Что такое сельсины

Сельсин

Система из двух простых сельсиновФотография сельсина

Сельсин — индукционная машина системы индукционной связи. Сельсинами (от англ. self-synchronizing) называются электрические микромашины переменного тока, обладающие свойством самосинхронизации. Сельсин передачи работают по принципу обычной механической передачи, только крутящий момент между валами передаётся не зубьями шестерён, а магнитным потоком без непосредственного контакта.

В различных отраслях промышленности, в системах автоматики и контроля часто возникает необходимость синхронного и синфазного вращения или поворота двух и более осей, механически не связанных друг с другом (например, на РЛС — радиолокационных системах с вращающейся антенной). Такие задачи решаются с помощью систем синхронной связи.

Простейший сельсин состоит из статора с трёхфазной обмоткой (схема включения — треугольник или звезда) и ротора с однофазной обмоткой. Два таких устройства электрически соединяются друг с другом одноимёнными выводами — статор со статором и ротор с ротором. На роторы подаётся одинаковое переменное напряжение. При таких условиях вращение ротора одного сельсина вызывает поворот ротора другого сельсина. При повороте одного из сельсинов (сельсин-датчика) на определённый угол в нём наводится ЭДС, отличная от первоначальной. Поскольку сельсины (их роторы) соединены, то эта же ЭДС будет возникать и во втором сельсине (сельсин-приёмнике) и по правилу левой руки он отклонится от первоначального положения на тот же угол.

Литература

  • Арменский Е. В., Фалк Г. Б. Электрические микромашины: Учебн. пособие для студентов электротехнических специальностей вузов. — 3-е, перераб и доп. — М.: Высшая школа, 1985. — 231 с. — 22 000 экз.
  • Электротехнические изделия / Под общ. ред. профессоров МЭИ (Гл. ред. И. Н. Орлов). — М: Энергоатомиздат, 1986. — 712 с.
  • Электровоз ВЛ80С. Руководство по эксплуатации / Н. М. Васько. — М: Транспорт, 2001. — 454 с.
Для улучшения этой статьи желательно?:

  • Проставив сноски, внести более точные указания на источники.

Система из двух простых сельсинов.Принцип передачи угла поворота вала сельсина-передатчика на сельсин-приёмник.Фотография сельсина.

Сельси́н — индукционная машина системы индукционной связи. Сельсинами (от англ. self-synchronizing) называются электрические микромашины переменного тока, обладающие свойством самосинхронизации (для плавной передачи на расстояние угла поворота вала). Сельсин-передачи работают аналогично обычным механическим передачам, но в них крутящий момент между валами создаётся не при помощи непосредственно контактирующих шестерён, а посредством изменяющегося магнитного потока.

В различных отраслях промышленности, в системах автоматики и контроля часто возникает необходимость синхронного и синфазного вращения или поворота двух и более осей, механически не связанных друг с другом (например, на РЛС — радиолокационных системах с вращающейся антенной). Такие задачи решаются с помощью систем синхронной связи.

Простейший сельсин состоит из статора с трёхфазной обмоткой (схема включения в электрическую цепь — треугольник или звезда) и ротора с однофазной обмоткой. Два таких устройства электрически соединяются друг с другом одноимёнными выводами — статор со статором и ротор с ротором. На роторы подаётся переменное напряжение от одного источника. При этом вращение ротора одного сельсина вызывает поворот ротора другого сельсина.

Переменный ток в роторе одного из сельсинов (сельсин-датчика) создаёт в обмотках его статора ЭДС, тем самым вызывая переменный ток через соответствующие обмотки статора второго сельсина (сельсин-приёмника). Переменное магнитное поле, создаваемое этим током, взаимодействует с переменным магнитным полем ротора сельсин-приёмника; возникающий вращательный момент пропорционален разнице между положениями роторов датчика и приёмника, и вызывает поворот последнего до тех пор, пока их положения не станут совпадать.

  • Невысокая точность синхронизации, особенно когда на валу сельсина-приёмника действует существенный механический момент.

Поэтому применяют следящие электромеханические связи — приёмный вал вращается вспомогательным электродвигателем, включенным в контур авторегулирования, причём в этом случае сельсин-приемник является датчиком угла рассогласования поворотов ведущего и ведомого валов.

Другой недостаток сельсинов — относительно невысокая точность передачи угла, обусловленная погрешностями изготовления магнитопровода сельсина. Для повышения точности применяют пару сельсинов — «грубый» и «точный» (последний установлен через редуктор и за один оборот основного вала делает несколько оборотов). Если сигнал с грубого сельсина слабее некоторого порога, автоматика передаёт в линию связи сигнал с точного сельсина.

  • Не имеющий нагрузочного момента ротор сельсина колеблется с частотой питающего переменного тока, поэтому для подавления этих колебаний приходится использовать механические демпферы.

В современных устройствах сельсины всё чаще заменяются энкодерами. И только там, где простота, надёжность и ремонтопригодность важнее точности (например, в авиации), сельсины всё ещё находят широкое применение.

> См. также

  • LVDT
  • RVDT
  • Магнесин

Устройство и принцип действия сельсинов

Индукционные системы синхронной передачи названы так по­тому, что в качестве датчиков и приемников они используют индук­ционные микромашины переменного тока — сельсины.

Сельсины имеют две обмотки: возбуждения и синхронизации.

Сельсины по конструкции делятся на контактные и бесконтактные, однофазные и трёхфазные

В зависимости от расположения этих об­моток различают сельсины контактные и бесконтактные.

Контактные сельсины в свою очередь могут быть двух видов:

1. с однофазной обмоткой на статоре и трехфазной обмоткой на роторе;

2. с однофазной обмоткой на роторе и трехфазной обмоткой на статоре.

У бесконтактных сельсинов обе обмотки расположены на статоре.

У контактных сельсинов первого вида на статоре имеются два явно выраженных полюса , на которых размещена обмотка возбуждения. Эта

обмотка получает питание от сети переменного тока напряжением 36, 45, 110, 115 и 127 В частотой 50, 400 и 500 Гц ( в зависимости от типа сельсина )

Ротор выполнен с неявно выраженными полюсами. В пазы ротора укладывается трехфазная об­мотка, соединяемая обычно по схеме «звезда». На роторе расположены три контактных кольца со щетками на них, предназначенные для электрической связи с другими сельсинами.

Контактные сельсины второго вида имеют обращенную конструкцию, т.е. в пазах сердечника статора уложена трехфазная обмотка, а на роторе с явно выраженными полюсами расположена однофазная обмотка.

Эти сельсины имеют ряд техниче­ских и эксплуатационных преимуществ по сравнению с сельсинами первого вида, а именно:

— меньшее число контактных колец ( два вместо трех );

— синхронизирующий мо­мент в 1,5 раза больше, чем у сельсинов первого вида.

У бесконтактных сельсинов отсутствуют контактные кольца и щетки, так как у них и однофазная первичная, и трехфазная вторичная обмотки расположены на неподвижном статоре, а ротор представляет собой специальную конструкцию в виде двух постоянных магнитов, разделенных немагнитным материалом.

На рис. 11.1 показаны магнитные системы различных сельсинов.

Рисунок 11.1. Магнитные системы контактных сельсинов с первичной однофазной об­моткой на статоре (а), на роторе (б) и бесконтактных сельсинов (в), (г):

1- статор; 2 — полюсы; 3 — ротор; 4 — пазы; 5 — пазы в роторе для короткозамкнутой обмотки; 6 — внешний неподвижный магнитопровод; 7 — немагнитный ротор; 8 — вторичная трехфазовая распределительная обмотка: P1, P2 — постоянные магниты; δ , δ — воздушные зазоры; Ф — поток возбуждения

Принцип действия индукцион­ной синхронной передачи рас­смотрим на простейшем примере, когда к датчику подключен один приемник (рис. 16.6 ).

Рисунок 11.2. Схема индукционной системы синхронной связи

Обмотки возбуждения сельси­нов — датчика ОВ и приемни­ка ОВ — подключены к обще­му источнику однофазного пере­менного тока постоянной часто­ты. Протекающий по этим обмоткам переменный ток возбуждения вы­зывает одинаковые во времени ( синфазные ) изменения маг­нитных потоков Ф возбуждения обоих сельсинов.

В исходном ( согласован­ном ) положении роторов трехфазные обмотки сельсинов имеют одинаковое пространст­венное положение относительно обмоток возбуждения. Поэтому в одноименных фазах трехфазных обмоток сельсинов будут индуктироваться одинаковые по величине и совпадающие по фазе э. д. с.

В соединительных проводах, связывающих между собой попарно одноименные фазые обмотки, э.д.с. этих обмоток находятся в противофазе и ток между ними отсутствует. При повороте ротора сельсина – датчика его фазные э.д.с. изменятся, т.е. равновесие между одноименными э.д.с. обоих сельсинов нарушится. В результате в проводах потекут уравнительные токи. При этом взаимодействие токов ротора с магнитными потоками статоров вызовет появление электромагнитных моментов.

У сельсина – датчика этот момент направлен против внешней силы, повернувшей ротор, т.е. стремится вернуть ротор в исходное положение. Однако этот ротор не может вернуться в исходное положение, т.к. он повернут, например, баллером руля

В то же время такой момент у сельсина – приемника имеет противоположное направление и поворачивает ротор этого сельсина в ту сторону, в которую был повернут ротор сельсина – датчика. На оси этого ротора закреплена легкая стрелка, которая поворачивается, указывая угол поворота ротора сельсина – датчика .

Общее устройство сельсина

Данные системы способны синхронно и плавно передавать на расстояние необходимые угловые величины. Механическая связь между ними отсутствует, а все передачи выполняются за счет электрических соединений, выступающих в качестве линий связи. Мощность таких приборов находится в пределах от нескольких ватт до 1 кВт, поэтому они могут использоваться для решения многих технических задач.

В конструкцию каждого сельсина входит статор и ротор с обмотками переменного тока. В соответствии со своими особенностями, эти устройства конструктивно могут состоять из следующих элементов:

  • Обмотка с одной катушкой на статоре и с тремя – на роторе.
  • Обмотка с тремя катушками на статоре и с одной – на роторе.
  • Обмотка с тремя катушками на статоре и с тремя – на роторе.

Как видно из представленной схемы, сельсины, задействованные в схемах автоматических регулировок, разделяются на следующие категории:

  • Сельсин-датчики.
  • Сельсин-приемники.
  • Дифференциальные сельсины.

Основной функцией этих устройств является синхронный поворот или вращение двух или нескольких осей, не имеющих между собой механической связи. Аппарат, механически связанный с ведущей осью, считается датчиком, а другой такой же прибор, соединенный с ведомой осью называется приемником. Когда ротор датчика поворачивается на какой-то угол, то ротор приемника синхронно выполняет поворот на такой же угол.

Каждый сельсин имеет обмотки, разделяющиеся на первичную – обмотку возбуждения и вторичную – обмотку синхронизации. В зависимости от количества фаз первичной обмотки, устройства могут быть одно- или трехфазными. Вторичная обмотка практически всегда выполняется в трехфазном варианте.

Расположение первичной и вторичной обмотки не влияет на принцип работы сельсин-устройств. Тем не менее, обмотку синхронизации принято устанавливать на статоре, а обмотку возбуждения на роторе. Такое размещение позволяет снизить количество контактных колец и повысить общую надежность устройства.

Принцип действия различных схем

Принцип действия системы наглядно виден на схемах, представленных на рисунке. На схеме «а» датчик и приемник подключены через статорные однокатушечные обмотки к единой сети переменного тока, а обмотки ротора с тремя катушками соединяются друг с другом. Получается система «датчик-приемник». При повороте ротора сельсин-датчика на какую-либо величину угла, ротор приемника повернется на точно такой же угол.

Основой синхронной связи является электромагнитная индукция. Под действием переменного тока обмотки статора, в роторной обмотке индуктируются токи, на величину которых оказывает влияние расположение обмоток статора и ротора относительно друг друга.

Когда роторы в обоих сельсин-устройствах располагаются одинаково относительно статоров, токи в проводах, соединяющий роторы будут при общем равенстве противоположны между собой. Поэтому в каждой катушке ток будет равен нулю. Следовательно валы сельсинов находятся в состоянии покоя и их вращающий момент также равен нулю.

При повороте ротора сельсин-датчика на какой-то угол, данное равновесие токов нарушается и на валу приемника появится вращающий момент. Его ротор будет вращаться до полного исчезновения неравновесия токов. Это неравновесие исчезнет, когда ротор сельсин-приемника примет такое же положение, что и ротор датчика.

В автоматическом регулировочном режиме довольно часто требуется работа приемника в режиме трансформатора. На схеме «б» видно, что ротор приемника закреплен неподвижно, а обмотка статора отключена от сети. Далее в ней будет индуктироваться ЭДС под влиянием тока, протекающего по обмоткам ротора. Величина этого тока будет зависеть от положения ротора датчика. То есть величина ЭДС ротора приемника будет находиться в пропорции с углом поворота сельсин-датчика. В исходном положении оба ротора смещаются на 90 градусов между собой, поэтому ЭДС на роторе датчика будет равна нулю. Таким образом, поворот ротора датчика вызовет индукцию ЭДС на роторе приемника, пропорциональной углу рассогласования обоих роторов.

Схема «в» отображает работу дифференциального сельсина, который используется для контроля разницы углов поворота сразу двух осей. Два датчика располагаются на двух отдельных валах с одинаковыми скоростями вращения. Третий сельсин-датчик является дифференциальным, а его угол поворота представляет собой разницу между углами поворота датчиков.

Конструктивные особенности

Конструктивно синхронизирующие сельсины могут быть контактными и бесконтактными. В первом случае соединение роторной обмотки с внешней электрической цепью осуществляется с помощью щеток и контактных колец. Устройство контактных сельсинов напоминает асинхронный двигатель с маломощным фазным ротором.

Статоры и роторы таких сельсинов считаются неявнополюсными, а обмотки – распределенными. На роторе располагается обмотка возбуждения, к которой электрический ток подведен посредством двух контактных колец. Некоторые виды устройств имеют явно выраженные полюса статоров и роторов, что существенно повышает их синхронизирующий момент.

В процессе эксплуатации сельсинов контактные кольца постепенно изнашиваются и требуют замены. Этот фактор считается единственным серьезным недостатком данных устройств. Бесконтактные сельсины, назначение и конструкция которых предполагает отсутствие контактных элементов, имеют две обмотки, размещенные на статоре. Сам ротор представляет собой цилиндр, изготовленный из ферромагнитного материала. Специальная алюминиевая прослойка разделяет ротор на два полюса, изолированных друг от друга.

В торцах устройства установлены сердечники, для изготовления которых использовалась листовая электротехническая сталь. Поверхность этих сердечников со стороны внутренней части размещается над ротором. Наружная поверхность смыкается со стержнями внешнего магнитопровода.

Однофазная обмотка возбуждения представляет собой двухдисковые катушки, расположенные по обеим сторонам статора, между обмоткой синхронизации и сердечниками.

Во время работы бесконтактного сельсина происходит замыкание импульсного магнитного потока в магнитной системе. Одновременно он соединяется с трехфазной синхронизирующей статорной обмоткой. Весь путь замкнутого магнитного потока обозначен на рисунке прерывистой линией.

При повороте ротора ось магнитного потока изменяет свою позицию по отношению к синхронизирующим обмоткам. Поэтому ЭДС, возникающая в фазах синхронизирующей обмотки, находится в прямой зависимости от поворота ротора. В этом заключается принцип работы таких приборов.

Существенным недостатком бесконтактных сельсинов считается слабое и малоэффективное использование активных материалов. Масса таких моделей примерно в 1,5 раза превышает контактные конструкции, в основном из-за существенных воздушных зазоров. В результате, бесконтактные сельсины отличаются более высокими токами намагничивания и рассеивающими потоками.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Для дистанционной передачи различных измерений и показаний, команд, а также для дистанционного и автоматического управления на судах широко применяют системы синхронной передачи, выполненные на базе однофазных электрических машин (сельсинов).

Рис. 1. Контактный сельсин: 1 — ротор; 2 — первичная обмотка; 3 — успокоительная обмотка; 4 — статор; 5 — трехфазная обмотка; 6 — контактные кольца
Сельсины по конструктивному исполнению делятся на контактные и бесконтактные. В системах синхронных передач их применяют в качестве датчиков и приемников. Сельсин представляет собой асинхронную машину с первичной однофазной обмоткой возбуждения и трехфазной вторичной обмоткой синхронизации.
Контактные сельсины
На судах широко применяют в качестве датчиков контактные сельсины серии «Нептун» типа ДН-500. К такому сельсину одновременно можно подключить до 10 приемников. Однофазная первичная обмотка сельсина (рис.1) расположена на явнополюсном роторе, а трехфазная вторичная — на статоре. Концы первичной обмотки присоединены к выводам через два контактных Кольца и медно-графитные щетки, сидящие в гнездах пластмассовой траверсы.

Концы трехфазной обмотки соединены непосредственно с выводами. В пазы полюсных выступов ротора уложена успокоительная обмотка, предназначенная для гашения колебаний ротора относительно его синхронного положения. Эта обмотка состоит из двух отдельных короткозамкнутых витков, ось которых сдвинута относительно оси обмотки возбуждения на 90°.
Существенным недостатком контактных сельсинов является наличие скользящего контакта, что в значительной степени уменьшает их надежность, поэтому на современных судах в качестве сельсинов-приемников широко применяют бесконтактные сельсины типа БС-500.
Бесконтактные сельсины
По принципу действия бесконтактные сельсины аналогичны контактным. Разница заключается в том, что у бесконтактных сельсинов однофазная первичная и трехфазная вторичная обмотки расположены на статоре, а ротор имеет специальную конструкцию.
У бесконтактного сельсина (рис. 2) в пазах статора уложена вторичная трехфазная обмотка. Ротор имеет форму барабана с двумя явно выраженными полюсами П1 и П2, набранными из листов электротехнической стали. Средняя часть ротора выполнена, из немагнитного материала. На внешнем неподвижном магнитопроводе, набранном из листов электротехнической стали, размещена первичная однофазная обмотка.
Магнитный поток Ф, созданный первичной обмоткой, проходит через внешний магнитопровод, воздушный зазор δ2, полюс П2 ротора, воздушный зазор δ1, в точке А статора разветвляется и двумя ветвями идет в верхнюю половину статора до точки В, где соединяется и проходит через воздушный зазор 6i к полюсу П1 ротора, и далее через зазор δ1 возвращается во внешний магнитопровод. Таким образом первичная и вторичная обмотки оказываются во взаимно перпендикулярных плоскостях. Поток первичной обмотки непосредственно не пересекает вторичную обмотку, минуя ротор, поэтому э. д. с. вторичной обмотки зависит от положения ротора.
Рис. 2. Бесконтактный сельсин: 1 — магнитопровод; 2 — ротор; 3 — статор; 4, 5 —трехфазная и однофазная обмотки
Сельсины могут работать в индикаторном, трансформаторном и дифференциальном режимах.
При работе в индикаторном режиме первичные обмотки датчика и приемника включены в сеть, а вторичные — соединены между собой встречно. При повороте ротора датчика на определенный угол под действием уравнительных токов ротор приемника разворачивается точно на такой же угол.
В трансформаторном режиме ротор приемника заторможен, а первичная обмотка, отключенная от сети, используется как вторичная обмотка трансформатора. Величина и фаза э. д. с. этой обмотки зависят от угла и направления поворота ротора датчика,
В дифференциальном режиме в качестве приемника используется сельсин с трехфазными первичной и вторичной обмотками. Обе обмотки подключены к трехфазным вторичным обмоткам двух датчиков. Угол поворота ротора приемника определяется суммой или разностью углов поворота роторов датчиков.

Во многих технологических процессах в промышленности, а также в системах автоматизации требуется синфазное и синхронное вращение осей, которые не связаны между собой механическим путем. Подобные задачи способны решить системы синхронной связи, которые называются сельсины.

Они обладают способностью самостоятельной синхронизации, и используются в синхронных системах передачи угла вращения на расстоянии в качестве приемников и передатчиков.

Виды синхронной связи

Системы синхронной связи делятся на два вида. Рассмотрим их подробнее.

Система синхронного вращения

Эта система выполнена на двух равных асинхронных электродвигателях с фазным ротором. Обмотки роторов между собой соединены, а обмотки статора подключены к одной сети переменного трехфазного тока.

Система синхронного поворота

Работа системы основана на специальных микромашинах индукционного вида (сельсинах), которые обладают свойством самосинхронизации.

Сельсины делятся по количеству фаз на два вида:

  • Трехфазные сельсины по своей конструкции не имеют отличия от асинхронных электродвигателей. Такие модели не нашли широкого применения в основном из-за разности моментов синхронизации во время поворота ротора.
  • Однофазные сельсины имеют устройство, аналогичное конструкции маломощных синхронных машин. Их обмотка возбуждения работает от переменного тока.

Режимы работы

В автоматических системах синхронный поворот производится в двух различных режимах.

Индикаторный режим

На рисунке «а» показана схема индикаторного режима. Ведомая ось О2 соединена с ротором сельсина-приемника «П». Такую схему используют при малой величине момента торможения на ведомой оси, чаще всего, когда на оси закреплена индикаторная стрелка.

Обмотки возбуждения подключены в общей цепи, а обмотки синхронизации объединены линией связи. Магнитные потоки, образованные обмотками приемника и датчика, создают в 3-х фазах обмоток электродвижущую силу.

При наличии между роторами угла рассогласования в обмотках возникает ток, который создаст в приемнике и датчике с помощью потока возбуждения моменты разного направления, сводящие к нулю угол рассогласования.

Чаще всего ротор датчика заторможен. Вследствие этого его момент синхронизации действует на механизм поворота ведущей оси. Момент приемника воздействует на ротор и поворачивает его синхронно с ротором датчика на такой же угол.

Трансформаторный режим

Электрический сигнал о рассогласовании роторов поступает на усилитель, а затем на исполнительный мотор, поворачивающий ротор приемника и ведомую ось для устранения рассогласования.

Режим трансформатора используют в таких ситуациях, когда на ведомую ось приложен большой момент торможения, другими словами, для поворота некоторого механизма. В этом режиме обмотка датчика, связанного механическим путем с ведущей осью, подключается к сети питания однофазного тока, а обмотка приемника к усилителю, который подает напряжение на управляющую обмотку исполнительного электрического двигателя. Обмотки синхронизации 2-х сельсинов объединены линией связи.

Переменный ток образует в обмотке возбуждения датчика импульсы магнитного потока, который создает электродвижущую силу в синхронизирующей обмотке. Обмотки приемника и датчика соединены, поэтому по ним будет проходить ток и в приемнике образуются импульсы магнитного потока.

При наличии рассогласования роторов этот поток создает в возбуждающей обмотке электродвижущую силу, образует на выходе напряжение, которое подается на усилитель, а затем на обмотку статора исполнительного мотора. Вследствие этого ведомая ось поворачивается вместе с ротором приемника. После устранения рассогласования напряжение на выходе обнуляется, и ведомая ось прекращает свое вращение.

В трансформаторном режиме погрешность работы сельсина определяется технологическими и конструктивными особенностями: разбросом параметров приемника и датчика, неравномерностью магнитной проводимости, несимметричностью изготовления обмоток.

Передача угла в этом режиме имеет эксплуатационные погрешности, которые образуются вследствие влияния условий работы на сельсин-приемник. Если изменить сопротивление нагрузки в управляющей цепи обмотки сельсина-приемника, то это отразится на его работе.

Схемы, возможные для работы обоих режимов, делятся на три группы:

  1. Датчик и один приемник.
  2. Датчик с многими приемниками.
  3. Один приемник и два датчика.

Моторы по устройству можно разделить на два вида:

  • Контактные с обмоткой ротора, соединенной с внешней цепью с помощью контактных колец и щеток.
  • Бесконтактные, не имеющие контактных элементов.
Контактные

Их устройство аналогично конструкции асинхронных маломощных электродвигателей с фазным ротором. Статор (1) и ротор (2) являются неявнополюсными, вследствие чего обе обмотки (3, 4) являются распределенными. Возбуждающая обмотка находится на роторе. Питание к этой обмотке подходит по двум кольцам (5).

Некоторые модели сельсинов выполнены с ротором и статором, имеющим явно выраженные полюсы. Это дает возможность увеличить момент синхронизации. В качестве недостатка контактных видов сельсинов следует назвать наличие контактных элементов (колец).

Бесконтактные сельсины

В сельсинах, не имеющих контактных компонентов, обе обмотки находятся на статоре. Ротор выполнен в виде цилиндра (6) из материала с ферромагнитными свойствами. Ротор разделен на два изолированных полюса с помощью алюминиевой прослойкой (7).

С торцов сельсина находятся сердечники в виде тора (1), изготовленные из электротехнической листовой стали. Внутренняя часть поверхности сердечников находится над ротором. К наружной поверхности подходят стержни внешнего магнитопровода (4). 1-фазную обмотку возбуждения изготавливают в виде 2-х дисковых катушек (2), находящихся по разным сторонам статора между сердечниками и обмоткой синхронизации.

В процессе функционирования сельсина импульсный магнитный поток замыкается в магнитной системе. При этом он соединяется с 3-фазной синхронизирующей обмоткой на статоре. Штриховой линией на рисунке показан путь замыкания магнитного потока.

Во время поворота ротора меняется позиция оси магнитного потока относительно синхронизирующих обмоток. Вследствие этого электродвижущая сила, возникающая в фазах синхронизирующей обмотки, будет напрямую зависеть от поворота ротора, по аналогии с работой контактных сельсинов.

В качестве недостатка бесконтактных моделей сельсинов можно отметить менее эффективное применение активных материалов. Их вес в 1,5 раза выше контактных конструкций. Это можно объяснить значительными воздушными зазорами. Из-за этого сельсины имеют повышенные токи намагничивания и рассеивающие потоки.

Требования к сельсинам

  • Динамическая и статическая точность.
  • Способность к самостоятельной синхронизации в диапазоне одного оборота.
  • Сохранение заданной точности и свойства самостоятельной синхронизации при повышенных оборотах вращения с несколькими приемниками.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *