в электрическом поле, и называются ионизационными диэлектрическими потерями.

Рис. 9.11. Ионизационные потери пористых диэлектриков при напряжениях, выше напряжения ионизации (Uион)

При действии частичных разрядов диэлектрик может постепенно разрушаться. Поэтому рабочее напряжение следует выбирать ниже напряжения ионизации () соответствующего началу роста tgδ.

График зависимости tgδ от напряжения (рис. 9.11) называют кривой ионизации диэлектрика. По кривой ионизации оценивают качество электрической изоляции высокого напряжения: чем меньше приращение tgδ вследствие ионизационных потерь () и чем при более высоких напряжениях начинается рост tgδ, тем изоляция лучше. Для повышения качества электрической изоляции высокого напряжения ее пропитывают, заполняя поры маслами, лаками, компаундами, газами под высоким давлением.

Резонансные диэлектрические потери происходят при дисперсии резонансного характера, когда частота электрического поля приближается к частотам собственных колебаний электронов или ионов.

Резонансные потери электронной поляризации имеют максимумы в оптическом диапазоне: инфракрасной, видимой и ультрафиолетовой областях спектра (на частотах 1014…1017 Гц). С ними связано поглощение света веществом. Потери сопровождаются частотной зависимостью показателя преломления и максимальны в области так называемой «аномальной» дисперсии, где ε снижается с ростом ω (под «нормальной» дисперсией в оптике имеют в виду увеличение показателя преломления с ростом частоты).

Максимумы резонансных потерь ионной поляризации наблюдаются в инфракрасном диапазоне на частотах 1013…1014 Гц. Однако в веществах с высокой диэлектрической проницаемостью, а также в стеклах и ситаллах, где есть слабо связанные ионы, частоты ионного резонанса могут быть и ниже (~1012 Гц). В этом случае начало резонансного максимума потерь захватывает диапазон СВЧ (109…1010 Гц).

Диэлектрические потери в газах

Диэлектрические потери в газах при напряженностях электрического поля, лежащих ниже значения, необходимого для развития ударной ионизации, очень малы. В этом случае газ можно рассматривать как идеальный диэлектрик. Источником диэлектрических потерь в этом случае является в основном сквозная электропроводность. Так как газы обладают весьма малой электропроводностью, то и угол диэлектрических потерь в связи с этим будет ничтожно мал, особенно при высоких частотах

При высоких напряженностях электрического поля, а также в неоднородных электрических полях, когда напряженность некоторых областей превышает некоторое критическое значение, молекулы газа ионизируются, вследствие чего в газе возникают потери на ионизацию.

Диэлектрические потери в жидких диэлектриках

В неполярных жидких диэлектриках диэлектрические потери обусловлены только сквозной электропроводностью, если жидкость не содержит примесей с дипольными молекулами, и значение tgδ c ростом температуры будет возрастать, а с ростом частоты приложенного электрического поля – уменьшаться.

В полярных жидкостях, в зависимости от условий эксплуатации, повышения температуры, частоты и т.п. могут проявляться потери, обусловленные дипольно-релаксационной поляризацией, помимо потерь, обусловленных электропроводностью. Для таких жидкостей зависимости tgδ от температуры и частоты приложенного электрического поля носят более сложный характер.

Диэлектрические потери в твердых диэлектриках

Диэлектрические потери в твердых диэлектриках необходимо рассматривать в связи с их структурой. Твердые диэлектрики обладают разными свойствами и строением, в них возможно существование всех видов диэлектрических потерь.

В неполярных твердых диэлектриках, не имеющих примесей, диэлектрические потери определяются сквозной электропроводностью, и величина tgδ c ростом температуры будет возрастать, а с ростом частоты приложенного электрического поля – уменьшаться.

В полярных твердых диэлектриках обладающих дипольно-релаксационной, ионно-релаксационной и другими медленными видами поляризации, в зависимости от условий эксплуатации (от повышенных температур, частот и т.п.) могут возникать заметные потери, связанные с медленными видами поляризации.

Диэлектрические потери в твердых диэлектриках неоднородной структуры

К таким диэлектрикам относятся материалы, в состав которых входит не менее двух компонентов, не вступивших в химическую реакцию, т.е. механически смешанных друг с другом. К неоднородным диэлектрикам следует отнести: керамику, слоистые пластики, пропитанную бумагу, картон, ткани и др. Диэлектрические потери таких материалов определяются свойствами и количественным соотношением компонентов, поэтому зависимости tgδ от температуры и частоты приложенного электрического поля носят очень сложный характер.

Рис. 9.12. Зависимость tgδ от температуры для конденсаторной бумаги, пропитанной компаундом (80 % канифоль + 20 %

Например, кривая зависимости tgδ от температуры (рис. 9.12) для бумаги, пропитанной масляно-канифольным компаундом, имеет два максимума: первый (при низких температурах) характеризует диэлектрические потери самой бумаги (целлюлозы); второй (при более высокой тем­пературе) обусловлен дипольно-релаксационными потерями пропитывающего компаунда.

Диэлектрические потери в жидких диэлектриках

Раздел 9. Классификация электротехнических материалов (ЭТМ). История применения ЭТМ. Физика диэлектриков.

Лекция №21

Диэлектрические потери в газообразных диэлектриках

Диэлектрические потери в жидких диэлектриках

Диэлектрические потери в твердых диэлектриках

Диэлектрические потери в газообразных диэлектриках

Диэлектрические потери в газообразных диэлектриках в слабых электрических полях (рассмотрим на примере воздуха) являются следствием только тока сквозной проводимости. Так как у воздуха

Диэлектрические потери воздуха имеют самое низкое значение и практически не зависят ни от температуры, ни от частоты напряжения. Однако в сильных полях потери могут значительно (на несколько десятичных порядков) возрастать в результате поглощения энергии, идущей на ионизацию молекул воздуха — на возникновение чр

Диэлектрические потери в жидких диэлектриках

В жидких неполярных диэлектриках (например, в нефтяных электроизоляционных маслах) диэлектрические потери обусловлены только током сквозной проводимости и имеют небольшие значения

которые мало зависят от частоты и температуры, но существенно зависят от природы и концентрации примеси (рис1). Наличие ионогенной примеси (например, влаги, свободных органических кислот и т.п.) приводит к существенному увеличению электропроводности и, следовательно, диэлектрических потерь.

Из рис. 1, б видно, что с увеличением температуры tgδ нефтяного трансформаторного масла чистого, сухого возрастает незначительно. Потери возрастают, так как увеличивается ток сквозной проводимости. У масла эксплуатационного с предельно допустимым значением кислотного числа (к.ч. = 0,25 мг КОН/1г;) очень высокое содержание ионогенной примеси – органических кислот и воды. С повышением температуры степень диссоциации молекул кислот, воды и другой ионогенной примеси возрастает, следовательно, возрастает ионная проводимость в трансформаторном масле и, как следствие, увеличиваются диэлектрические

потери. В жидких полярных диэлектриках (в касторовом масле, полихлордифениле и т.п.) диэлектрические потери являются следствием как тока сквозной проводимости, так и дипольно-релаксационной поляризации. При этом дипольно-релаксационная поляризация существенно влияет на общий уровень диэлектрических потерь. Величина tgδ может иметь значения ~ 10~3—10~2 и более.

В случае дипольно-релаксационной поляризации tgδ при нагревании проходит через максимум и далее с увеличением температуры возрастает, так как возрастает ток проводимости (рис. 2, а). С увеличением частоты напряжения максимум tgδ, обусловленный дипольно-релаксационной поляризацией, смещается в сторону более высоких температур (см. рис. 2, б). Если диэлектрические потери измерять в частотном интервале, то с увеличением частоты напряжения 1§8 снижается, особенно резко вначале, так как уменьшаются потери, обусловленные током сквозной проводимости. Максимум потерь на кривой зависимости вызван дипольно-релаксационной поляризацией.

С ростом частоты напряжения tgδ в области максимума возрастает до тех пор, пока дипольно-релаксационная поляризация успевает следовать за изменением поля. Когда же частота становится настолько большой, что диполи уже не успевают ориентироваться в направлении поля и дипольно-релаксационная поляризация снижается, то снижается и 1§8, становясь минимальным. С увеличением температуры измерения максимум tgδ смещается в область более высоких частот.

Рис. 1. Общий вид (а) зависимости tgδ жидких неполярных диэлектриков от температуры Т:

Рис. 2.Общий вид (а) зависимости tgδ жидких полярных диэлектриков

от температуры

Рис. 3.Теоретическая зависимость tgδ полярных диэлектриков от частоты со напряжения: потери, обусловленные током проводимости (1), дипольно-релаксационной поляизацией (2)

Рис. 4. Кривые зависимости (^б от частоты напряжения со (а) и температуры Т

(б) полярного жидкого диэлектрика различной степени чистоты:

На рис. 4 приведены кривые частотной и температурной зависимости tgδ полярного жидкого диэлектрика различной степени чистоты. С увеличением номера кривой содержание ионогенной примеси возрастает. При большом содержании примеси дипольно-релаксационный максимум потерь может быть полностью замаскирован потерями, обусловленными током проводимости (кривая 3).

3.Диэлектрические потери в твердых диэлектриках.

Твердые диэлектрики ионного строения

В кристаллических диэлектриках с плотной упаковкой решетки ионами (в кварце, слюде, корундовой керамике и т.п.) наблюдаются электронная и ионная поляризации, не вызывающие рассеивания мощности приложенного электрического поля, поэтому диэлектрические потери в этом случае обусловлены только током сквозной проводимости. Диэлектрические потери этих материалов имеют небольшие значения и при повышении температуры незначительно возрастают , так как возрастает ток сквозной проводимости. Наличие примеси, искажающей кристаллическую решетку, приводит к существенному увеличению tgδ. В диэлектриках аморфных и кристаллических с неплотной упаковкой решетки (в неорганических стеклах, асбесте, электротехнической керамике и т.п.), кроме электронной и ионной поляризаций, имеется и ионно-релаксационная, вызывающая ионно-релаксационные потери. Диэлектрические потери в этом случае обусловлены током сквозной проводимости и ионно-релаксационной поляризацией. Диэлектрические потери в этих ди•мюктриках выше (1§8 я 10~2), чем в диэлектриках кристаллических с плотной упаковкой решетки ионами и сильно зависят от температуры: при нагревании tgδ существенно возрастает.

На значение tgδ сильно влияет термообработка. У отожженных стеклянных изоляторов tgδ = 0,0073, у закаленных — tgδ = 0,125.

Рис 5. Общий вид (а) зависимости tgδ от температуры Г диэлектриков ионного

строения аморфных или кристаллических с неплотной упаковкой решетки (1) и с плотной упаковкой решетки (II): потери, обусловленные током проводимости (1) и ионно-релаксационной поляризацией (2);

Твердые диэлектрики молекулярного строения. В неполярных диэлектриках (например, в парафине) потери обусловлены только током сквозной проводимости. У этих диэлектриков наблюдается электронная поляризация; релаксационные виды поляризации отсутствуют. Диэлектрические потери небольшие и при нагревании слегка возрастают (аналогично кривой (7), Наличие ионогенной примеси (например, влаги) приводит к существенному возрастанию диэлектрических потерь. В полярных диэлектриках (например, в канифоли) на кривых зависимости tgδ от температуры и частоты напряжения, подобно полярным жидким диэлектрикам, проявляется максимум тангенса угла диэлектрических потерь, обусловленный дипольно-релаксационнои поляризацией. В этих диэлектриках,

Рис 6 Зависимость ε (1) и tgδ (2) канифоли от температуры Т при 50 Гц

так же как в жидких полярных, диэлектрические потери складываются из потерь, обусловленных током сквозной проводимости и дипольно-релаксационной поляризацией. .

Полимерные диэлектрики

В неполярных полимерах (в полистироле, полипропилене и др.) диэлектрические потери при температурах ниже температуры стеклования имеют небольшую величину tgδ (10~4—10~5) и

практически не зависят от частоты приложенного напряжения и очень слабо зависят от температуры (рис. 7). При нагревании (при Т < Тс) tgδ незначительно возрастает, так как слегка возрастает ток сквозной проводимости (см. рис. 7, а, кривая 7). Кривая зависимости при температурах выше температуры стеклования (Т > Тс) возрастает и проходит через максимум, обусловленный дипольно-сегментальной поляризацией. С дальнейшим увеличением температуры tgδ растет вследствие увеличения тока проводимости.

Рис 7. Общий вид (а) зависимости (§6 неполярных полимеров от температуры Т

С увеличением частоты приложенного напряжения максимум дипольно-сегментальных потерь смещается в область более высоких температур

Полярные полимеры (поливинилхлорид, полиэтилентерефталат, полиамиды и др.) имеют значительно большие значения tgδ (10″~3—10~2 и выше), чем неполярные. С увеличением температуры tgδ проходит через два максимума, обусловленные соответственно дипольно-групповой (при Т< Тс) и дипольно-сегментальной (при Т > Тс) поляризациями и далее возрастает вследствие увеличения тока проводимости. С увеличением степени кристалличности к полиэтилентерефталата диэлектрические потери снижаются, особенно значительно в области дипольно-сегментальной поляризации. Эти результаты еще раз показывают, что дипольно-сегментальная поляризация имеет место в аморфных полимерах, а в кристаллизующихся полимерах, каковым является полиэтилентерефталат, — в аморфных областях. Поэтому с увеличением степени кристалличности полиэтилентерефталата максимум , обусловленный дипольно-сегментальной поляризацией, уменьшается.

С увеличением частоты напряжения оба максимума диэлектрических потерь на кривой смещаются в сторону более высоких температур. Поэтому в области высоких температур и СВЧ оба максимума потерь сближаются вплотную, вызывая один релаксационный максимум диэлектрических потерь.

Рис. 8 Температурная зависимость tgδ линейного полиэтилена высокой плотности (/), разветвленного полиэтилена низкой плотности (2) и закаленного полиэтилена (3)

На величину диэлектрических потерь полимеров существенно влияют полярность и пористость материала и относительная влажность воздуха. В результате накопления влаги в порах изоляции возникает миграционная поляризация, которая приводит к существенному увеличению диэлектрических потерь, особенно при низких частотах. Поэтому у полимеров полярных с увеличением относительной влажности воздуха tgδ значительно возрастает.

Диэлектрические потери в твердых диэлектриках

Предыдущая12345678910

Диэлектрические потери в твердых диэлектрикахзависят от структуры диэлектриков.

Твердые диэлектрики обладают разнообразным составом и строением; поэтому в них возможны все виды диэлектрических потерь. Твердые диэлектрики можно подразделить на четыре группы:

— диэлектрики молекулярной структуры;

— диэлектрики ионной структуры;

— сегнетоэлектрики;

— диэлектрики неоднородной структуры.

В диэлектриках молекулярной структуры потери зависят от вида молекул. В случае неполярных молекул, в веществах, не имеющих примесей, диэлектрические потери малы, так как обусловлены только потерями на электропроводность. К таким диэлектрикам относится сера, парафин; неполярные полимеры – полиэтилен, политетрафторэтилен, полистирол и другие. Указанные вещества, в связи с их весьма малыми потерями, находят применение в качестве высокочастотных диэлектриков. Диэлектрики молекулярной структуры с полярными молекулами представляют собой, главным образом, органические вещества, широко используемые в технике. К ним принадлежат материалы на основе целлюлозы (бумага, картон и др.), полярные полимеры: полиметилметакрилат (органическое стекло), полиамиды и полиуретаны; каучуковые материалы (эбонит), фенолоформальдегидные смолы (бакелит и др.), эфиры целлюлозы (ацетилцеллюлоза и др.) – и ряд других материалов. Все они из-за присущей им дипольно-релаксационной поляризации обладают большими потерями. Потери в этих диэлектриках существенно зависят от температуры и частоты внешнего электрического поля (рис. 24а, 24б)

ДП в диэлектриках ионной структуры связаны с особенностями упаковки ионов в решетке. В веществах кристаллической структуры с плотной упаковкой ионов при отсутствии примесей, искажающих решетку, диэлектрические потери обусловлены только электропроводностью и весьма малы. При повышении температуры потери от сквозной электропроводности увеличиваются. К веществам этого типа относятся многочисленные кристаллические неорганические соединения, имеющие большое значение в современном производстве электротехнической керамике, например, корунд (Al2O3), входящий в состав ультрафарфора.

В веществах с неплотной упаковкой ионов наблюдается релаксационная поляризация, вызывающая повышенные диэлектрические потери, возрастающие с повышением температуры.

Диэлектрические потери в аморфных веществах ионной

структуры – неорганических стеклах – связаны с явлением поляризации и наличием электропроводности, которая проявляется обычно при температурах 50–100°С.

Диэлектрические потери в сегнетоэлектриках выше, чем у обычных диэлектриков. Особенностью сегнетоэлектриков является наличие в них самопроизвольной (спонтанной) поляризации, проявляющейся в определенном температурном интервале, вплоть до точки Кюри. Диэлектрические потери в сегнетоэлектриках мало изменяются при повышении температуры в области самопроизвольной поляризации и резко уменьшаются при температуре выше точки Кюри, когда сегнетоэлектрические свойства теряются и самопроизвольная поляризация исчезает (разрушается доменная структура).

Диэлектрические потери втвердых веществах неоднородной структуры. К таким диэлектрикам принадлежат материалы,в состав которых входит не менее двух компонентов с разнымиэлектрическими свойствами. К числу неоднородных материалов следует отнести керамику, представляющую собой сложную многофазную систему, а также слюду, обладающую слоистой структурой. К диэлектрикам неоднородной структуры относится также и пропитанная бумага, которая кроме волокон целлюлозы, содержит также пропитывающее вещество и оставшиеся не заполненными при пропитке воздушные включения.

Виды диэлектрических потерь

Диэлектрические потери по своей природе и физической сущности или воздействию электрического поля делятся на четыре основных вида:

1) диэлектрические потери, обусловленные всеми видами мгновенной и замедленной поляризацией в диэлектриках;

2) потери от сквозной электропроводности;

3) ионизационные потери;

4) потери, вызванные неоднородностью структуры

Таким образом, три явления электрического поля определяют или вызывают нагрев диэлектрика: поляризация, электропроводность и ионизация.

Поляризация обусловливает изменение  и соответственно tg в веществах, обладающих релаксационными поляризациями или в диэлектриках ионной структуры с неплотной упаковкой ионов или дипольной структуры с ковалентной связью между молекулами. Поляризация вызывает нарушение теплового движения частиц по направлению электрического поля и приводит к рассеянию энергии или нагреву диэлектрика. Такие потери возрастают при увеличении частоты приложенного напряжения и могут резко проявится на высокой частоте. Однако, если при высокой частоте поляризация не проявляется (ионы или диполи не успевают сместиться вслед частоте электрического поля), то tg падает. Это характерно для большинства технических диэлектриков со стекловидной фазой в структуре.

В сегнетоэлектриках потери от спонтанной поляризация наблюдаются значительными до точки Кюри, так как успевают смещаться заряды или отслеживают изменение температуры. За пределами точки Кюри потери уменьшаются и значительно, так как не проявляется поляризация.

В радиотехнических материалах при световых частотах, за пределами МГц, проявляются резонансные потери. Это наблюдается в газах, когда идет интенсивное поглощение энергии электрического поля и в твердых диэлектриках, когда частота вынужденных колебаний, вызванных электрическим полем, совпадает с частотой собственных колебаний частиц вещества.

Диэлектрические потери от электропроводности обнаруживаются в зависимости от объемной или поверхностной удельной проводимости вещества, поэтому

(46)

Здесь  не зависит от частоты поля и tg уменьшается с увеличением частоты f по гиперболическому закону. Температурная зависимость в этом случае определяется как экспонента вида

, (47)

где А, b, а – постоянные материала; РТ – потери при температуре Т; Рt – потери при температуре t, 0С; Р0 – потери при 0 0С.

Ионизационные потери характерны для газообразных и неоднородных твердых диэлектриков с газовым включением. В неоднородном электрическом поле при напряженностях превышающих значение, соответствующее началу ионизации газа, имеем

Ри = А1 f (U – Uи)3, (48)

где А1 — постоянный коэффициент, зависящий от вида материала; U- приложенное напряжение; Uи- напряжение ионизации, если U > Uи; f- частота поля.

Величина Uи зависит от давления газа, поскольку ионизация это соударение молекул при свободном пробеге электронов, и пропорционально увеличению его.

Диэлектрические потери, связанные с неоднородностью структуры диэлектриков, наблюдаются у многих технических диэлектриков — слоистых пластиков, пропитанных бумаг, пластических масс с наполнителями, в керамике, материалах на основе слюды, асбестовых материалах и т.д. Ввиду большого разнообразия структуры неоднородных диэлектриков и содержащихся в них составляющих, общей формулы для расчета их диэлектрических потерь не существует. Однако, возможная оценка диэлектрических потерь в композиционных материалов связана с выделением тепла при двух явлениях: электропроводность и одно из явлений поляризация или ионизация, а то и всех трех явлений одновременно. Это обусловлено примесями или отдельными компонентами, введенными в диэлектрик для изменения его свойств.

Диэлектрические потери в газах при напряженности поля, ниже необходимой для возникновения ударной ионизации молекул, очень малы. В таком случае газ — идеальный диэлектрик. Источником диэлектрических потерь в газах является в основном электропроводность, потому что ориентация дипольных молекул в газах при их поляризации не сопровождается диэлектрическим потерями. Все газы имеют очень малую электропроводность, поэтому угол диэлектрических потерь у них мал, особенно на высоких частотах и выражаются зависимостью.

Диэлектрические потери в жидкостях существенно зависят от строения жидкости: в неполярных жидкостях (без примесей с дипольными молекулами), они обусловлены только электропроводностью. Удельная проводимость их тоже очень мала и малы диэлектрические потери. В этом случае tg очень мал. Полярные жидкости в зависимости от условий могут обладать большими потерями, связанными с дипольно-релаксационной поляризацией и потерями от электропроводности. Применяемые в технике диэлектрики могут представлять смеси неполярных и полярных веществ, например, масляно-канифольные компаунды, или могут быть полярными жидкостями. Жидкие полярные диэлектрики имеют заметную зависимость диэлектрических потерь от вязкости. Диэлектрические потери в них в основном обусловлены поляризацией и называются дипольно-релаксационными потерями. Диполи, следуя за изменением электрического поля, поворачиваются в вязкой среде и вызывают потери электрической энергии на трение с выделением теплоты. Если вязкость жидкости велика, то молекулы не успевают следовать за изменением поля и потери от поляризации будут малы, дипольные потери малы также в жидкостях с малой вязкостью, т.к. поворот диполей происходит без трения. При средней вязкости дипольные потери могут быть достаточно велики и при некотором значении вязкости имеют максимум. Рассеиваемая мощность Ра при дипольно-релаксационных потерях в жидком диэлектрике возрастает с частотой до тех пор, пока поляризация успевает следовать за изменением поля. Когда же частота становится настолько велика, что дипольные молекулы не успевают ориентироваться в направлении поля, и tg падает, потери становятся постоянными. При работе диэлектрика на синусоидальном переменном напряжении с угловой частотой  ток абсорбции (от поляризации) будет также синусоидальным и имеет две составляющие — активную и реактивную. Через диэлектрик в этом случае протекают три тока:

1)емкостной ток, опережающий на 900 напряжение: Ic = U  С, где С — геометрическая емкость, измеренная при высокой частоте, когда нет релаксационной поляризация;

2)ток абсорбции с активной и реактивной составляющими вычисляется по формулам:

Iаабс = U G 2 t2 / (2 t2 + 1); (49)

Irабс = U G  t / (2 t2 + 1), (50)

где U – приложенное напряжение; G – проводимость для сквозного тока из выражения G = U / icк при тангенсе угла фазы равном tg =  t;

3)сквозной ток находится из выражения iск = U G = U / Rиз (51)

Диэлектрические потери твердых диэлектриков. С молекулярной структурой потери зависят от вида молекул. В неполярных молекулах и не устойчивой (Ван-дер-Ваальса) связью, вещества, не имеющие примеси, tg очень мал, оценивается электропроводностью, поэтому порядка 10-4. Это высокочастотные диэлектрики, как сера, парафин, полимеры и др. Для технических материалов с полярной молекулой и дипольно-релаксационной поляризацией потери значительные, т.е. явления электропроводности и поляризации повышают их до 10-3. К таким диэлектрикам можно отнести: целлюлозосодержащие материалы, материалы со стекловидной фазой (органические стекла); полиамиды (капрон и др.); каучуковые материалы (эбонит), фенолоформальдегидные смолы (бакелит и др).

Диэлектрики с ионной структурой связаны с упаковкой ионов в решетке. Так tg  10-3 для диэлектриков с кристаллической решеткой и плотной упаковкой ионов при отсутствии примесей, когда проявляется явление электропроводности. Это характерно для керамики и каменной соли. А проявление релаксационных поляризаций ( ионной и электронной) в материалах с не плотной упаковкой ионов значительно повышает tg  10-2, когда проявляются электропроводность и ионно- и электронно- релаксационные поляризации. Термическая обработка (обжиг, закалка) стекла снижает tg, а наличие щелочных окислов (N2O, K2O) при отсутствии тяжелых металлов (BaO, PbO) вызывают повышение tg, однако, введение только тяжелых окислов металлов снижает tg, так как проявляются явления электропроводности и электронно-релаксационной поляризации.

Сегнетоэлектрики и сложные, неоднородные структуры оцениваются более высокими диэлектрическими потерями, порядка tg 10-1. Здесь, наряду с электропроводностью, проявляется длительная спонтанная (сегнетова соль пьезоэлектрики, керамика) или миграционная (высоковольтная) (гетенакс, текстолит, фибра, пластические массы, миканит и др.) поляризации.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *