Биполярный транзистор с изолированным затвором

Содержание

Биполярный транзистор с изолированным затвором

В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют БТИЗ.

БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.

IGBT транзистор — это довольно хитроумный прибор, который представляет собой гибрид полевого и биполярного транзистора. Данное сочетание привело к тому, что он унаследовал положительные качества, как полевого транзистора, так и биполярного.

Суть его работы заключается в том, что полевой транзистор управляет мощным биполярным. В результате переключение мощной нагрузки становиться возможным при малой мощности, так как управляющий сигнал поступает на затвор полевого транзистора.

Вот так выглядят современные IGBT FGH40N60SFD фирмы Fairchild. Их можно обнаружить в сварочных инверторах марки «Ресанта» и других аналогичных аппаратах.

Внутренняя структура БТИЗ – это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.


Упрощённая эквивалентная схема БТИЗ

Весь процесс работы БТИЗ может быть представлен двумя этапами: как только подается положительное напряжение, между затвором и истоком открывается полевой транзистор, то есть образуется n — канал между истоком и стоком. При этом начинает происходить движение зарядов из области n в область p, что влечет за собой открытие биполярного транзистора, в результате чего от эмиттера к коллектору устремляется ток.

История появления БТИЗ.

Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.

Несколько позже, в 1985 году был представлен БТИЗ, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.

Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобнее недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.

Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (Iкэ max), а рабочее напряжение (Uкэ max) может варьироваться от нескольких сотен до тысячи и более вольт.

Условное обозначение БТИЗ (IGBT) на принципиальных схемах.

Поскольку БТИЗ имеет комбинированную структуру из полевого и биполярного транзистора, то и его выводы получили названия затвор — З (управляющий электрод), эмиттер (Э) и коллектор (К). На зарубежный манер вывод затвора обозначается буквой G, вывод эмиттера – E, а вывод коллектора – C.



Условное обозначение БТИЗ (IGBT)

На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Также он может изображаться со встроенным быстродействующим диодом.

Особенности и сферы применения БТИЗ.

Отличительные качества IGBT:

  • Управляется напряжением (как любой полевой транзистор);

  • Имеют низкие потери в открытом состоянии;

  • Могут работать при температуре более 1000C;

  • Способны работать с напряжением более 1000 Вольт и мощностями свыше 5 киловатт.

Перечисленные качества позволили применять IGBT транзисторы в инверторах, частотно-регулируемых приводах и в импульсных регуляторах тока. Кроме того, они часто применяются в источниках сварочного тока (подробнее об устройстве сварочного инвертора), в системах управления мощными электроприводами, которые устанавливаются, например, на электротранспорт: электровозы, трамваи, троллейбусы. Такое решение значительно увеличивает КПД и обеспечивает высокую плавность хода.

Кроме того, устанавливают данные устройства в источниках бесперебойного питания и в сетях с высоким напряжением. Их можно обнаружить в составе электронных схем стиральных, швейных и посудомоечных машин, инверторных кондиционеров, насосов, системах электронного зажигания автомобилей, системах электропитания серверного и телекоммуникационного оборудования. Как видим, сфера применения БТИЗ довольно велика.

IGBT-модули.

IGBT-транзисторы выпускаются не только в виде отдельных компонентов, но и в виде сборок и модулей. На фото показан мощный IGBT-модуль BSM 50GB 120DN2 из частотного преобразователя (так называемого «частотника») для управления трёхфазным двигателем.


IGBT модуль

Схемотехника частотника такова, что технологичнее применять сборку или модуль, в котором установлено несколько IGBT-транзисторов. Так, например, в данном модуле два IGBT-транзистора (полумост).

Стоит отметить, что IGBT и MOSFET в некоторых случаях являются взаимозаменяемыми, но для высокочастотных низковольтных каскадов предпочтение отдают транзисторам MOSFET, а для мощных высоковольтных – IGBT.

Так, например, IGBT транзисторы прекрасно выполняют свои функции при рабочих частотах до 20-50 килогерц. При более высоких частотах у данного типа транзисторов увеличиваются потери. Также наиболее полно возможности IGBT транзисторов проявляются при рабочем напряжении более 300-400 вольт. Поэтому биполярные транзисторы с изолированным затвором легче всего обнаружить в высоковольтных и мощных электроприборах, промышленном оборудовании.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Полевой транзистор. Обозначение на схеме.

  • Поиск datasheet’а полупроводникового компонента.

Силовые биполярные транзисторы с изолированным затвором (IGBT)

К.Д. Рогачёв

Rus Параметрический поиск IGBT-транзисторов

Устройство и особенности работы

Биполярный транзистор с изолированным затвором (IGBT — Insulated Gate Bipolar Transistors) — полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.

Рис. 1. Условное обозначение IGBT

Рис. 2. Схема соединения транзисторов в единой структуре IGBT

Коммерческое использование IGBT началось с 80-х годов и уже претерпела четыре стадии своего развития.

I поколение IGBT (1985 г.): предельные коммутируемые напряжения 1000 В и токи 200 А в модульном и 25 А в дискретном исполнении, прямые падения напряжения в открытом состоянии 3,0-3,5 В, частоты коммутации до 5 кГц (время включения/выключения около 1 мкс).

II поколение (1991 г.): коммутируемые напряжения до 1600 В, токи до 500 А в модульном и 50 А в дискретном исполнении; прямое падение напряжения 2,5-3,0 В, частота коммутации до 20 кГц ( время включения/ выключения около 0,5 мкс).

III поколение (1994 г.): коммутируемое напряжение до 3500 В, токи 1200 А в модульном исполнении. Для приборов с напряжением до 1800 В и токов до 600 А прямое падение напряжения составляет 1,5-2,2 В, частоты коммутации до 50 кГц (времена около 200 нс).

IV поколение (1998 г.): коммутируемое напряжение до 4500 В, токи до 1800 А в модульном исполнении; прямое падение напряжения 1,0-1,5 В, частота коммутации до 50 кГц (времена около 200 нс).

IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления — выводом G (затвор).

Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.

Рис. 3. Диаграмма напряжения и тока управления

Схематичный разрез структуры IGBT показан на рис. 4,а. Биполярный транзистор образован слоями p+ (эмиттер), n (база), p (коллектор); полевой — слоями n (исток), n+ (сток) и металлической пластиной (затвор). Слои p+ и p имеют внешние выводы, включаемые в силовую цепь. Затвор имеет вывод, включаемый в цепь управления. На рис. 4,б изображена структура IGBT IV поколения, выполненого по технологии «утопленного» канала (trench-gate technology), позволяющей исключить сопротивление между p-базами и уменьшить размеры прибора в несколько раз.

Рис. 4. Схематичный разрез структуры IGBT: а-обычного (планарного); б-выполненого по «trench-gate technology»

Процесс включения IGBT можно разделить на два этапа: после подачи положительного напряжения между затвором и истоком происходит открытие полевого транзистора (формируется n — канал между истоком и стоком). Движение зарядов из области n в область p приводит к открытию биполярного транзистора и возникновению тока от эмиттера к коллектору. Таким образом, полевой транзистор управляет работой биполярного.

Для IGBT с номинальным напряжением в диапазоне 600-1200 В в полностью включённом состоянии прямое падение напряжения, так же как и для биполярных транзисторов, находится в диапазоне 1,5-3,5 В. Это значительно меньше, чем характерное падение напряжения на силовых MOSFET в проводящем состоянии с такими же номинальными напряжениями.

С другой стороны, MOSFET c номинальными напряжениями 200 В и меньше имеют более низкое значение напряжения во включённом состоянии, чем IGBT , и остаются непревзойдёнными в этом отношении в области низких рабочих напряжений и коммутируемых токов до 50 А.

По быстродействию IGBT уступают MOSFET, но значительно превосходят биполярные. Типичные значения времени рассасывания накопленного заряда и спадания тока при выключении IGBT находятся в диапазонах 0,2-0,4 и 0,2-1,5 мкс, соответственно.

Область безопасной работы IGBT позволяет успешно обеспечить его надёжную работу без применения дополнительных цепей формирования траектории переключения при частотах от 10 до 20 кГц для модулей с номинальными токами в несколько сотен ампер. Такими качествами не обладают биполярные транзисторы, соединённые по схеме Дарлингтона.

Так же как и дискретные, MOSFET вытеснили биполярные в ключевых источниках питания с напряжением до 500 В, так и дискретные IGBT делают то же самое в источниках с более высокими напряжениями (до 3500 В).

IGBT-модули

В настоящее время транзисторы IGBT выпускаются, как правило, в виде модулей в прямоугольных корпусах с односторонним прижимом и охлаждением («Mitsubishi», «Siemens», «Semikron» и др.) и таблеточном исполнении с двухсторонним охлаждением («Toshiba Semiconductor Group»). Модули с односторонним охлаждением выполняются в прочном пластмассовом корпусе с паяными контактами и изолированным основанием. Все электрические контакты находятся в верхней части корпуса. Отвод тепла осуществляется через основание. Типовая конструкция модуля в прямоугольном корпусе показана на рис. 5.

Рис. 5. Типовая конструкция IGBT-модуля: 1 — кристалл; 2 — слой керамики; 3 — спайка; 4 — нижнее тепловыводящее основание

Ток управления IGBT мал, поэтому цепь управления — драйвер конструктивно компактна. Наиболее целесообразно располагать цепи драйвера в непосредственной близости от силового ключа. В модулях IGBT драйверы непосредственно включены в их структуру. «Интеллектуальные» транзисторные модули (ИТМ), выполненные на IGBT, также содержат » интеллектуальные» устройства защиты от токов короткого замыкания, системы диагностирования, обеспечивающие защиту от исчезновения управляющего сигнала, одновременной проводимости в противоположных плечах силовой схемы, исчезновения напряжения источника питания и других аварийных явлений. В структуре ИТМ на IGBT предусматривается в ряде случаев система управления с широтно-импульсной модуляцией (ШИМ) и однокристальная ЭВМ. Во многих модулях имеется схема активного фильтра для коррекции коэффициента мощности и уменьшения содержания высших гармонических в питающей сети.

IGBT-модуль по внутренней электрической схеме может представлять собой единичный IGBT, двойной модуль (half-bridge), где два IGBT соединены последовательно (полумост), прерыватель (chopper), в котором единичный IGBT последовательно соединён с диодом, однофазный или трёхфазный мост. Во всех случаях, кроме прерывателя, модуль содержит параллельно каждому IGBT встроенный обратный диод. Наиболее распространённые схемы соединений IGBT- модулей приведены на рис. 6.

Рис. 6. Схемы IGBT-модулей

Интенсивно развивается технология корпусирования паяной конструкции силовых модулей с целью дальнейшего снижения габаритов и массы, повышения надёжности, энерго- и термоциклоустойчивости, уменьшения теплового сопротивления и стоимости. Эти цели достигаются применением новых материалов и технологий сборки на тонкие и AlN керамические подложки в корпусах с малоиндуктивными выводами, разработкой специальных конструкций силовых модулей с интегрированным жидкостным охлаждением и созданием силовых модулей, включая «интеллектуальные», с использованием матричных композиционных материалов, имеющих хорошие теплопроводящие свойства и низкие, согласованные с кремнием и керамикой, коэффициенты теплового расширения (КТР).

В модулях с интегральным жидкостным охлаждением почти в четыре раза удаётся увеличить отводимую рассеиваемую мощность по сравнению с сопоставимой по электрическим параметрам традиционной конструкцией силового модуля с воздушным охлаждением.

Применение матричных композиционных материалов (MMC-Metal Matrix Composite) открывает новые перспективы в создании высокомощных, компактных, прочных, надёжных силовых модулей. MMC имеют высокую теплопроводность (MMC-150 Вт/(м*К), Cu-370, Al-200, Si-80), низкий КТР (MMC-7, Cu-17, Al-23, Si-4, -7, AlN-7), что позволяет снизить до минимума напряжённости в конструкции модуля, особенно в чипах силовых приборов, обеспечивая хорошую электрическую изоляцию и эффективный отвод тепла. В настоящее время по этой концепции созданы «интелектуальные» силовые модули (выпрямитель-инвертор) мощностью до 100 кВт.

Наряду с развитием технологии паяной конструкции силовых модулей с изолированным основанием (предельные параметры 1,2 кА, 3,5 кВ) продолжает интенсивно развиваться технология прижимной конструкции IGBT- модулей, подобная таблеточной конструкции SCR (Silicon Controlled Rectifier) и GTO — press-pack technology, в которой наряду с уменьшением более чем в 10 раз теплового сопротивления и габаритов значительно улучшены надёжность, термоциклоустойчивость. Наиболее высоких параметров IGBT- модулей прижимной конструкции достигла кампания «Toshiba»(PP HV IGBT-press pack high voltage IGBT).

Целесообразность применения IGBT в дискретном и модульном исполнениях

Дискретные приборы в корпусах ТО-220 и Т-247 («Fullpak») изготовляются массово и имеют низкую стоимость в расчёте на один ампер номинального тока (максимальное значение рабочего тока 70 А). Сильноточные модули с электрической изоляцией, как правило, содержат ключи, соединённые по полумостовой ключевой схеме или с одноключевой конфигурацией. В этих модулях диапазон номинальных токов находится в диапазоне от 25 А (для полумостовой схемы с напряжением на 1200 В) до 600 А (для одноключевой схемы с напряжением 600 В).

Привлекательными чертами сильноточных модулей являются: наличие электрической изоляции, простота монтажа с охладителем и лёгкость связи с другими модулями для повышения нагрузки цепи. Они также позволяют избежать использования параллельного соединения ключей для токов, превышающих сотни ампер.

Использование приборов в корпусах ТО-220 и ТО-247 со встроенными обратными быстродействующими диодами становится особенно предпочтительным при разработке инверторов. В этом случае требуемое число силовых полупроводниковых компонентов уменьшается на 50 % по сравнению с использованием IGBT и диодов в виде отдельных элементов. Перекрываемые области диапазонов токов, где использование дискретных приборов экономически предпочтительнее по сравнению с сильноточными модулями, могут быть расширены за счёт параллельного соединения отдельных приборов.

Модуль, имеющий наибольший номинальный ток, содержит и наибольшую площадь кремниевого кристалла, которая используется при полной токовой загрузке модуля. В таком же модуле с неполной токовой нагрузкой общая площадь кремния используется частично. Полностью загруженный по току модуль с номинальными параметрами 200 А, 600 В с полумостовой схемой эквивалентен по содержанию кремния восьми дискретным приборам в корпусе ТО-247. Для сравнения такой модуль с частичной загрузкой в 50 А эквивалентен двум приборам в корпусе ТО-247. Так как стоимость модуля существенно зависит от количества содержащегося в нём кремния, полностью загруженный по току модуль имеет более низкую стоимость одного номинального ампера по сравнению с частично загруженным, но стоимость 1 А номинального тока полностью загруженного по току модуля в 1,5 раза и более превышает аналогичный показатель для эквивалентного числа дискретных компонентов.

В противовес преимуществу дискретных компонентов в стоимости компонента необходимо учитывать дополнительные расходы на монтаж, необходимость снижения значений номинальных токов при их параллельном соединении и другие технические факторы, связанные с использованием определённого числа соединённых между собой дискретных компонентов.

Основное различие между дискретными приборами и сильноточными модулями заключается в способе электрической связи их с другими элементами схемы. Дискретные компоненты соединяются с элементами схемы на печатной плате посредством пайки. Максимальное значение токов в контактных соединениях печатной платы обычно не превосходит 100 А в установившихся режимах работы. Это накладывает естественные ограничения на число параллельно соединяемых компонентов. С другой стороны, сильноточные модули имеют выводы под винтовые зажимы. Поэтому они могут соединяться с кабельными наконечниками или непосредственно с токопроводящими шинами. Сильноточные модули также могут напрямую соединятся с печатной платой через сквозные отверстия.

Параллельное соединение дискретных компонентов связано с необходимостью равномерного распределения между ними потерь мощности, по возможности наиболее точного выравнивания значений температур полупроводниковых переходов соединяемых дискретных приборов. Различие электрических характеристик отдельных приборов требует создания для каждого из них определённого запаса по току нагрузки, составляющего примерно 20% максимально допустимого значения. Даже при создании такого запаса по току необходимо обеспечить хороший теплоотвод от каждого прибора, чтобы обеспечить равенство температур полупроводниковых переходов.

Наличие электрической изоляции создаёт в местах крепления приборов к охладителю тепловые барьеры, ухудшающие равномерность распределения температур переходов отдельных приборов. По этой причине приборы в корпусах «Fullpak» (Int-A-Pak, Dual-Int-A-Pak, IMS, SOT, Co-Packs, ZIP, DIP, Flange-B и другие) с электрической изоляцией не идеальны для параллельного их соединения. Параллельно соединяемые приборы следует монтировать на общем охладителе. Если же требуется обеспечить электрическую изоляцию, то приборы следует смонтировать на общей теплоотводящей пластине, обеспечивающей хорошую тепловую связь между переходами приборов. Эта пластина также может использоваться в качестве конструктивного элемента, обеспечивающего механическое соединение приборов. электроизоляционный барьер в этом случае следует создавать между токоведущими частями параллельной сборки приборов и основным охладителем.

Асимметрия в разводке электрических цепей, подключаемых к параллельно соединённым приборам, может привести к значительному различию в выделяемых в каждом из них потерях мощности. Наиболее сильно этот эффект проявляется на коммутационных интервалах работы приборов, что приводит к неравномерному распределению динамических потерь мощности. Наиболее существенно на распределение токов в динамических режимах влияют индуктивности эмиттерных цепей, значения которых по возможности должны быть равными, чтобы исключить разбаланс динамических потерь.

Известно, что динамические потери уменьшаются со снижением значений рабочей частоты и напряжения. В этих случаях простые схемы соединения приборов без симметрирования соединений могут стать вполне приемлемыми. Там, где содержание динамических потерь превышает 15% общих потерь, необходимо уделять значительное внимание разводке цепей, соединяющих дискретные приборы вследствие значительного влияния симметричности цепей. Пример идеального симметричного расположения цепей представлен на рис. 7. При таком расположении и соединении приборов обеспечивается равенство индуктивностей эмиттерных цепей всех соединённых приборов и тем самым обеспечивается выравнивание между ними динамических потерь.

Рис. 7. Симметричная разводка электрических цепей в параллельно соединяемых приборах (кольцевое соединение): 1 — охладитель; 2 — печатная плата; 3 — соединение эмиттеров; 4 — соединение входов низкой стороны

Основные области применения и промышленное производство IGBT-модулей в России

В настоящее время производство силовых IGBT-модулей освоено рядом российских предприятий электронной промышленности (АО «Электровыпрямитель», НПК «ИСЭ» и другие). Основными элементами в модулях являются IGBT-чипы, изготовленные по NPT (Non punch through) технологии. IGBT — транзисторы, изготовленные по этой технологии, обладают высокой du /dt стойкостью, практически прямоугольной областью безопасной работы, что обеспечивает надёжную работу приборов при предельных загрузках по току и напряжению. Эти транзисторы имеют положительный температурный коэффициент напряжения насыщения, что позволяет успешно использовать IGBT- модули в параллельных соединениях. Особенностью российских модулей является низкое время спада тока при выключении, а также очень низкие и практически не зависящие от температуры остаточные токи. Это особенно важно при работе транзисторов на высоких частотах.

Модули выполняются по одно — (серия МДТКИ) и двухключевой (М2ТКИ) схемам, а также по схеме прерывателя тока (чоппера — серия МТКИД). Транзисторы шунтируются диодами обратного тока, в качестве которых используются супербыстровосстанавливающиеся диоды с «мягким» восстановлением (FRD диоды).

IGBT-модули первого конструктивного исполнения (ширина модуля 34 мм) рассчитаны на токи 25, 50 и 75 А и предназначены для инверторов мощностью от 2 до 15 кВт. Модули второго конструктивного исполнения (ширина модуля 62 мм) рассчитаны на токи 100, 150 и 200 А и применяются в инверторах мощностью от 20 до 60 кВт. И самые мощные в этом ряду IGBT- модули третьего исполнения (ширина 62 мм) на токи 200, 320 и 400 А могут применятся в инверторах мощностью от 60 до 200 кВт.

С 1998 года на саранском предприятии «Электровыпрямитель» осуществляется выпуск мощных высоковольтных IGBT- модулей на ток до 1200 А и напряжение до 3300 В; проводится разработка мощного IGBT — транзистора таблеточной конструкции с прижимными контактами, что позволит увеличить съём тепла с элемента, ещё более повысить рабочий ток и напряжение транзистора.

IGBT- модули зарубежного производства на российском рынке электронных компонентов представлены в основном фирмами «Mitsubishi», «International Rectifier», «Hitachi» (см. рис. 9).

Распространяемые фирмами-посредниками приборы перекрывают диапазоны максимально допустимых токов (Ic) от 50 А до 1000 А и напряжений (UCE) от 250 В до 1700 В. Модули на токи до 600 А реализуются с включённым в структуру драйвером, свыше 600 А- драйвер поставляется отдельно. Оптовые цены (июнь 2000 г.) на силовые модули составляют от 1,5 до 9,0 тыс. руб./шт. Партия изделий в среднем состоит из 10 и более единиц (при изменении размера партии соотношение цен на продукцию меняется).

Современные IGBT-модули находят сегодня широкое применение при создании неуправляемых и управляемых выпрямителей, автономных инверторов для питания двигателей постоянного и переменного тока средней мощности (см. рис.8), преобразователей индукционного нагрева, сварочных аппаратов, источников бесперебойного питания, бытовой и студийной техники.

Рис. 8. Схема тягового привода системы ONIX 3000 на IGBT-транзисторах электровоза AM96 для системы электроснабжения 3 кВ

Особую роль IGBT -модули играют в развитии железнодорожного транспорта. Применение этих перспективных приборов в тяговом преобразователе позволило повысить частоту переключения, упростить схему управления, минимизировать загрузку сети гармониками и обеспечить предельно низкие потери в обмотках трансформатора и дросселей. На российском подвижном составе модули IGBT использовались в преобразователе собственных нужд (ПСН) электровоза ЭП-200, тяговом преобразователе электропоездов » Cокол» и ЭД6.

Впервые тяговый преобразователь на транзисторах IGBT (четырёхквадрантные регуляторы, импульсные инверторы и тормозной регулятор) применён в Европе на серийном электропоезде переменного тока промышленной частоты Heathrow Express (HEX).

Рис. 9. Схема включения IGBT- модуля типа MBN1200D33 фирмы Hitachi

Заключение

На сегодняшний день IBGT как класс приборов силовой электроники занимает и будет занимать доминирующее положение для диапазона мощностей от единиц киловатт до единиц мегаватт. Дальнейшее развитие IGBT связано с требованиями рынка и будет идти по пути:

  • повышения диапазона предельных коммутируемых токов и напряжений (единицы килоампер, 5-7 кВ);
  • повышения быстродействия;
  • повышения стойкости к перегрузкам и аварийным режимам;
  • снижения прямого падения напряжения;
  • разработка новых структур с плотностями токов, приближающихся к тиристорным;
  • развития «интеллектуальных» IGBT (с встроенными функциями диагностики и защит) и модулей на их основе;
  • создания новых высоконадёжных корпусов, в том числе с использованием MMC (AlSiC) и прижимной конструкции;
  • повышения частоты и снижение потерь SiC быстровосстанавливающихся обратных диодов;
  • применения прямого водяного охлаждения для исключения соединения основание — охладитель.

Главная — Микросхемы — DOC — ЖКИ — Источники питания — Электромеханика — Интерфейсы — Программы — Применения — Статьи

Что такое IGBT-транзисторы?

Биполярные транзисторы с изолированным затвором — это приборы на неосновных носителях заряда с высоким входным импедансом, характерным для полевых транзисторов, и большим допустимым током в открытом состоянии, характерным для биполярных транзисторов. Большинство разработчиков рассматривают IGBT как приборы с входными характеристиками МОП-транзисторов и выходными характеристиками биполярных транзисторов, которые объединены в управляемый напряжением биполярный транзистор. Транзисторы со структурой IGBT были созданы, чтобы использовать преимущества силовых MOSFET и биполярных транзисторов. В результате появились приборы с функциональной интеграцией силовых MOSFET и биполярных транзисторов в монолитном виде. IGBT соединяют в себе лучшие качества обоих типов.

IGBT можно использовать во многих приложениях силовой электроники, особенно в драйверах систем управления с широтно-импульсной модуляцией (ШИМ) для сервомоторов и трехфазных асинхронных двигателей, для которых требуется большой динамический диапазон управления и малый уровень электромагнитных помех. Кроме того, IGBT можно использовать в источниках бесперебойного питания (ИБП, UPS), импульсных источниках питания (SMPS), и других силовых схемах, для которых требуется высокая частота переключения. IGBT позволяют улучшить динамическую производительность и эффективность, и уменьшают уровень электромагнитных излучений. Они великолепно подходят для схем конвертеров, работающих в резонансном режиме.

Доступны IGBT, оптимизированные как для низких значений потерь, связанных с конечной проводимостью, так и для низких значений потерь, связанных с зарядом переключения.

IGBT, по сравнению с силовыми MOSFET и биполярными транзисторами имеют следующие основные преимущества:

1. В открытом состоянии из-за модуляции проводимости они имеют очень маленькое падение напряжения и чрезвычайно большую допустимую плотность. Возможность изготовления транзисторов в миниатюрных корпусах значительно снижает их стоимость.

2. Малая мощность управления и простая схема управления за счет МОП-структуры входного каскада. Обеспечивают возможность более простого управления, чем для приборов с токовым управлением (тиристор, биполярный транзистор) в высоковольтных и высокочастотных приложениях.

3. Широкая область надежной работы (SOA). Приборы имеют большую возможность проводить ток по сравнению с биполярными транзисторами. Кроме того, транзисторы хорошо проводят ток в прямом направлении и практически не проводят в обратном.

Основные недостатки IGBT:

1. Скорость переключения ниже, чем у силовых MOSFET и выше, чем у биполярных транзисторов. При закрывании транзистора ток коллектора имеет хвост за счет небольшой проводимости, вызванной малой скоростью закрывания.

2. Возможность «защелкивания» из-за внутренней тиристороподобной PNPN-структуры.

IGBT-структура пригодна для повышения значения запирающего напряжения (напряжение отсечки). В случае силовых MOSFET с увеличением напряжения отсечки резко растет сопротивление канала транзистора в открытом состоянии из-за увеличения удельного сопротивления и ширины области дрейфа носителей заряда, необходимой для поддержания высокого рабочего напряжения. По этим причинам обычно избегают разрабатывать силовые MOSFET, рассчитанные на большой допустимый ток, с высоким значением запирающего напряжения. Напротив, для IGBT удельное сопротивление области дрейфа носителей заряда существенно уменьшается за счет высокой концентрации инжектированных носителей заряда вызванных протеканием тока в открытом состоянии. Прямое падение напряжения на области дрейфа начинает зависеть от ее толщины и не зависеть от начального удельного сопротивления.

Технологии PT и NPT изготовления IGBT-транзисторов

IGBT называется PT (punch-through) или асимметричным, если имеется N+ буферный слой между P+ подложкой и N- областью дрейфа. В противном случае, он называется NPT (non-punchthrough) или асимметричным IGBT. N+ буферный слой увеличивает скорость выключения транзистора путем уменьшения инжекции неосновных носителей заряда и увеличения скорости рекомбинации при переключении транзистора. Кроме того, вероятность «защелкивания» также уменьшается за счет уменьшения коэффициента усиления по току PNP-транзистора. Основная проблема состоит в том, что увеличивается падение напряжения на открытом транзисторе. Однако толщину дрейфовой области N- можно уменьшить путем подачи напряжения прямого смещения. В результате уменьшится падение напряжения на открытом транзисторе. Следовательно, PT-IGBT имеют более удачные характеристики по сравнению с NPT-IGBT в отношении скорости переключения и прямого падения напряжения. В настоящее время большинство серийных IGBT выпускается по PT-IGBT технологии. Возможности прямого и обратного запирания IGBT приблизительно равны, поскольку определяются толщиной и удельным сопротивлением одного и того же дрейфового слоя N-. Обратное напряжение для PT-IGBT транзистора, который содержит буферный слой N+ между подложкой P+ и областью дрейфа N-, уменьшается до десятков вольт из-за наличия высоколегированных областей с обеих сторон зоны J1.

Ряд IGBT, изготавливающихся без буферного слоя N+, называются NPT (non-punch through) IGBT, в то время как транзисторы, у которых присутствует данный слой, называются PT (punch-through) IGBT. При правильном выборе степени легирования и толщины буферного слоя, его присутствие может значительно увеличить производительность транзисторов. Несмотря на физическое сходство, работа IGBT больше напоминает работу мощного биполярного транзистора, чем мощного MOSFET. Это происходит из-за того, что слой подложки P+ (инжекционный слой) отвечает за инжекцию неосновных носителей заряда в область дрейфа N-, что приводит к модуляции удельного сопротивления.

Технологически транзистор IGBT получают из транзистора MOSFET путем добавления еще одного биполярного транзистора структуры PNP. Эквивалентная крутизна IGBT значительно превышает крутизну MOSFET, и ее значением можно управлять на этапе изготовления IGBT. Еще одним достоинством IGBT является значительное снижение (по сравнению с MOSFET) последовательного сопротивления силовой цепи в открытом состоянии. Благодаря этому снижаются тепловые потери на открытом транзисторе.

По результатам исследований было выяснено, что у IGBT отсутствует участок вторичного пробоя, характерный для обычных биполярных транзисторов. Быстродействие IGBT ниже, чем у MOSFET, но выше, чем у биполярных транзисторов, поэтому их используют на частотах порядка 100 кГц. Ограничение скорости переключения IGBT кроется в конечном времени жизни неосновных носителей в базе PNP-транзистора. Накопленный в базе PNP-транзистора заряд вызывает характерный «хвост» тока при закрывании IGBT. Причина этого заключается в том, что как только имеющийся в составе IGBT-транзистора MOSFET закрывается, в силовой цепи начинается рекомбинация неосновных носителей заряда, которая предшествует возникновению «хвоста». Этот «хвост» служит причиной основных тепловых потерь и требует введения так называемого «мертвого времени» в схемах управления мостовыми и полумостовыми инверторами. Поскольку база PNP-транзистора сделана недоступной извне, то меры по уменьшению «хвоста» можно принять только на этапе изготовления транзистора. На рисунке 2 показана упрощенная схема полумостового инвертора.

Рис. 2. Упрощенная схема полумостового инвертора

IGBT-транзисторы компании ST

Все выпускаемые компанией ST IGBT транзисторы можно разделить на три основные категории:

1. IGBT с рабочим напряжением 400 В для силовых инверторов,

2. IGBT с рабочим напряжением 600 В для мостовых и полумостовых драйверов управления электродвигателями в стационарных устройствах,

3. IGBT с рабочим напряжением 900…1300 В для силовых модулей и систем управления электродвигателями электромобилей.

Наиболее массовой является категория транзисторов с рабочим напряжением 600 В.

В таблицах 1, 2, 3 показаны характеристики некоторых IGBT каждой из указанных категорий.

Таблица 1. IGBT с рабочим напряжением 400 В

Наименование Напря-жение коллектор-эмиттер (Vces) max, В Ток кол-лектора (I_C) (@ Tc = 100°C) max, А Vce(sat)
(при Tc = 125°C) тип., В
Ток кол-лектора(IC_DC) (@ Vce(sat)) тип., А Потери на пере-ключение (Eoff) (при Tc=125°C) тип, мДж Анти парал-лельные диоды Частота переклю-чения max, кГц Рассеива-емая мощность(PD) max, Вт Тип корпуса
STGB10NB37LZ 410 10 1,3 20 8,7 1 125 D2PAK
STGP10NB37LZ 410 10 1,3 20 8,7 1 125 TO-220
STGB10NB40LZ 410 10 1,3 20 8,7 1 150 D2PAK
STGB18N40LZ 390 30 1,3 10 1 125 D2PAK; TO-220
STGD18N40LZ 390 25 1,3 10 1 125 DPAK; IPAK
STGP18N40LZ 390 30 1,3 10 1 150 TO-220
STGB20NB37LZ 400 20 1,3 20 17,8 1 200 D2PAK
STGB20NB41LZ 410 20 1,3 20 18,4 1 200 D2PAK
STGB35N35LZ 350 30 1,35 15 1 176 D2PAK; TO-220
STGP35N35LZ 350 30 1,35 15 1 176 TO-220

Таблица 2. IGBT с рабочим напряжением 600 В и током более 50 А

Наименование Напря-жение коллектор-эмиттер (Vces) max, В Ток кол-лектора (I_C) (@ Tc = 100°C) max, А Vce(sat) (при Tc = 125°C) тип., В Ток кол-лектора(IC_DC) (@ Vce(sat)) тип., А Потери на пере-ключение (Eoff) (при Tc=125°C) тип, мДж Анти парал-лельные диоды Частота переклю-чения max, кГц Рассеива-емая мощность (PD) max, Вт Тип корпуса
STGE50NC60VD 600 50 1,7 40 1.4 Ultra Fast 50 260 ISOTOP
STGE50NC60WD 600 50 1,9 40 0,9 Ultra Fast 100 260 ISOTOP
STGW50H60DF 600 50 2,1 50 1,1 Ultra Fast 50 360 TO-247
STGW50HF60S 600 60 1,05 30 7,8 No 1 284 TO-247
STGW50HF60SD 600 50 1,05 30 7,8 Low Drop 1 284 TO-247
STGW50NC60W 600 50 1,9 40 0,9 100 278 TO-247
STGY50NC60WD 600 50 1,9 40 0,9 Ultra Fast 100 278 Max247
STGWA60NC60WDR 600 60 1,9 40 0,9 Ultra Fast 100 340 TO-247 long leads
STGW60H65F 650 60 2,1 60 1,4 100 360 TO-247
STGE200NB60S 600 150 1,2 150 92 1 600 ISOTOP

Таблица 3. IGBT с рабочим напряжением 900…1300 В

Наименование Напря-жение коллектор-эмиттер (Vces) max, В Ток Кол-лектора (I_C) (@ Tc = 100°C) max, А Vce(sat) (при Tc = 125°C) тип., В Ток кол-лектора (IC_DC) (@ Vce(sat)) тип., А Потери на переклю-чение (Eoff) (при Tc=125°C) тип, мДж Анти парал-лельные диоды Частота переклю-чения max, кГц Рассеива-емая мощность(PD) max, Вт Тип корпуса
STGW30N90D 900 30 2 20 6,9 Ultra Fast 20 220 TO-247
STGF3NC120HD 1200 3 2,2 3 0,6 Ultra Fast 20 25 TO-220FP
STGD5NB120SZ 1200 5 1,2 5 10 1 75 DPAK; IPAK
STGB3NC120HD 1200 7 2,2 3 0,6 Ultra Fast 20 75 D2PAK
STGP3NC120HD 1200 7 2,2 3 0,6 Ultra Fast 20 75 TO-220
STGW25H120DF 1200 25 2,3 25 1,5 Ultra Fast 20 330 TO-247
STGW30N120KD 1200 30 2,7 20 5,8 Ultra Fast 20 220 TO-247
STGW30NC120HD 1200 30 2 20 6,9 Ultra Fast 20 220 TO-247
STGW35NC120HD 1200 34 2 20 6,9 Ultra Fast 20 250 TO-247-ll
STGW40N120KD 1200 40 2,7 30 9,3 Ultra Fast 20 240 TO-247
STGW38IH130D 1300 33 2 20 6,4 Ultra Fast 20 250 TO-247; TO-247-ll
STGWT38IH130D 1300 33 2 20 6,4 Ultra Fast 20 250 TO-3P

Интеллектуальные силовые
модули (IPM) на базе IGBT-семейства SLLIMM от ST

Семейство SLLIMM интеллектуальных силовых модулей создано для удовлетворения требований широкого класса конечных приложений в диапазоне мощностей от 300 Вт до 2,0 кВт, таких как:

  • Стиральные машины
  • Посудомоечные машины
  • Холодильники
  • Драйверы компрессоров кондиционеров воздуха
  • Швейные машины
  • Насосы
  • Электроинструменты
  • Промышленные устройства управления малой мощности

Интеллектуальные силовые модули (IPM) на базе IGBT расширяют диапазон продуктов компании ST для силовых приложений. Это — решения с превосходными тепловыми характеристиками, которые упрощают разработку, объединяя специфичные для приложений IGBT и диоды, запатентованные функции управления, интеллектуальную защиту и множество дополнительных функций.

Модули IPM допускают непосредственное подключение к микроконтроллерам, преобразуя выходные сигналы микроконтроллера в мощные высоковольтные сигналы необходимой для управления электродвигателями формы. Один модуль способен заменить более 30 дискретных компонентов, значительно повышая надежность и уменьшая размер и стоимость изделий. На рисунке 3 показаны преимущества замещения дискретных компонентов интеллектуальным модулем.

Рис. 3. Преимущества замещения дискретных компонентов интеллектуальным модулем

В состав каждого интеллектуального модуля входят следующие узлы и компоненты:

  • Трехфазный IGBT мостовой инвертор, включающий:
    • Шесть IGBT с малыми потерями и схемами защиты от коротких замыканий,
    • Шесть диодов свободного хода (freewheeling) с малым падением напряжения и плавным восстановлением;
  • Три ИС управления для управления и защиты ключей, включая:
    • Функцию интеллектуального отключения,
    • Компаратор для защиты от превышения током предельно допустимого значения при коротком замыкании,
    • Операционный усилитель для увеличения чувствительности датчика тока,
    • Три интегрированных ограничительных диода,
    • Функцию взаимного отключения,
    • Блокировку при перегрузках по напряжению;
  • Терморезисторы с отрицательным ТКС (NTC) для наблюдения за температурой;
  • Конфигурация с открытым эмиттером для установки индивидуального для каждой фазы датчика тока;
  • Полностью изолированный корпус, выполненный по технологии DBC с повышенной теплоотдачей;
  • Номинальное напряжение изоляции 2500В с.к.з.;
  • Некоторые пассивные компоненты для оптимизации скорости переключения IGBT транзисторов;
  • Схемы смещения для драйверов ключей верхнего плеча и фильтрации помех.

Модули IPM компании ST используют корпуса, выполненные по технологии DBC (direct-bond copper) — прямой металлизации медью, и процессы вакуумной сварки, что гарантирует лучший отвод тепла и меньшее электрическое сопротивление и позволяет получать большие удельные мощности и увеличивать надежность систем.

Ключевые особенности и преимущества IPM

Особенности

  • 600 В, трехфазный мостовой инвертор на базе IGBT, включая ИС управления ключами и диоды свободного хода
  • Защита IGBT от короткого замыкания
  • Полностью изолированный корпус, выполненный по технологии DBC с повышенной теплоотдачей
  • Функция интеллектуального отключения
  • Компаратор для защиты от превышения током предельно допустимого значения при коротком замыкании
  • Операционный усилитель для увеличения чувствительности датчика тока
  • Встроенные ограничительные диоды
  • Малый форм-фактор

Преимущества

  • Удобство управления от микроконтроллера
  • Высокая эффективность и надежность
  • Очень низкое тепловое сопротивление Rth
  • Уменьшенное количество компонентов
  • Оптимизированная топология печатной платы
  • Уменьшение размера печатной платы (компактная конструкция)
  • Малая интенсивность отказов
  • Простота реализации алгоритма управления по полю (FOC) без использования дополнительных датчиков

В таблице 4 представлены основные характеристики IPM компании ST.

Таблица 4. Основные характеристики интеллектуальных силовых модулей (IPM) компании ST

Особенности Базовая версия Полнофункциональная версия
STGIPS10K60A STGIPS14K60 STGIPL14K60 STGIPS20K60 STGIPL20K60
Рабочее напряжение, В 600 600 600 600 600
Рабочий ток при TC=25 °C, А 10 14 15 18 20
RthJC max. Для одного IGBT, °C/Вт 3,8 3 2,8 2,4 2,2
Тип корпуса SDIP-25L SDIP-25L SDIP-38L SDIP-25L SDIP-38L
Размер корпуса, мм (X, Y, Z) 44,4×22,0×5,4 44,4×22,0×5,4 49,6×24,5×5,4 44,4×22,0×5,4 49,6×24,5×5,4
Технология DBC Да Да Да Да Да
NTC Да Да Да Да Да
Встроенные ограничительные диоды Да Да Да Да Да
Функция SD Нет Да Да Да Да
Компаратор для защиты от коротких замыканий Нет Да (1 вывод) Да (3 вывода) Да (1 вывод) Да (3 вывода)
Функция интеллектуального отключения Нет Да Да Да Да
Операционный усилитель для увеличения чувствительности датчика тока Нет Нет Да Нет Да
Функция взаимного выключения Да Да Да Да Да
Блокировка при перегрузке по напряжению Да Да Да Да Да
Конфигурация с открытым эмиттером Да (3 вывода) Да (3 вывода) Да (3 вывода) Да (3 вывода) Да (3 вывода)
Совместимость с входными логическими уровнями 3,3/5 В Да Да Да Да Да
Входной сигнал для IGBT-транзисторов верхнего плеча Высокий активный уровень Высокий активный уровень Высокий активный уровень Высокий активный уровень Высокий активный уровень
Входной сигнал для IGBT-транзисторов нижнего плеча Высокий активный уровень Низкий активный уровень Низкий активный уровень Низкий активный уровень Низкий активный уровень

Оценочные платы от ST

Компания ST выпускает ряд оценочных плат на базе IGBT и интеллектуальных модулей на их основе. В таблице 5 приведены основные отличительные особенности этих плат.

Таблица 5. Оценочные платы на базе IGBT и модулей от ST

Наименование Особенности Внешний вид
STEVAL-IHM025V1 1 x IGBT SLLIMM STGIPL14K60 1 преобразователь, основанный на Viper16 1 xIGBT STGP10NC60KD
STEVAL-IHM027V1 1 x IGBT SLLIMM STGIPS10K60A 1 преобразователь, основанный на Viper16 1 xIGBT STGP10NC60KD
STEVAL-IHM028V1 1 x IGBT SLLIMM STGIPS20K60 1 x ШИМ SMPS VIPer26LD 1 x IGBT STGW35NB60SD
STEVAL-IHM021V1 3 интеллектуальных драйвера с ШИМ L6390 6 мощных переключательных MOSFET-транзисторов STD5N52U
STEVAL-IHM023V1 3 интеллектуальных драйвера с ШИМ L6390 7 мощных переключательных IGBT STGP10NC60KD
STEVAL-IHM024V1 3 интеллектуальных драйвера с ШИМ L6390 6 мощных переключательных IGBT STGDL35NC60DI

Универсальная оценочная плата STEVAL-IHM028V1 разработана на базе интеллектуального модуля трехфазного мостового инвертора STGIPS20K60 компании ST с рабочим напряжением 600 В и рабочим током 20 А. Модуль имеет встроенные компараторы для аппаратной защиты (такой как защита от перегрузок по току и защита от перегрева).

Оценочная плата STEVAL-IHM028V1 имеет следующие отличительные особенности:

  • Законченное решение для силового инвертора мощностью 2 кВт,
  • Подключение к однофазной силовой сети с напряжением 90…285 В переменного тока или к источнику постоянного тока с напряжением до +400 В,
  • Входной удвоитель напряжения для подключения к низковольтной силовой сети переменного тока,
  • Ограничитель входного пускового тока с проходным реле,
  • Устройство активного торможения с компаратором перегрузки по напряжению;
  • Измерение тока как с тремя, так и с одним датчиком тока;
  • Возможность подключения датчиков Холла или энкодера,
  • Вход тахометра,
  • Аппаратная защита от перегрева и перегрузок по току,
  • Активное воздушное охлаждение с автоматическим переключением при повышении температуры,
  • Компактная и безопасная конструкция,
  • Универсальная платформа для проведения последующих экспериментов.

MOSFET-транзисторы от компании ST

Кроме IGBT, компания ST выпускает также MOSFET-транзисторы, параметры наиболее выдающихся из которых приведены в таблице 6.

Таблица 6. Супер MOSFET-транзисторы от ST

Наименование VDSS, В RDS(вкл) (при VGS=10 В) max, Ом Ток стока (Dc)(I_D) max, A Рассе-иваемая мощность (PD) max, Вт Заряд переклю-чения (Qg) тип., нКл Особенности Заряд обратного восста-новления (Qrr) тип (нКл) Время обратного восста-новления (trr) тип., нсек Пиковый обратный ток (IRRM) ном., А Тип
корпуса
STE70NM50 500 0,05 70 600 190 552 42 ISOTOP
STW27NM60ND 600 0,016 21 160 80 Fast diode TO-247
STW62NM60N 600 0,049 55 350 130 TO-247
STW77N65DM5 650 0,043 65 400 185 Fast diode TO-247
STW77N65M5 650 0,038 69 400 185 TO-247
STY112N65M5* 650 0,019 93 450 360 Max247
STY60NM50 500 0,05 60 560 190 552 42 Max247
STY80NM60N 600 0,035 74 560 360 Max247
* Выдающееся значение рабочего тока при низком сопротивлении открытого канала.

Особого внимания также заслуживают высоковольтные силовые MOSFET-транзисторы: n-канальные с рабочим напряжением до +1500 В и p-канальные с рабочим напряжением до -500 В. Основные параметры транзисторов представлены в таблице 7.

Таблица 7. Высоковольтные MOSFET-транзисторы от ST

Наименование VDSS, В RDS (вкл) (приVGS=10В) max, Ом Ток стока (Dc)(I_D) max, А Рассеива-емая мощность(PD) max, Вт Заряд переклю-чения затвора(Qg) тип, нКл Заряд обратного восстано-вления (Qrr) тип., нКл Время обратного восстанов-ления (trr) тип, нсек Макси-мальный обратный ток(IRRM) ном., А Тип корпуса
n-канальные с рабочим напряжением +1500 В
STFW3N150 1500 9 2.5 63 29,3 TO-3PF
STFW4N150 1500 7 4 63 30 TO-3PF
STP3N150 1500 12 2,5 140 18 TO-220
STP4N150 1500 7 3,1 160 35 510 12 TO-220
STW3N150 1500 9 2,5 140 29,3 TO-247
STW4N150 1500 7 4 160 30 510 12 TO-247
STW9N150 1500 2,5 8 320 89,3 TO-247
p-канальные с рабочим напряжением -500 В
STD3PK50Z 500 4 -2,8 70 20 DPAK

Литература

1. ST. AN1491. IGBT BASICS. Ссылка

2. ST. 600 V SiC diodes. Ссылка

3. Ссылка

4. Ссылка

5. http://www.st.com/internet/analog/class/826.jsp

6. Ссылка.

Получение технической информации, заказ образцов, поставка — e-mail: power.vesti@compel.ru

Где есть IGBT/MOSFET транзисторы, там есть и драйверы затворов

В линейке аналоговых и смешанных интегральных схем, выпускаемых компанией STMicroelectronics, важное место занимают драйверы MOSFET- и IGBT-транзисторов. Ранние разработки содержат микросхемы драйверов, управляющих включением или выключением одиночного MOSFET- или IGBT-транзистора (категория «Single» в терминах компании STMicroelectronics, серии TD220, TD350). При определенной схеме включения данные драйверы могут управлять нагрузкой как верхнего, так и нижнего плеча. Отметим также микросхему TD310 — три независимых одиночных драйвера в одном корпусе. Такое решение будет эффективным при управлении трехфазной нагрузкой.

Самыми современными драйверами являются серии высоковольтных полумостовых драйверов L6384…L6388 и L639х. Данные микросхемы независимых драйверов верхнего и нижнего плеча управляются по входам HIN и LIN. Причем высокий уровень логического сигнала включает, соответственно, верхнее или нижнее плечо драйвера. В некоторых из этих драйверов используется дополнительный вход SD, отключающий оба плеча независимо от состояния на входах HIN и LIN.

В документации «L638xE Application Guide» компании STMicroelectronics приведены примеры схемы управления трехфазным двигателем, схемы балласта люминесцентной лампы с диммированием, DC/DC-преобразователей с различной архитектурой и ряд других. Также приведены схемы демонстрационных плат для всех микросхем данного семейства (в том числе и топология печатных плат).

Драйверы серии L639х отличаются дополнительным функционалом: операционные усилители (в L6390 и L6392) предназначены для измерения тока, протекающего через нагрузку. Все микросхемы содержат логику защиты от одновременного открытия транзисторов верхнего и нижнего плеча и, соответственно, формирования паузы при изменении состояния выхода.

Наши информационные каналы

Рубрика: статья Метки: IGBT

Глава 6 — Полевые транзисторы с изолированным затвором Биполярный транзистор с изолированным затвором (IGBT)

Из-за своих изолированных затворов IGFET транзисторы всех типов имеют чрезвычайно высокий коэффициент усиления по току: не может быть устойчивого тока затвора, если нет замкнутой цепи затвора, в которой электроны могут непрерывно протекать. Таким образом, единственный ток, который мы видим на выводе затвора полевого транзистора с изолированным затвором, – это ток во время временного перехода (кратковременный импульс), который может потребоваться для зарядки емкости затвора и смещения обедненной области, когда транзистор переключается из состояния «открыт» в состояние «закрыт», и наоборот.

Этот высокий коэффициент усиления по току, по-видимому, дает технологии IGFET решающее преимущество по сравнению с биполярными транзисторами в плане управления большими токами. Если для управления большим током используется биполярный транзистор, то схемой управления в соответствии с коэффициентом β должен быть обеспечен существенный ток базы. Для примера, для того, чтобы мощный биполярный транзистор с β=20 проводил ток коллектора 100 ампер, ток базы должен быть не менее 5 ампер, что само по себе является значительной величиной тока для небольших дискретных или интегральных схем управления:

Ключ на биполярном транзисторе

Было бы хорошо с точки зрения схемы управления иметь силовые транзисторы с высоким коэффициентом усиления по току так, чтобы для управления током нагрузки требовалось гораздо меньше управляющего тока. Разумеется, мы можем использовать транзисторные пары Дарлингтона, чтобы увеличить усиление по току, но для такого устройства всё равно будет требоваться гораздо больший управляющий ток, чем для эквивалентной схемы на мощном полевом транзисторе с изолированным затвором:

Ключ на паре ДарлингтонаКлюч на полевом транзисторе с изолированным затвором

Однако, к сожалению, полевые транзисторы с изолированным затвором имеют проблемы с управлением высокими токами: они, как правило, демонстрируют большее падение напряжения сток-исток, чем падение напряжения коллектор-эмиттер у насыщенного биполярного транзистора. Это большее падение напряжения соответствует более высокой рассеиваемой мощности при той же величине тока нагрузки, что ограничивает полезность полевых транзисторов с изолированным затвором в качестве мощных устройств. Хотя некоторые специализированные конструкции, такие как так называемый VMOS транзистор, были разработаны для минимизации этого недостатка, биполярный транзистор по-прежнему превосходит их по своей способности коммутировать большие токи.

Интересное решение этой дилеммы использует лучшие качества полевых транзисторов с изолированным затвором в сочетании с лучшими качествами биполярных транзисторов в одном устройстве, называемом биполярный транзистор с изолированным затвором (БТИЗ, англ. Insulated-gate bipolar transistor, IGBT). Также известный как MOSFET с биполярным режимом, полевой транзистор с модуляцией проводимости (Conductivity-Modulated Field-Effect Transistor, COMFET) или просто транзистор с изолированным затвором (Insulated-Gate Transistor, IGT), он эквивалентен паре Дарлингтона из полевого транзистора с изолированным затвором и биполярного транзистора:

Биполярный транзистор с изолированным затвором (IGBT) (N-канальный)

По сути, полевой транзистор с изолированным затвором управляет током базы биполярного транзистора, который управляет током основной нагрузки между коллектором и эмиттером. Таким образом, получается чрезвычайно высокий коэффициент усиления по току (поскольку изолированный затвор IGFET транзистора практически не потребляет ток от схемы управления), и при этом падение напряжения коллектор-эмиттер в режиме полной проводимости ниже, чем у обычного биполярного транзистора.

Одним из недостатков IGBT транзистора по сравнению с обычным биполярным транзистором является его более медленное время выключения. Относительно быстроты переключения и способности работать с большими токами, победить биполярный транзистор сложно. Более быстрое время выключения для IGBT транзистора может быть достигнуто путем определенных изменений в конструкции, но только за счет более высокого падения напряжения между коллектором и эмиттером в режиме насыщения. Однако IGBT транзистор в приложениях управления большими мощностями обеспечивает хорошую альтернативу и полевым транзисторам с изолированным затвором, и биполярным транзисторам.

Сохранить или поделиться

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *