Делитель напряжения 1 10

Содержание

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Делитель напряжения

В этой статье расскажем про делитель напряжения и покажем примеры с решениями.

Для уменьшения значения входного (питающего) напряжения используют делитель напряжения на резисторах. В нём, выходное напряжение Uвых зависит от значения входного (питающего) напряжения Uвх и значения сопротивления резисторов. Делитель напряжения – наиболее часто применяемое соединение резисторов. Например, переменный резистор, используемый в качестве регулятора громкости Ваших компьютерных колонок, является делителем напряжения с изменяемыми сопротивлениями плеч, где он выполняет роль ограничителя амплитуды входного сигнала.

Так как, сопротивление нагрузки влияет на выходное напряжение Uвых делителя, для обеспечения точности делителя напряжения, необходимо выполнять правило (2):Значение резистора R2 должно быть приблизительно на два порядка меньше (в 100 раз) сопротивления нагрузки подключаемой к выходу делителя.

Если Вам не нужна высокая точность, то эту разницу можно снизить до 10 раз.

Используя закон Ома, и пренебрегая малым током нагрузки, делитель напряжения можно описать соотношением:

(8)

Преобразовывая указанную формулу так, как нам удобно, можно определить:
1. Выходное напряжение Uвых по известным значениям входного напряжения Uвх и сопротивлений резисторов R1, R2 :

(9)

Пример: Необходимо определить выходное напряжение Uвых делителя при известных напряжении источника тока Uвх = 50 В, и значениях R1 = 10 кОм и R2 = 500 Ом.
Решение: По формуле вычисляем Uвых = 50 * 500 / (10000 + 500) = 2,38 В.

2. Входное напряжение делителя Uвх , по известным значениям выходного напряжения Uвых и сопротивлений резисторов R1, R2 :

(10)

Пример: Необходимо определить входное напряжение Uвх делителя при необходимых выходном напряжении Uвых = 4 В, и значениях R1 = 15 кОм и R2 = 3 кОм.
Решение: По формуле вычисляем Uвх = 4 * (15000 + 3000) / 3000 = 24 В.

3. Значение R1 по известным значениям входного напряжения Uвх , выходного напряжения Uвых и сопротивления резистора R2 :

(11)

Пример: С помощью делителя напряжения необходимо получить на нагрузке сопротивлением 50 кОм напряжение Uвых = 10 В от источника напряжением Uвх = 50 В.
Решение: Сопротивление резистора R2 должно быть в 100 раз меньше сопротивления нагрузки 50 кОм (см. правило 2). Выполняем это условие: R2 = 500 Ом.
По формуле вычисляем R1 = 50 * 500 / 10 – 500 = 2000 Ом = 2 кОм
Не забывайте, что сам делитель потребляет ток от источника тока, в соответствии с законом Ома (формула 1): Iдел = Uвх / (R1 + R2) = 50/(2000+500) = 0,02 А (20 мА).
Определим рассеиваемую мощность резисторов по формуле (3):
Для резистора R1 : P = 0,02 * 0,02 * 2000 = 0,8 Вт; по правилу (1) выбираем резистор мощностью P = 2 Вт;
Для резистора R2 : P = 0,02 * 0,02 * 500 = 0,2 Вт; по правилу (1) выбираем резистор мощностью P = 0,5 Вт.

4. Значение R1 и R2 по известным значениям входного напряжения Uвх , выходного напряжения Uвых и входного (общего) сопротивления делителя Rобщ , где Rобщ = R1 + R2 :

(12)

(13)

Пример: Определить значения R1 и R2 делителя напряжения, если их сумма R1+R2 = 1кОм, при входном напряжении источника Uвх = 50 В и напряжении на выходе Uвых = 20 В.
Решение: По формуле (4) вычисляем R2 = 20 * 1000 / 50 = 400 Ом;
По формуле (5) вычисляем R1 = 1000 — 400 = 600 Ом;
Не забывайте, что сам делитель потребляет ток от источника тока, в соответствии с законом Ома (формула 1): Iдел = Uвх / (R1 + R2) = 50/(600+400) = 0,05 А (50 мА).
Определим рассеиваемую мощность резисторов по формуле (3):
Для резистора R1 : P = 0,05 * 0,05 * 600 = 1,5 Вт; по правилу (1) выбираем резистор мощностью P = 2 Вт;
Для резистора R2 : P = 0,05 * 0,05 * 400 = 1 Вт; по правилу (1) выбираем резистор мощностью P = 2 Вт.

Напрашивается законный вопрос: Если есть делитель, значит должен быть и коэффициент деления? Конечно! Но он Вам пригодится лишь тогда, когда вы будете иметь дело с другими элементами, например трансформатором, а не резисторами.

В качестве R2 делителя напряжения может применяться сама нагрузка с её внутренним сопротивлением. В таком случае, R2 указанное в формуле, приравняйте к сопротивлению нагрузки Rн, и используйте те же формулы, которые применимы к двум независимым резисторам. Тогда, правило (2) не используется.

В следующей статье рассмотрим делитель тока.

При проектировании электрических цепей возникают случаи, когда необходимо уменьшить величину напряжения (разделить его на несколько частей) и только часть подавать на нагрузку. Для этих целей используют делители напряжения. Они основаны на втором законе Кирхгофа.

Самая простая схема — резистивный делитель напряжения. Последовательно с источником напряжения подключаются два сопротивления R1 и R2.

При последовательном подключении сопротивлений через них протекает одинаковый ток I.

В результате, согласно закону Ома, напряжения на резисторах делится пропорционально их номиналу.

Подключаем нагрузку параллельно к R1 или к R2. В результате на нагрузке будет напряжение равное UR2.

Примеры применения делителя напряжения

  1. Как делитель напряжения. Представьте, что у Вас есть лампочка, которая может работать только от 6 вольт и есть батарейка на 9 вольт. В этом случае при подключении лампочки к батарейке, лампочка сгорит. Для того, чтобы лампочка работала в номинальном режиме, напряжение 9 В необходимо разделить на 6 и 3 вольта. Данную задачу выполняют простейшие делители напряжения на резисторах.
  2. Датчик параметр — напряжение. Сопротивление резистивных элементов зависит от многих параметров, например температура. Помещаем одно из сопротивлений в среду с изменяющейся температурой. В результате при изменении температуры будет изменяться сопротивление одного из делителей напряжения. Изменяется ток через делитель. Согласно закону Ома входное напряжение перераспределяется между двумя сопротивлениями.
  3. Усилитель напряжения. Делитель напряжения может использоваться для усиления входного напряжения. Это возможно, если динамическое сопротивление одного из элементов делителя отрицательное, например на участке вольт-амперной характеристики туннельного диода.

«Маленькие хитрости». Часть 4.

Формулы для радиолюбительских расчетов

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!

Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

Закон Ома.

Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:

I=U/R

U=IR

R=U/I

Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле: R=U/I

Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле: P=I2R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад =RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Как рассчитать ток потребляемый устройством или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт можно по формуле: P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ

Где ƒ-частота в килогерцах ƛ- длинна волны в метрах.

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U2вых./ Rном.

Где U2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)

Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn… — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn…

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно двух конденсаторов.

Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2

Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно более двух конденсаторов.

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn…

Где C1, C2 и Cn… — емкость первого, второго и последующих конденсаторов (мФ).

СЛЕДУЮЩИЙ МАТЕРИАЛ: Виртуальный осциллограф

Рекомендуем посмотреть:

Программы для радиолюбительских расчетов и измерений

Справочники по радиоэлектронике

Простой множитель

Это изображение демонстрирует нахождение простых множителей числа 864. Сокращённый способ написания — 25 × 33

В теории чисел, простые множители (простые делители) положительного целого числа — это простые числа, которые делят это число нацело (без остатка). Выделить простые множители положительного целого числа означает перечислить эти простые множители вместе с их кратностями. Процесс определения простых множителей называется факторизацией целых чисел. Основная теорема арифметики утверждает, что любое натуральное число можно представить в виде единственного (с точностью до порядка следования) произведения простых множителей.

Чтобы сократить выражение, простые множители часто представляются в виде степеней простых чисел (кратностей). Например,

360 = 2 × 2 × 2 × 3 × 3 × 5 = 2 3 × 3 2 × 5 {\displaystyle 360=2\times 2\times 2\times 3\times 3\times 5=2^{3}\times 3^{2}\times 5}

в котором множители 2, 3 и 5 имеют кратности 3, 2 и 1, соответственно.

Для простого множителя р числа n кратность числа p — это наибольший из показателей степени а, для которых ра делит n нацело.

Для положительного целого числа n, количество простых множителей n и сумма простых множителей n (без учёта кратности) — это примеры арифметических функций из n (аддитивных арифметических функций).

Резисторы, ток и напряжение

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
— Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
— Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах. Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение — это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:
В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R3=R1+R2

В интернете есть удобные он-лайн калькуляторы для расчета последовательного и параллельного соединения резисторов.

Токоограничивающий резистор

Самая основная роль токоограничивающих резисторов — это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи. Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление. Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V1-V2)/R
где (V1-V2) является разностью напряжений до и после резистора.

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для расчета токоограничительного резистора светодиода.

Резисторы как делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R1=R2=R), то формулу можно записать так:

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V1-V2=I1*(R1)
Перенесем:
V2=V1-(I1*R1)
Где V2 является искомым напряжением, V1 является опорным напряжением, которое известно, I1 ток, протекающий от узла 1 к узлу 2 и R1 представляет собой сопротивление между 2 узлами.

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1=(V1-V2)/R1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1+ I3=I2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: «Резисторы какой мощности вы хотите?» или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
где ток измеряется в амперах (А), напряжение в вольтах (В) и Р — рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.

Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.

Терморезисторы

Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то Vout будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Схемотехническое обозначение резисторов

Про определение номинала резистора используя цветовую маркировку можно почитать .

Оригинал статьи

Теги:

  • Перевод

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *