АВР 0 4

Что такое АВР

Прежде чем подключить к потребителям резервный источник электроснабжения, надо отключить их от общей энергосети. Сделать это можно вручную при помощи рубильника, но этот вариант сопряжен со сбоем в работе энергопотребителей. Непрерывную подачу электропитания в данном случае можно обеспечить только при помощи автоматики, вот для чего, собственно, нужен автоматический ввод резерва — АВР.

Давая определение АВР, можно сказать, что это такая система, которая при помощи контакторов или пускателей осуществляет перевод нагрузки с одного источника электроснабжения на другой. Пускатели представляют собой исполнительный механизм, при помощи которого непосредственно производится перевод нагрузки с основного источника питания на аварийный.

Другим основополагающим элементом в схемах АВР является реле контроля фаз, которое фиксирует параметры электрического тока в сети.

Кроме того, схемы АВР могут включать контроллеры, при помощи которых осуществляется контроль параметров при запуске генератора, и промежуточные реле, обеспечивающие различные дополнительные функции.

Схемы АВР, как правило, реализуют на щитах, для крупных объектов иногда используют шкафы. Существуют готовые решения, но для выполнения конкретных задач в заданных условиях и обеспечения наиболее полного функционала часто производят сборку АВР на основе комплектующих, удовлетворяющих конкретным техническим условиям. Перед подключением в обязательном порядке проводят испытание устройств АВР с подключением основной цепи через ЛАТР.

Стоит учесть тот факт, что одновременное питание от двух разных источников обладает следующими недостатками:

  • Высокие потери электрической энергии в питающем трансформаторе.
  • Токи «КЗ» при данном подключении на много больше, нежели в случаи раздельного схемы питания.
  • Усложняется защита оборудования.
  • Возникают сложности с выбором определённого режима работы.
  • Отсутствует возможность осуществления параллельного питания. Связано это с имеющейся релейной защитой и свойств оборудования.

Именно по этим причинам и возникла такая необходимость, как раздельное питание и мгновенное восстановление электричества для потребителей. С данной задачей превосходно справляется АВР. С помощью автоматического ввода резерва подключение питания происходит мгновенно, за 0,3 – 0,8 секунды.

Классификация

Аппараты АВР подразделяются на следующие типы:

  • Односторонней работы. В такой схеме имеется одна рабочая и одна резервная секция питающей электрической цепи.
  • Двухсторонней работы. Каждая питающая линия в таких устройствах может быть рабочей и резервной.

Какие требования предъявляются к устройствам АВР?

  1. Данные аппараты обязаны включаться за кротчайший интервал времени после того момента, как отключится основное питание потребителей.
  2. Устройство АВР должно срабатывать постоянно, не зависимо от того, какова была причина прекращения подачи электричества.
  3. Срабатывание обязано происходить однократно.

Как работает АВР

Для чего ещё нужен АВР? Благодаря данному аппарату осуществляется контроль минимально и максимально допустимого входного напряжения. Происходит и проверка наличия чередования фаз.

При падении напряжения на одной из фаз, а также изменениях частоты или просадках напряжения, то есть выхода этих параметров из заданных пределов основной цепи питания, посредством реле контроля фаз происходит размыкание контактов контактора на основном входе и замыкание контактов контакторов резервного входа. Далее срабатывают выключатели, происходит отключение потребителей от основного источника электроснабжения и подключение к резервному. Большинство схем АВР, как правило, работает по этому принципу.

При восстановлении параметров тока в основной цепи происходит замыкание контактов контактора основной цепи с одновременным размыканием контактов контактора резерва. Как правило, в схемах дополнительно имеется блокировка одновременного срабатывания катушек.

С помощью АВР вы сможете не допустить одновременного включения сразу двух линий (основной и резервной). В схемах, в которых применено секционирование, устройство автоматического ввода резерва заблокирует включение секционного «АВ». В случае надобности, АВР укомплектовываются специальной механической системой блокировки.

Данные аппараты могут устанавливаться в отдельных шкафах. В зависимости от мощности электропотребления, они могут быть: малогабаритными, полногабаритными, двух и трёх секционными. Также, АВР можно размещать в распределительных и вводных шкафах.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания устройств АВР, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытание устройств АВР или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Основы АСУ ТП и КИП — в статьях Ua.Automation.com

Доктор Вольт, для Ua.Automation.com

В работе часто приходится сталкиваться с запросами на расчет и заказ АВР-ов. По нашим наблюдениям, заказчики, произнося эту аббревиатуру «АВР», не всегда понимают, что это такое на самом деле… Этим материалом мы бы хотели добавить ясности в этот вопрос – возможно и для специалистов, в том числе. В общем, в некотором роде, наша цель это «Просвещение + Электрификация всей страны» :).

Что же такое АВР

Под АВР подразумевается, как правило, устройство Автоматического Ввода Резерва.

Более подробное определение может звучать таким образом: «Щит АВР – это устройство, предназначенное для приема, контроля трехфазного переменного напряжения и автоматического переключения резервного электропитания на нагрузку…». Можно, также, добавить такое окончание фразы, как «…автоматического запуска генераторной установки, а также защиты отходящих линий от токов перегрузки и токов короткого замыкания».

Это определение АВР, на самом деле, довольно короткое, но уже из него видно 2 принципиальных момента: 1) АВР – это сложное устройство; и 2) АВР – это часть щитового устройства.

В Википедии дано такое определение АВР: «способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного».

Обычно, АВР — это электрощитовое вводно-коммутационное распределительное устройство, минимум, на два питающих ввода. Один ввод основной (от которого постоянно работает нагрузка) и другой ввод – резервный. От резервного ввода происходит питание нагрузки в случае «пропадания» напряжения на основном вводе.

Устройство АВР переключает питание между вводами, обеспечивая питание нагрузки с минимальным временем переключения. Количество питающих вводов может быть больше двух. Например, три ввода, четыре ввода. Все зависит от степени обеспечения надежности питания нагрузки.

Из всего сказанного об АВР-ах можно вывести следующее:

АВР-ы классифицируются по:

  • количеству питающих вводов
  • напряжению питания
  • времени переключения (в зависимости от типа переключающего устройства, но об этом мы расскажем позднее)
  • по номинальному току.

«А на чем АВР?»

Самый «животрепещущий» вопрос, касающийся Автоматического Ввода Резерва, звучит так: «На чем АВР?». АВР может быть на контакторах, рубильниках с мотор-приводом, на автоматических выключателях с мотор-приводами, на рубильниках соленоидного типа, на полупроводниковых контакторах (дорого, зато быстро) и т.д.

Самый распространенный тип коммутирующего устройства – контакторы (они же – магнитные пускатели).

Устройство на контакторах состоит из двух контакторов – один контактор подключает питание от основного ввода на нагрузку, другой контактор – от резервного ввода.

Важная особенность – контакторы взаимосблокированы друг с другом. Это означает, что когда один контактор замкнут, то другой разомкнут и наоборот. Причем, включить оба контактора нельзя, т.к. между ними есть механическая и электрическая взаимоблокировки. Тут есть смысл остановиться и расписать все подробнее…

Чего не любят энергопоставляющие организации

Если два питающих ввода включить встречно, то произойдет встречное включение (обычно, как вариант, это может привести к полному короткому замыканию). Этого необходимо избегать. За этим бдительно следят энергопоставляющие организации. Стоит им узнать, что где-то есть АВР, они обязательно поинтересуются и потребуют, чтобы контакторы или другие коммутирующие устройства были сблокированы и защищены от одновременного включения. Особенно когда это АВР для ДГУ (дизель-генераторной установки).

Механическая взаимоблокировка – это такая «штучка», которая при монтаже контакторов устанавливается между ними и объединяет их таким образом, чтобы они не смогли включиться одновременно, причем блокирует их движущиеся части с силовыми контактами, позволяя включиться только одному контактору.

Электрическая взаимоблокировка – это система вспомогательных контактов, включенных определенным образом в цепи питания катушек контакторов, для исключения одновременной подачи на них напряжения управления.

Время переключения АВР-а на контакторах минимально короткое и может составлять до 200-250 мс. Но, на самом деле, оно может отличаться в зависимости от номинального тока контактора. Чем меньше ток, а значит физический габарит, то тем быстрее замыкаются и размыкаются контакты. Чем больше ток, тем больше габариты и больше расстояния между контактами и, соответственно, время включения увеличивается.

2+1=3

Как я уже говорил, чтобы реализовать самый «простой» АВР необходимо два ввода – один основной и другой, резервный.

Усложним задачу и примем в качестве основных два ввода, а третий ввод пусть будет резервным. Данный тип схемного построения АВР позволяет увеличить степень надежности электропитания нагрузок, т.к. в случае «пропадания» 1 основного ввода, АВР переключит питание нагрузки на 2-ой основной ввод. Ну, а в случае «пропадания» и 2-го основного ввода, АВР переключит питание нагрузки на 3-й резервный ввод. Причем, при восстановлении напряжения питания любого из основных вводов, АВР вернет питание нагрузки от основных вводов.

Слова «пропадание» питания, «пропадание» напряжения мы написали в кавычках неспроста и совершенно осознанно. Сейчас все объясним :).

Понятие «пропадание» напряжения питания описывает только один из вариантов выхода параметров напряжения за установленные пределы. У нас, согласно установленным и принятым правилам, напряжение считается нормальным, если оно находиться в пределах +/- 10% от номинального значения. Т.е.: 380 В + 10% = 418 В – максимальное превышение и 380 В – 10% = 342 В – минимальное понижение. Другие аномалии «пропадания» это: пропадание одной, двух или сразу трех фаз ввода, а также неправильное чередование фаз.

Можно еще, конечно, упомянуть такое явление как выход частоты за установленные пределы, но это, действительно аномалия. Хотя решить эту проблему несложно – достаточно применить в качестве дополнительного устройства контроля напряжения устройство «частотомер».

Итак, принимаем за «пропадание» выход за установленные пределы напряжения ввода, основного или резервного. В дальнейшем мы будем применять словосчетание «пропадание напряжения», смысл которого понятен.

Как это работает?

Вернемся к нашим трем вводам…

Логика в данном случае весьма простая. Будем считать 1-й ввод главным или «основным-основным», 2-й ввод основным (просто основным, или первым резервным) и 3-й ввод — резервным или аварийным (аварийным, в смысле, «самым надежным» и который применяется, когда вокруг все отказало, а электропитание все-таки нужно)…

Рассмотрим гипотетический сценарий: 1-й ввод работает, 2-й ввод есть, 3-й ввод, например, тоже работает (или это ДГУ, которая должна заработать автоматически).

И вот Горэнерго отключило 1 ввод! — контакторы переключают питание на 2-й ввод. Все прекрасно! Но, энергетики упорствуют и идут дальше (профилактика у них, что непонятного?), отключая и 2-й ввод! А что делать в таком случае банку, если у него в этот период закрытие отчетного периода или переводы денег, а значит, серверы должны работать «при любой погоде»! Конечно, тут нас должен выручить АВР, подключив нагрузку к 3-му вводу! В случае с ДГУ – при пропадании 1 и 2 вводов поступает сигнал на запуск ДГУ, который автоматически запускается и подает питание на АВР, который, конечно, срабатывает.

И если даже энергетики вновь включат 2-й ввод, то АВР произведет обратное переключение, и нагрузка будет питаться от 2-го ввода (3-й ввод при этом отключается, а если на 3-м вводе был ДГУ, то он останавливается. Солярка ныне не дешева). Если подключается и 1 ввод, то происходит переключение нагрузки на питание от 1 ввода.

Процесс, по сути простой, а вот слов для его описания потребовалось немало 🙂

Продолжение следует…

Связаться с автором можно по адресу:

В наше время перебои с электроснабжением не редкость. И хотя в нашей стране достаточно электроэнергии, но проблема бесперебойного электроснабжения остается. Решить ее поможет установка дополнительных источников электроэнергии, таких как генератор, аккумулятор, а так же иные альтернативные источники электропитания.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.

II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.

III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям.Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии.
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании систем гарантированного электроснабжения, предназначенных для обеспечения работы электроприемников I категории и особой группы первой категории надежности, возникает задача выбора типа устройства автоматического ввода резерва (АВР).

Автоматический ввод резерва (АВР) — метод защиты, предназначенный для бесперебойной работы сети электроснабжения. Реализован с помощью автоматического подключения к сети других источников электропитания в случае аварии основного источника электроснабжения.

Рассмотрим основные требования, предъявляемые к этим устройствам при построении системы гарантированного электроснабжения.

1. Как известно (гл.1.2 ПУЭ), электроприемники первой категории надежности должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, а для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого источника.

2. В обоих случаях в качестве одного из резервирующих источников питания может использоваться автоматизированная дизель-электрическая электростанция, что требуется учитывать при выборе конкретной схемы АВР.

3. При использовании АВР должны быть приняты меры, исключающие возможность замыкания между собой двух независимых источников питания друг на друга, причем в дополнение к требованиям ПУЭ службы энергонадзора, как правило, требуют наличия не только электрической, но и механической блокировки коммутирующих элементов.

4. Максимальное время переключения резерва зависит от характеристик потребителей электроэнергии, но при наличии в системе источников бесперебойного питания (ИБП) не имеет определяющего значения. Для исключения ложных срабатываний при переключениях АВР на стороне высокого напряжения должна быть предусмотрена возможность регулировки задержки переключения при неисправностях одной из сетей.

5. Важное значение имеет наличие регулировки порогов срабатывания АВР в диапазоне контролируемого напряжения для каждого ввода. Так, например, в случае подключения к выходу АВР ИБП согласование между собой диапазонов входных напряжений обоих устройств позволяет обеспечить своевременное переключение на резервную сеть при отклонении напряжений основной питающей сети за заданные значения и тем самым исключить длительную работу ИБП на батареях при исправной резервной сети.

6. Желательно наличие индикации состояния и возможности ручного управления АВР.

Преимущества и недостатки различных типов АВР с позиций перечисленных требований.

Тиристорные (электронные) АВР

Статический переключатель нагрузки — (англ.: LTM — Load Transfer module (модуль переключения нагрузки)). В этом типе АВР в качестве силового коммутирующего элемента используются мощные тиристоры, обеспечивающие практически нулевое время переключения между двумя независимыми вводами.

Преимущества: Основное и очень значимое преимущество: практически нулевое время переключения между вводами (возможно применения для переключения между ИБП (источник бесперебойного питания) разной мощности, разных производителей). Переключение между вводами никак не сказывается на электроснабжении ответственных потребителей электроэнергии (серверы, компьютерное оборудование, устройства автоматики, телекоммуникационное оборудование и т.д.). При использовании LTM в схемах электроснабжения критически важных объектов или ответственных потребителей можно существенно сэкономить на применении ИБП, ДГА и других устройств независимого электроснабжения.

Недостатки: Основной недостаток это очень высокая стоимость по сравнению с механическими АВР (на контакторах и рубильниках).

Электромеханические АВР на контакторах

АВР на контакторах получили наиболее широкое применение, в основном, благодаря низкой стоимости комплектующих. В основе щита АВР на контакторах обычно применяются два контактора с взаимной электрической или электромеханической блокировкой и реле контроля фаз. В самых дешевых вариантах АВР на контакторах используется обычное реле, контролирующее наличие напряжения только на одной фазе, без контроля качества электроэнергии (частота, напряжение). При пропадании напряжения на одной фазе, АВР на контакторах переключает нагрузку на другой (резервный) ввод электроэнергии. При использовании качественных полнофункциональных реле контроля фаз (контроль 3-х фаз: напряжение, частота, временные задержки на перевод нагрузки, возможность программирования диапазонов и задержек) и применении механической блокировки (предотвращает одновременную подачу электропитания с двух вводов) АВР на контакторах становится довольно качественным и законченным изделием.

Преимущества: дешевая стоимость, выполняет защитные функции (высокий ток, короткое замыкание).

Недостатки: отсутствие возможности ручного переключения при неисправности АВР, низкая ремонтопригодность (при отказе одного из элементов АВР, требуется демонтаж и ремонт всего изделия), длительное время переключения (от 16 до 120 мс). Небольшое количество циклов срабатывания. Вероятность залипания контактов контактора.

Электромеханические АВР на автоматических выключателях с электроприводом

Такие АВР несколько уступают предыдущим по быстродействию и также позволяют осуществить механическую и электрическую блокировки при двухвходовой схеме.

Недостатки: более сложная схема и более высокую стоимость этих устройств.

Электромеханические АВР на управляемых переключателях с электроприводом

В основе лежит рубильник (переключатель с нулевым средним положением, приводимый в действие моторным приводом. Привод управляется контроллером, который является частью автоматического рубильника или может устанавливаться отдельно).

Преимущества: Высокая ремонтопригодность: автоматический рубильник состоит из трех основных элементов: рубильник (переключатель), моторный привод, контроллер. Выход из строя рубильника практически невозможен. При выходе из строя моторного привода или контроллера (реле контроля фаз), возможна их замена без демонтажа щита АВР и без демонтажа самого рубильника. При снятом моторном приводе и контроллере возможно переключение нагрузки в ручном режиме. Легкая сборка щита АВР. Для сборки щита требуется установить рубильник на монтажную плату, никакие дополнительные силовые или контрольные соединения не используются. Высокая надежность: за счет применения малого количества элементов и за счет использования в качестве силового коммутирующего устройства 13 рубильника.

Недостатки: относительно высокая стоимость (на токи до 125 А). Отсутствие защитных функций

У всех рассмотренных типов АВР при необходимости могут быть реализованы функции контроля верхнего и нижнего уровня напряжений, введены элементы регулировки задержек и схемы управления работой ДЭС.

На основании выше сказанного, можно сделать следующие выводы:

Для системы гарантированного электроснабжения, имеющей два независимых ввода электроснабжения:

  • Целесообразно использовать АВР электромеханического типа, которые могут быть выполнены на контакторах, управляемых автоматических выключателях или управляемых переключателях с электроприводом.
  • Схема АВР должна предусматривать регулировки задержек переключения, порогов срабатывания во всем диапазоне входных напряжений.
  • Желательно наличие механической блокировки, исключающей возможность замыкания двух входов друг на друга.
  • При использовании в качестве резервного источника дизель-электрической станции схема АВР должна содержать необходимые элементы для управления ее работой (автоматический пуск и останов ДЭС, возможность регулировки различных временных параметров, в том числе задержки обратного переключения на сеть, времени работы ДЭС на холостом ходу для охлаждения и т.п.).

Для системы гарантированного электроснабжения, имеющей три независимых ввода электроснабжения:

  • Трехвходовая схема может быть реализована путем последовательного соединения двух двухвходовых АВР, при этом каждый из этих аппаратов должен быть выполнен с учетом требований, указанных выше.
  • АВР на контакторах и управляемых автоматических выключателях могут быть реализованы как трехвходовые (что уменьшит суммарную стоимость оборудования на 20-30% за счет меньшего числа коммутирующих элементов), однако при этом невозможно обеспечить полноценную механическую блокировку между тремя входами.

Остановимся на некоторых практических рекомендациях, которые подтверждены в различных проектах, реализованных специалистами холдинга «Электросистемы».

1. Система гарантированного электроснабжения мощностью до 100кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

В этом случае могут быть предложены автоматические коммутаторы серии АК фирмы «ППФ БИП-сервис», представляющие собой АВР контакторного типа. Эти аппараты имеют:

  • механическую и электронную блокировку контакторов;
  • автоматические выключатели на каждом входе, обеспечивающие защиту сетей от перегрузок и коротких замыканий нагрузки;
  • регулировку диапазона контролируемых напряжений;
  • контроль правильности чередования фаз; возможность установки приоритета любого из входов;
  • индикацию режима работы и состояния входов;
  • регулировку задержки времени переключения.

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

2. Система гарантированного электроснабжения мощностью более 100кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП фирмы «ППФ БИП-сервис», которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, как указывалось выше, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

3. Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС.

Для такой конфигурации может быть применена панель переключения нагрузки типа TI, также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами — изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

4. Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС.

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI;
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС;
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС.

Система гарантированного электроснабжения, реализованная по первому варианту (рис.1), по существу, является комбинацией двух рассмотренных выше схем для двух сетевых вводов и для сетевого ввода и ДЭС.

Очевидно, однако, что эта схема обладает некоторой избыточностью (например, для коммутаторов типа АК необходимо четыре контактора), поэтому схемы трехвходовых АВР могут быть экономически более привлекательны.

В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов. В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов, а между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК (см. рис.2).

Схема трехвходового коммутатора серии АКП (рис.3), как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

АВР — автоматический ввод резерва

АВР (расшифровка: автоматический ввод резерва) это способ обеспечения резервным электроснабжением потребителей, подключенных к системе и имеющей не менее двух запитывающих вводов и направленный на стабильность системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.

Система АВР обязана срабатывать за минимальное время после отключения основного источника электроэнергии.
Система АВР обязана срабатывать в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях необходима выдержка времени при переключении АВР. Например, в случае запуска мощных электродвигателей на стороне потребителя, схема АВР должна корректно отработать просадку напряжения.
АВР срабатывает однократно. Это требование объясняется недопустимостью многократного включения резервных источников в систему, в которой еще не неустранённы аварии.
В «железе» АВР реализуют с помощью реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — устройств, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.

Варианты АВР

АВР одностороннего действия. Случай наличия одной рабочей секции питающей сети, и одной резервной. При потере питания рабочей секции АВР переключит на резервную сеть.
АВР двухстороннего действия. В этом случае любая из двух линий может быть как рабочей, так и резервной.
АВР с восстановлением. При повторном появлении на отключенном вводе напряжения, он с выдержкой времени включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников невозможна, то сначала отключается секционный выключатель, а затем включается вводной. Схема возвращается в исходный режим.
АВР без восстановления.

Работа АВР

В качестве измерительного органа в схемах АВР применяют реле минимального напряжения (реле контроля фаз), подключённые к контролируемым цепям. При понижении напряжения на защищаемом участке реле реагирует и посылает сигнал в схему АВР. Кроме того, после просадки напряжения еще должны выполняться следующие условия:

  • На контролируемом участке отсутствует короткое замыкание. Понижение напряжения может в ряде случаев быть вызвано коротким замыканием, а значит подключение к этой цепи дополнительных источников питания неверно.
  • Вводной выключатель должен быть включён, чтобы АВР ошибочно не сработало из-за штатного отключения вводного выключателя.
  • На альтернативном участке напряжение присутствует. При отсутствии напряжения на обеих линиях переключение не имеет смысла.

После анализа этих условий логика АВР посылает сигнал на независимый расцепитель вводного выключателя аварийной цепи и отключает его, а подключает межлинейный (или секционный) выключатель. АВР делятся на системы с восстановлением и без восстановлением. В первом случае при появлении напряжения на вводе с установленной выдержкой схема восстанавливает исходный сценарий. Как правило, данный режим выбирается установкой накладок вторичных цепей в соответствующее положение. При восстановлении АВР возможна кратковременная работа питающих трансформаторов «в параллель» для бесперебойности электроснабжения. При работе без восстановления схема АВР не возвращает в доаварийный режим. Один из вариантов реализации автоматического ввода резерва — щит ЩАП. Расшифровка ЩАП.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *